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Figure 1. Given a single image, we predict a mesh with textures (rendered from the predicted view and a novel view). The models can learn

directly from collections of images with only foreground masks, without supervision of mesh templates, multi-view association, camera

poses, semantic annotations, etc.

Abstract
We aim to infer 3D shape and pose of object from a

single image and propose a learning-based approach that

can train from unstructured image collections, supervised

by only segmentation outputs from off-the-shelf recognition

systems (i.e. ‘shelf-supervised’). We first infer a volumetric

representation in a canonical frame, along with the cam-

era pose. We enforce the representation geometrically con-

sistent with both appearance and masks, and also that the

synthesized novel views are indistinguishable from image

collections. The coarse volumetric prediction is then con-

verted to a mesh-based representation, which is further re-

fined in the predicted camera frame. These two steps allow

both shape-pose factorization from image collections and

per-instance reconstruction in finer details. We examine the

method on both synthetic and the real-world datasets and

demonstrate its scalability on 50 categories in the wild, an

order of magnitude more classes than existing works.

1. Introduction

We live in a 3D world where 3D understanding plays a

crucial role in our visual perception. Yet most computer

vision systems in the wild still perform 2D semantic recog-

nition (classification/detection). Why is that? We believe

the key reason is the lack of 3D supervision in the wild.

Most recent advances in 2D recognition have come from

supervised learning but unlike 2D semantic tasks, obtaining

supervision for 3D understanding is still not scalable.

While some recent approaches [10, 49] have attempted

to build supervised 3D counterpart of 2D approaches, the

concerns about scalability still remain. Instead, a more

promising direction is to learn models of single image 3D

reconstruction by minimizing the amount of manual super-

vision needed. Early approaches in this direction focused

on using multi-view supervision [48, 53]. However, ob-

taining multiple views of the same objects/scene is still

not easy for the data in the wild. Therefore, recent ap-
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proaches [17, 23, 33] have attempted to learn single-image

3D reconstruction models from image collections. These

approaches have targeted use of category templates, pose

supervision and keypoints to provide supervision (See Ta-

ble 1). However, such supervision still limits the scalability

to hundreds of categories.

Our work is inspired by recent approaches that forgo su-

pervision by exploiting meta-supervision from the category

structure and geometric nature of the task. More specifi-

cally, the two common supervisions used are: (a) render-

ing supervision ([23, 26]): any given image of an instance

in a category is merely a rendering of a 3D structure un-

der a particular viewpoint. We can therefore enforce that

the inferred 3D shape be consistent with the available im-

age evidence when rendered; (b) adversarial supervision

([33]): in addition, the availability of an image collection

also allows us to understand what renderings of 3D struc-

tures should look like in general. This enables us to derive

supervisory signal not just from renderings of predictions in

the input view, but also from novel views, by encouraging

the novel-view renderings to look realistic. Prior work has

exploited these supervisions but individually they pose sev-

eral limitations for scaling 3D reconstruction models. For

example, [11, 23] still requires template models. Similarly,

[33] exploits the adversarial supervision and ignores the ex-

plicit geometric supervision. Therefore, such an approach

only works on categories with strong structure and curated

image collections.

This paper attempts to build upon the very recent suc-

cesses in meta-supervision and provide an approach to

scale learning of single image 3D reconstruction in the

wild. We present a two-step approach: the first step re-

lies on category-level understanding for coarse 3D inference

(learned via meta-supervision). The second step specializes

coarse models to match the details in the input image. Our

approach can learn using only unannotated image collec-

tions, without requiring any ground-truth 3D [3, 10, 46],

multi-view [44, 53], category templates [11, 22], or pose

supervision [18, 48]. This not only allows our approach to

infer accurate 3D, but also enables it to do so beyond the

synthetic settings, using in-the-wild image collections in a

‘shelf-supervised’ manner: with only approximate instance

segmentation masks obtained using off-the-shelf recogni-

tion systems as supervision. Yet our biggest contribution is

the demonstration of scalability – we show results on order

of magnitude more classes than existing papers.

