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Abstract

We study an unsupervised domain adaptation problem for

the semantic labeling of 3D point clouds, with a particular

focus on domain discrepancies induced by different LiDAR

sensors. Based on the observation that sparse 3D point

clouds are sampled from 3D surfaces, we take a Complete

and Label approach to recover the underlying surfaces be-

fore passing them to a segmentation network. Specifically,

we design a Sparse Voxel Completion Network (SVCN) to

complete the 3D surfaces of a sparse point cloud. Unlike

semantic labels, to obtain training pairs for SVCN requires

no manual labeling. We also introduce local adversarial

learning to model the surface prior. The recovered 3D sur-

faces serve as a canonical domain, from which semantic

labels can transfer across different LiDAR sensors. Exper-

iments and ablation studies with our new benchmark for

cross-domain semantic labeling of LiDAR data show that the

proposed approach provides 6.3-37.6% better performance

than previous domain adaptation methods.

1. Introduction

Semantic segmentation of LiDAR point clouds is important

for many applications, including autonomous driving, se-

mantic mapping, and construction site monitoring to name a

few. Given a LiDAR sweep (frame), the goal is to produce a

semantic label for each point.

Although there is a great potential for deep neural net-

works on this semantic segmentation task, their performance

is limited by the availability of labeled training data. Acquir-

ing manual labels for 3D points is very expensive. Several

datasets have recently been released by autonomous driving

companies [1, 4, 5, 13, 14, 25, 27, 51]. However, each has

a different configuration of LiDAR sensors, which produce

different 3D sampling patterns (Figure 1), and each cov-

ers distinct geographic regions with distinct distributions of

scene contents. As a result, deep networks trained on one

dataset do not perform well on others.

(a) captured by a 64-beam LiDAR (b) captured by a 32-beam LiDAR

Figure 1. The sampling discrepancy between point clouds captured

by two LiDAR sensors. All figures are best viewed in color.

There is a domain adaptation problem. While the mis-

match of scene contents is similar to those studied in 2D

visual domain adaptation [36, 8], the sampling mismatch is

unique to 3D point clouds. Each time a new LiDAR sensor

configuration is selected, data is acquired with a different

3D sampling pattern, so models trained on the old data are

no longer effective, and new labeled data must be acquired

for supervised training in the conventional machine learning

paradigm. In contrast, domain adaptation aims to take better

advantage of the old labeled data by revealing unlabeled data

of the new LiDAR configuration to a machine learner so that

it can account for the new scenarios.

To address the sampling caused domain gap, we observe

that LiDAR samples have an underlying geometric structure,

and domain adaptation can be performed more effectively

with a 3D model leveraging that structure. Specifically, as-

suming the physical world is composed of 3D surfaces, and

that LiDAR sensor samples come from those surfaces, we

address the domain adaption problem by transforming it into

a 3D surface completion task. That is, if we can recover the

underlying complete 3D surfaces from sparse LiDAR point

samples, and train networks that operate on the completed

surfaces, then we can leverage the labeled data from any

LiDAR scanner to work on the data from any other.

The motivation for this approach is that surface comple-

tion is an easier task than semantic segmentation. First, there

are strong priors on the shapes of 3D surfaces encountered in

the real world, and thus a network trained to densify a point

cloud can learn and leverage those priors with relatively little
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training data. Second, surface completion can be learned

from self-supervision (e.g., from multi-view observations)

and/or from synthetic datasets (e.g., from sampled computer

graphics models). Unlike semantic segmentation, no man-

ual labels are required. We train our completion network

with supervision from complete surfaces reconstructed from

multiple frames of LiDAR data.

Our network architecture is composed of two phases:

surface completion and semantic labeling. In the first phase,

we use a sparse voxel completion network (SVCN) to recover

the 3D surface from a LiDAR point cloud. In the second

phase, we use a sparse convolutional U-Net to predict a

semantic label for each voxel on the completed surface.

Extensive experiments with different autonomous vehi-

cle driving datasets verify the effectiveness of our domain

adaptation approach to the semantic segmentation of 3D

point clouds. For example, using a network trained on the

Waymo open dataset [51] to perform semantic segmenta-

tion on the nuScenes dataset [4] provides an absolute mIoU

improvement of 6.0 over state-of-the-art domain adaptation

methods. Similarly, training on nuScenes and testing on

Waymo provides an absolute mIoU improvement of 10.4

over prior arts.

Our contributions are three-fold. First and foremost, we

identify the cross-sensor domain gap for LiDAR point clouds

caused by sampling differences, and we propose to recover

complete 3D surfaces from the point clouds to eliminate the

discrepancies in sampling patterns. Second, we present a

novel sparse voxel completion network, which efficiently

processes sparse and incomplete LiDAR point clouds and

completes the underlying 3D surfaces with high resolution.

Third, we provide thorough quantitative evaluations to vali-

date our design choices on three datasets.