2. Related Work

Supervised Single-view 3D Reconstruction. When con-

sidering object categories that exhibit limited shape varia-

tion, a common approach is to leverage predefined 3D de-

formable templates to either fit the input [3, 13, 36, 51] or

to regress the model parameters [39, 40, 46]. While they

Table 1. Comparing ours to other image-based supervised works

in terms of supervision and outputs.
[15] [22] [17] [18] [44] [50] [33] [8] [26] ours

pose ✓ ✓ ✓

template ✓ ✓ ✓

semantic ✓ (✓)

multi-view ✓

mask (✓) ✓ ✓ ✓ ✓ ✓ ✓ ✓

3D recon. ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓

topology ✓ ✓ ✓

texture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

achieve remarkable performance to reconstruct details, the

predefined shape model may not be available for an arbi-

trary category or one template is not sufficient to fit all

instances with varying topologies and shapes (e.g. chairs).

Another line of works [1, 9, 35, 38, 49] learns a manifold

of shape by first mapping the input to a latent space from

which 3D shape is generated. However, these methods suf-

fer from losing finer details as the reconstruction only rely

on less expressive latent code. Similar to our approach,

Gkioxari et al. [10] recently addressed these concerns by

first inferring a coarse shape, and then refining it to match

the given image. While all methods above have presented

impressive results, they crucially require 3D supervision. In

contrast, our work aims for similar inference where neither

3D nor pose annotation is available.

Unsupervised learning from image-based supervision.

With a similar motivation as ours to relax the need of su-

pervision, several approaches study the reconstruction task

with only multi-view or even single-view supervision. The

key is to ensure reprojection consistency of the predicted

3D with available observations. While this relaxes the re-

quirement for tedious 3D supervision, manual annotations

are still required in different forms, such as semantic key-

points [17, 20], multi-view association [6, 29, 44, 48], cat-

egorical template [11, 17, 22, 23], or camera pose anno-

tation [14, 15, 18, 29, 53]. Some recent works use self-

supervised semantic co-part segmentation [26], foreground

masks [8, 16], or symmetry [50] to further relax the manual

annotation. Our work has similar setup while ours does not

require semantic in training, and reconstructs textured full

3D meshes with various topology and shapes. Table 1 sum-

marizes the differences of our method with others in terms

of supervision and outputs.

Neural renderer for view synthesis and 3D representa-

tion. Neural rendering [42] is a rapidly emerging field aim-

ing to generate photo-realistic images or videos in a con-

trollable manner by rendering its internal 3D representa-

tion with various geometric inspirations. In particular, many

works [30, 31, 32, 37] present an approach to render a rep-

resentation based on volumetric feature. While the initial

applications are in multi-view settings, subsequent works

[33, 38] have shown inference of such 3D representation

from a single image. More relevant to our work, HoloGAN

[33] presents a way to infer this from single single image in
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Figure 2. Volumetric Representation Prediction and Rendering. Left: Given an input image, the encoder-decoder network infers a

semi-implicit volumetric representation (So, Sf ) and a camera pose v. The semi-implicit volume is then projected from the predicted

camera pose to obtain foreground image and mask. The semi-implicit volume is also projected from a novel view v′. The projections are

required to both match the 2D observation and appear realistic. Right: Projection process mimicking ray marching.

an unsupervised setting by generating realistic novel views.

However, their approach does not recover an explicit 3D

representation. While we also adopt a neural renderer to

render our volumetric representation, we explicitly incorpo-

rate reasoning about occupancy to improve 3D estimation.

3. Method

Our goal is to learn a model that, given an input image

segmented with object mask, outputs a 3D shape in the form

of a triangle mesh with texture and the corresponding cam-

era pose. We use a two-step approach. First, we predict

a canonical-frame volumetric representation and a camera

pose to capture the coarse 3D structure which is consistent

with categorical priors. We then convert this coarse volume

to a memory-efficient mesh representation which is refined

to better match the instance-level details.

We propose to learn the category level model from

image collections using geometric and adversarial meta-

supervision signals. More specifically, our key insight is

that the projection of the predicted 3D should explain the

observed images and masks, while also appearing realistic

from a novel view.

3.1. Volumetric Reconstruction Model

First we define the volumetric reconstruction model

which is learned separately for each category. Given an

image this model predicts a volumetric representation in

a canonical frame with corresponding camera pose. Note

that unlike approaches that use a deformable category-level

shape space, a volumetric representation allows us to cap-

ture larger shape and topology variations.

Concretely, we adopt a semi-implicit representation

comprised of an explicit occupancy grid So, with an implicit

3D feature Sf , i.e. S = (So, Sf ). The latter can help cap-

ture appearance, texture, material, lighting, etc. This allows

synthesizing both mask and appearance from a query view,

and thereby lets us use both RGB images and foreground

masks as supervision. The overall method is depicted in

Figure 2.

Encoder-Decoder Architecture. We learn an encoder-

decoder style network φ to predict this semi-implicit rep-

resentation (S, v) ≡ φ(I) where v is the camera pose. The

encoder maps the input image to a low-dimensional latent

variable z and predict the camera pose, i.e. (z, v) ≡ φE(I).
The latent variable z is then decoded to the volumetric rep-

resentation, S ≡ φD(z). The key here is that the view-

independent decoder learns to predict the shape in a canon-

ical pose across all instances in the category. To further

regularize the network, we leverage the observation that

many objects exhibit reflection symmetry, and enforce a

fixed symmetric plane (x = 0) via averaging predicted fea-

tures in symmetrically related locations.

Volumetric Rendering. Our goal is to supervise the volu-

metric model using only 2D observations. Therefore, what

we need is a rendering function (π) which projects volu-

metric representation to obtain 2D images and masks from

a query view i.e. (I,M) ≡ π(Sf , So, v). Similar to other

volumetric neural renderers [30, 44], we use a geometrically

informed projection process by mimicking ray marching.

For a given pixel p, we use D samples along the ray to

obtain a ‘rendered’ feature and mask value. Let us denote

the coordinate of the d-th sample on the ray as Cv + λdep
where ep is the corresponding ray direction. We sample

both implicit feature and occupancy at these locations, de-

noted as Sf [Cv + λdep] and So[Cv + λdep]. We then com-

posite these samples to obtain a per-pixel feature s
p

f and

mask spm, by using the expected value with respect to ray

stopping probability [43]:

s
p

f =
D∑

d=1

(So[C + λdep]
d−1∏

h=1

(1− So[C + λhep]))

· Sf [C + λhep]

The pixelwise mask value spm is similarly rendered by set-

ting Sf to constant 1. While this process lets us directly

compute the rendered mask M , we use a few upconvolu-

tional layers to transform the rendered 2D feature image to

8845



the output color image.

Training. We supervise this network with only unannotated

images and foreground masks. We use three different kinds

of supervision (or terms in the loss function):

Pixel consistency loss. Our first term is the simplest one.

Any predicted volumetric representation when rendered in

the same camera view should explain the input image and

mask. This is performed in color space, mask space [28],

and perceptual space [54] .

Lrgb = ‖Î − I‖1

Lmask = 1−
‖M̂ ⊗M‖1

‖M̂ ⊕M − M̂ ⊗M‖1

Lperc = ‖h(Î)− h(I)‖2
2

where Î , M̂ are rendered image and mask; h is the feature

extracted by a pretrained AlexNet [21] and ⊕⊗ are element-

wise summation and multiplication respectively.

View synthesis adversarial loss. A degenerate solution

could arise such that the shape is only plausible from the

predicted view. To avoid it, we require the projection of pre-

dicted shape to appear realistic from a random novel view.

Specifically, we sample another camera pose from a fixed

prior to render the novel view: I ′ = π(φD(z), v′), v′ ∼
p(v). We then present this generated image to an adversar-

ial discriminator with an objective to fool it. We similarly

encourage photo-realism when rendering from the predicted

camera pose. The loss is minimized in a vanilla GAN [12]

scheme.

Ladv = logD(I)+log(1−D(π(S, v))+log(1−D(π(S, v′))

Content consistency loss. To further regularize the network

we build on a insight that the encoder and decoder networks

should be self-consistent. Given a synthesized image from

the decoder, the encoder should predict the actual content

(latent variable with camera pose) that generated that image.