2. Related Work

Unsupervised domain adaptation. Conventional machine

learning relies on the assumption that training and test sets

share the same underlying distribution, but the practice often

violates the assumption. Unsupervised domain adaptation

(UDA) [8, 36] handles the mismatch by revealing some test

examples to the machine learner such that it can account

for the test-time scenarios while learning from the training

set. Early work on UDA mainly reweighs [45, 49, 67] or

re-samples [15, 16] the source-domain examples to match

the target distribution. Besides, there is a fruitful line of

works on learning domain-invariant representations, such as

subspace alignment [11] and interpolation [17, 18], adver-

sarial training [12, 55, 2, 46, 23], maximum mean discrep-

ancy [33], maximum classifier discrepancy [43], correlation

alignment [50], etc. As noted in [40], these methods by de-

sign align two domains in a holistic view and fail to capture

the idiosyncratic geometric properties in point clouds.

Domain adaptation for 3D point clouds. Relatively little

work has been done to study domain adaptation for 3D point

clouds. Rist et al. [42] propose that dense 3D voxels are

preferable to point clouds for sensor-invariant processing of

LiDAR point clouds. Salah et al. [44] propose a CycleGAN

approach to the adaptation of 2D bird’s eye view images of

LiDAR between synthetic and real domains. Wu et al. [59]

compensate for differences in missing points and intensities

between real and synthetic data using geodesic correlation

alignment. Qin et al. [40] and Wang et al. [58] propose multi-

scale feature matching methods for object detection from 3D

point clouds. None of these methods explicitly account for

differences in point sampling patterns in the 3D domain.

Deep 3D semantic segmentation. We target at deep 3D se-

mantic segmentation in this paper, which associates semantic

labels to 3D data via deep learning approaches. Different

from 2D images, 3D data can be represented in various

forms, introducing extra challenges for deep learning meth-

ods design. Early works use dense voxel grid to represent

3D objects and leverage dense 3D convolution to predict se-

mantic labels [60, 38], with usually a limitted resolution due

to the heavy computation cost. To reduce the computation

load, point cloud based methods are proposed which directly

operate on point sets [37, 39, 31, 48, 53]. To further lever-

age the relationship among 3D points, deep neural networks

working on graphs [62, 57] and meshes [3, 24, 22] are used.

Recently, sparse convolution based methods [20, 19, 7] have

been very popular, achieving superior performance on vari-

ous indoor and outdoor semantic segmentation benchmarks.

They treat 3D data as a set of sparse voxels and restrict 3D

convolution to these voxels. Our segmentation backbone is

based upon SparseConvNet [19] but we focus on improving

its domain transfer ability to 3D data with different sampling

patterns.

Deep 3D shape completion. Deep 3D shape completion

aims at completing missing geometry pieces of some par-

tial 3D observation using deep learning methods. Dense

voxel representation has been explored to complete single

3D objects [9, 61, 21] and indoor scenes [47]. The heavy

computation cost is a big issue for these methods, making

them not scale well to large LiDAR point clouds. To im-

prove the computation efficiency, octree-based methods have

been proposed [41, 52, 66] which are able to produce high

resolution 3D outputs. We present a sparse voxel comple-

tion network sharing similar flavors to [41, 52, 66] with an

improved network architecture and loss function. We demon-

strate how we could complete sparse LiDAR point clouds

with high resolution using sparse convolution when the out-

put structure is unknown and also one main difference is that

we consider the application of shape completion to 3D do-

main adaptation. Another relevant track of works study point

cloud upsampling using deep learning methods [64, 63, 30].

They usually require an upsampling factor and have no con-

trol on the sampling patterns of the results.
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Figure 2. The overall pipeline of our “complete and label” approach.

3. Method

This paper proposes a method to overcome the domain

gap caused by different LiDAR sensors’ 3D point sampling.

Observing that all the sensors acquire samples of 3D surfaces,

we propose a two-stage approach, where a sensor-specific

surface completion neural network first recovers the under-

lying 3D surfaces from the sparse LiDAR point samples,

and then a sensor-agnostic semantic segmentation network

assigns labels to the recovered 3D surfaces. This two-phase

approach focuses the domain adaptation problem on surface

completion, which can be learned with self-supervision.

3.1. Overview and notations

Figure 2 illustrates the overall workflow of our approach.

We consider an unsupervised domain adaptation (UDA) set-

ting, but our approach is readily applicable to other settings

such as multi-domain adaptation [10] and open domain adap-

tation [35, 32]. In UDA, we have access to a set of labeled

LiDAR point clouds, {xs
i ,y

s
i }

Ns

i=1
, from the source domain

and a set of unlabeled LiDAR point clouds {xt
j}

Nt

j=1
in a

target domain, where x
s
i ∈ R

T s
i ×3 and x

t
j ∈ R

T t
j×3 rep-

resent two sets of T s
i and T t

j 3D points, respectively, and

y
s
i ∈ Y = {1, ..., Y }T

s
i corresponds to a per-point seman-

tic label ranging within Y different classes. The two sets

of point clouds are captured with different LiDAR sensors,

which have their unique sampling patterns. Our goal is to

learn a segmentation model that achieves high performance

on the target-domain LiDAR points.