Formally,

Lcontent = ‖φE(πS(S, v))− (z, v)‖2
2

+‖φE(πS(S, v
′))− (z, v′)‖2

2

Empirically, we found Lcontent important to stablize train-

ing.

Optimization. The neural renderer and decoder are

trained to minimize all of the above objectives. But the en-

coder is not optimized with the adversarial loss, as in [25].

3.2. InstanceLevel Specialization

The volumetric representation captures general

category-level structure to hallucinate a full 3D shape.

However, this shape is coarse as it is: a) limited by

the volumetric resolution, and b) generated only from a

Figure 3. Instance-level specialization. We convert the inferred

volumetric occupancy to an initial mesh. The mesh geometry and

textures are then iteratively refined to better match the given input.

low-dimensional latent variable. On the other hand, a mesh

representation is more flexible and can allow capturing the

finer shape details. We therefore go beyond this coarse

volumetric prediction, and capture details specific to this

instance by converting the volume to an initial mesh, which

is then adjusted to better match the input image.

Volumetric to Mesh. We first obatin an initial mesh from

the predicted volumetric occupancy. This is done similar

to Mesh-RCNN [10] by binarizing the occupancy grid So

and extracting its surfaces. Next, every vertex is projected

to the image to obtain visibility and texture at the vertex.

At this step we leverage the symmetry of the mesh to fuse

the textures from its reflective symmetric vertex. The final

associated texture for each vertex is an average of itself and

its visible symmetric neighbors.

Mesh refinement. We optimize the geometry and refine

the texture of the mesh iteratively. Given a posed textured

input mesh, we first optimize the vertex location and the

camera pose such that the projection of the mesh matches

the observation. After every step of mesh geometry up-

date, vertex textures are re-sampled from the image given

the adjusted projected location. More specifically, we use a

mesh-based differential renderer [28] to project and render.

The rendered images and masks (Î , M̂) ≡ πG(G, v) are

encouraged to be consistent with the input image and fore-

ground mask. We regularize the optimization by penalizing

large vertex displacement ‖δX‖2
2

and encourage Laplacian

smoothness ‖∆X‖2
2
.

4. Experiments

Our goal is to highlight how our approach learns to pre-

dict 3D meshes from image collections in the wild. Specif-

ically, we show 3D reconstruction for 50 object categories

from OpenImages dataset [24]. Note that this diverse set of

reconstructions is an order of magnitude larger than those

of any existing approaches.

However, there is no ground truth for OpenImages. Also,

most baseline approaches fail to work on uncurated image

collections. In order to provide comparisons, we perform

two additional experiments. First, we compare on data

drawn from 3D Warehouse[47], using rendered images as

image collection. Using synthetic data allows us to provide
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Figure 4. Visualization of categorical volumetric representation

across different methods.

Table 2. Quantitative results (3D IoU / F-score) on synthetic data

comparing different methods for shape reconstruction.

airplane car chair

HoloGAN [33] 0.28/ 0.31 0.43 / 0.44 0.26 / 0.25

PrGAN [8] 0.29/ 0.18 0.48 / 0.37 0.28 / 0.28

Ours 0.33 / 0.46 0.55 / 0.43 0.31 / 0.29

Ours (refined) —- / 0.49 —- / 0.42 —- / 0.31

quantitative evaluation and perform ablative analysis. Sec-

ond, we also compare with some of the other curated com-

mon datasets used in the literature (CUB, Chair-in-Wild,

ImageNet Quadrapeds). This helps us to qualitatively com-

pare with some baseline approaches.

4.1. Synthetic Data

We first evaluate our method on models from 3D Ware-

house [47], using the subset recommended by Chang et

al. [4]. We select three categories which are commonly used

to evaluate single-view reconstruction: aeroplane, car, and

chair. Note that within a category, the shapes across in-

stances can have a large variation and even different topol-

ogy, especially for chairs. Each 3D model is rendered from

20 views, with uniformly sampled azimuth [0◦, 360◦] and

elevation elevation [−60◦, 60◦]. However, the network is

not provided with multi-view associations in training.

Evaluation metrics. We report 3D IoU with resolution 323

Figure 5. Ablation study: refining mesh initialized from the pre-

dicted volume (col 2/5) and another volumes (col 3/6).

Table 3. Quantitative results (3D IoU) on synthetic data to ablate

the effect of each loss term.

airplane car chair

Ours 0.33 0.55 0.31

Ours −Ladv 0.25 0.44 0.22

Ours −Lcont 0.24 0.54 0.23

and F-score in the canonical frame for volumetric recon-

struction and report F-score [41] for mesh refinement. The

F-score can be interpreted as the percentage of correctly re-

constructed surface. As our predictions (and those of base-

lines) can be in an arbitrary canonical frame that is different

from the ground truth frame, we explicitly search for az-

imuth, elevation for each instance and binarizing threshold

for each category to align the predicted canonical space with

the ground-truth.

Baselines. We compare our approach to [8, 33]. We adapt

HoloGAN [33] by training their system on our data, and

obtaining a 3D output by adding a read-off function from

the learned volumetric feature to occupancy by enforcing

the reprojection consistency with foreground masks. We

implement PrGAN [8] using our encoder-decoder network.

Our implementation provides a boost to original PrGAN.

Figure 4 visualizes the reconstructions in a canonical

frame on 3 categories. HoloGAN is able to reconstruct a

blobby shape, but as it does not explicitly represent 3D oc-

cupancies, it struggles to generate a coherent shape. PrGAN

is able to capture the coarse shape layout but it lacks some

details like flat body of aeroplanes. In contrast, we recon-

struct the shape more faithfully to the ground-truth as we

leverage information from both appearance and foreground

masks. Quantitatively, we report the 3D IoU on these cate-

gories in Table 2 and, consistent with the qualitative results,

observe empirical gains across all categories.

Mesh Refinement. Table 2 also reports the evaluation

of the mesh refinement stage. Compared with the initial

meshes converted from volumetric representation, our spe-

cialized meshes match the true shape better.

In Figure 5, we visualize the refinement results with an

interesting ablation to further highlight the importance of

mesh initialization. Instead of initializing with our pre-
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Figure 6. Visualizing categorical volumetric representation across different methods on CUB-200-2011, Quadrupeds, Chairs in the wild.

Figure 7. Ablation study: comparing reconstructed volumes when

the model disables different loss terms.

dicted volume, we initialize the mesh from another chair

consisting of different numbers of chair legs. The refine-

ment fails to specialize well. This indicates that the meshes

for all instances cannot be adjusted from one single shape

especially when shapes have a large variance, and that our

volumetric prediction, though coarse, provides an important

initialization for the instance-level refinement.

Loss ablation. We provide quantitative (Table 3) and qual-

itative (Figure 7) results to show each loss term is neces-

sary. Without adversarial loss, the model collapses to gen-

erate shapes only looking similar to the input from the pre-

dicted view. It does not even look like a chair from an-

other view, since this degenerate solution is not penalized

by other losses. Without content loss, the performance also

drops, especially on categories with larger shape variance

like chairs. The consistency loss is not ablated because it is

needed for the task of reconstruction.

4.2. Curated Collections

We also examine our method on three real-world datasets

that have been curated and used in the literature for the 3D

reconstruction problem:

CUB-200-2011 [45]: The CUB dataset consists of 6k im-

ages of 200 bird species with annotated foreground masks.

Quadrupeds from ImageNet [7]: The Quadrupeds dataset

consists of 25k images of different quadrupeds from Ima-

geNet. Masks are provided by Kulkarni et al. [22], who use

an off-the-shelf segmentation system [19] and manually fil-

ter out the truncated or noisy instances. Quadrupeds con-

sists of multiple 4-legged animal species including buffalo,

camels, sheep, dogs, etc. The animals also exhibit rich ar-

ticulation e.g. running, lying, heads up or heads down. This

makes the underlying shape variance significantly larger

than the CUB dataset.

Chairs in the wild [7, 34, 52]: For chairs in the wild,

we combine chairs in PASCAL3D, ImageNet, and Stanford

Online Products Dataset to get 2084 images for training and

271 for testing. Masks in [7, 34] are from segmentation sys-

tems [5, 19] and those in [52] are from annotations.

Figure 6 qualitatively compares our volumetric recon-

struction to baselines on the 3 separate real-world datasets.

Similar to results on synthetic data, HoloGAN reconstructs

only coarse blobby volumes as it does not explicitly con-

sider occupancy or geometric-informed projection. PrGAN

collapses to shapes with little variance, since it does not use

appearance cues. But the real datasets have noisier fore-

ground masks and textures contain more information. In

contrast, we are able to learn the coarse categorical shape

just from the foreground images. Our reconstructions also

capture subtle differences like the length of bird tails, artic-

ulated heads of the quadrupeds, the style of chairs.

Mesh Refinement. Figure 8 visualizes our refined meshes

from the predicted view and a novel view on these three

dataset. We observe that we predict meaningful texture even

for invisible regions and that the shape of the mesh also

looks plausible from another view. On CUB-200-2011, our

method captures the categorical shapes like blobby bodies,

beaks and tails while captures subtle shape differences be-

tween birds such as the tail length, body width, neck bend-

ing, etc. On Quadrupeds, we are able to capture quadrupeds

common traits such as torso with one head and front back

legs. We can also depict their uniqueness such as the camel

hump and longer legs, the tapir having stout neck, the sheep

raising up its heads, the horse bending down its neck, etc.

On Chairs in the wild, the learned common model differ-

entiates one-leg and four-leg chairs respectively. The four

legs and seat can be hallucinated even when occluded. The

subtle differences such as a wide or a narrow chair back are

also captured. Despite the challenges in the datasets, it is

encouraging that our model can capture both, the common

shapes and specialized details just by learning from these

unannotated image collections.
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Figure 8. Visualizing our refined shapes from the predicted view (2nd column in each quadruplet) and a novel view (3rd+4th / quadruplet)

on CUB, Quadrupeds, Chairs in the wild. We are able to capture both the shared shapes in categories and instance-specific differences.

4.3. OpenImages 50 Categories

Finally, the highlight of our model is the ability to scale

to images in the wild. We evaluate our model on 50 cate-

gories on Open Images including bagel, water tap, hat, etc.

The size of each category ranges from 500 to 20k. The

foreground masks [2] are from annotation and filtered by

a fine-tuned occlusion classifier. Figure 10 visualizes the

reconstructed meshes from the predicted view and a novel

view. Our method works on a large number of categories,

including thin (water taps, saxophone), flat (wheels, surf-

boards), blobby structures (Christmas trees, vases). We are

able to reconstruct shapes with various topology such as

bagels, mugs, handbags. The model captures the categor-

ical shapes shared within classes and hallucinates plausible

occluded regions (mushroom, mugs). We can also captures

details at instance-level, such as the number of wheels of

roller-skaters, styles of high-heels, hats, etc.

Integrating on COCO. We additionally show results of

our models on COCO [27] without fine-tuning (Figure 9).

We first detect and segment the objects with off-the-shelf

segmentation [19] system. Based on the predicted classes,

we then pass the segmented objects to our category-specific

models which are trained on previous datasets. Despite

more cluttered scenes and the dataset domain shift, our

models can lift the 2D detection to 3D meshes for various

categories while preserving instance details.

5. Conclusion

We presented an approach to predict 3D representations

from unannotated images by learning a category-level vol-

umetric prediction followed by instance-level mesh special-

ization. We found that both are important to infer an ac-

curate 3D reconstruction. While we obtained encouraging

results across diverse categories, our approach has several

limitations. For example, our rendering model is simplis-

tic and not incorporate lighting during rendering. Thus we

cannot easily reason about concave structure. Additionally,

Figure 9. Test on COCO: visualization of lifting detection results

to meshes via the shelf-supervised models.

while we only examined setups without annotated supervi-

sion like mesh templates, our system could potentially in-

corporate additional (sparse) supervision to improve the re-

construction quality. While these challenges still remain,

we believe our work on inferring accurate reconstruction

with limited supervising can provide a scalable basis to-

wards the goal of reconstructing generic objects in the wild.
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Figure 10. Visualizing our reconstructed meshes from the predicted view (2nd in each quadruplet) and a novel view (3rd and 4th in each

quadruplet) trained on multiple categories on Open Images.
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