To cope with the domain gap caused by different LiDAR

sensors, we learn neural surface completion networks to

recover the 3D surfaces underlying incomplete 3D point

clouds. Denote by ψs(xs
i ) ∈ R

Ms
i ×3 and ψt(xt

j) ∈ R
Mt

j×3

the surface completion networks for the two domains, respec-

tively, where Ms
i and M t

j are the numbers of dense points

used to represent the completed surfaces. We say the 3D

surfaces reside in a canonical domain.

We train a semantic segmentation network, φ(ψs(xs
i )),

over this canonical domain by using the labeled training

set of the source domain, and then apply it to the densified

point clouds of the target domain, i.e., φ(ψt(xt
i)). The per-

point labels of the original target-domain point cloud x
t
i are

obtained by projecting the segmentation results back to the

target domain.

3.2. SVCN for Surface Completion

This section describes the sparse voxel completion net-

work (SVCN), which recovers the underlying 3D surfaces

from a sparse, incomplete LiDAR point cloud and is the core

of our approach.

3.2.1 Architecture

Figure 3 shows the architecture of SVCN, which comprises

a structure generation sub-net and a structure refinement sub-

net. The former consumes a set of sparse voxels obtained by

voxelizing an input point cloud, and it outputs denser voxels

representing the underlying 3D surfaces from which the

input points are sampled. The structure refinement network

then prunes out redundant voxels.

Both sub-nets are highly relevant to the sparse convolu-

tional U-Net [19], which is an encoder-decoder architecture

involving a series of sparse conv/deconv operations. Multi-

scale features can be integrated, and skip connections pro-

vide additional information pathways in the network. How-

ever, the sparse convolutional U-Net is not directly applica-

ble to our setting since it applies all convolutional operations

only to active sites without changing the voxel structure,

while we need extrapolation.

Structure generation network. In order to generate new

structures for completion purposes, we replace sparse decon-

volutions with dense upsampling and voxel pruning opera-

tions. Specifically, in the decoder, each voxel in the lower

resolution level l will generate 23 voxels in the higher res-

olution level l − 1 after a dense upsampling operation (see

the layers in purple in Figure 3). Low-resolution voxel fea-

tures are also duplicated to the corresponding positions of

high-resolution voxels.
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Figure 3. The architecture of the sparse voxel completion network. We use a sparse convolution with a kernel size 3 and a stride 1, max

pooling with a kernel size 2 and a stride 2. Both dense and sparse upsampling are done with a factor of 2.We supervise the structure

generation module and the structure refinement module with separate losses after each module as described in Section 3.2.3

The above procedure allows generating new structures,

but it could easily break the inherent sparsity of voxelized

3D surfaces. Similar to [41, 52, 66], we introduce a voxel

pruning module to trim voxels and avoid expanding too many

in the decoder. Given a set of voxels equipped with features,

the voxel pruning module applies a linear layer together with

a sigmoid function on each voxel, and outputs a probability

score indicating the existence of each voxel. At training time,

only the ground truth voxels are kept. At test time, we prune

the voxels whose existence probabilities are lower than 0.5.

To maintain the faithfulness of the generated shape to

input voxels, for each resolution level l, we single out in-

tersections between the densely upsampled voxels in the

decoder and the sparse voxels in the corresponding encoder

level, excluding these voxels from pruning. The skip con-

nections need special care. Through them, we pass encoder

features to the upsampled voxels, and zeros for newly gener-

ated voxels because they have no counterparts in the encoder.

Structure refinement network. The structure generation

network is able to generate new structures for shape com-

pletion purposes. However, since we prune voxels using

the ground truth existence probabilities on each level dur-

ing training, the network could be sensitive to noisy outlier

points (e.g., an outlier input voxel could possibly add a big

chunk of wrong voxels to the final prediction). To cope

with this issue, we introduce a structure refinement network,

which is essentially a sparse convolutional U-Net adding

no new voxels any more. Instead, it predicts an existence

confidence score for each voxel. This is achieved by re-

placing the dense upsampling and voxel pruning modules

in the structure generation network with sparse upsampling

operations, which unpool voxel features only to the voxels

that exist in the higher encoder level (see the layers in green

in Figure 3). This way, the network is able to reevaluate

the structure generation outputs across the whole scene in a

spirit similar to stacked hourglass networks [34].

For more details of the SVCN network architecture,

please refer to the supplementary materials.

(b) simulated incomplete point cloud with (c) simulated incomplete point cloud with 
(a) complete point cloud

(b) simulated incomplete point 

cloud with sampling pattern 

transferred from Waymo

(c) simulated incomplete point 

cloud with sampling pattern 

transferred from nuScenes

Figure 4. An example of the generated training data for SVCN.

3.2.2 Training Data

We need to prepare training data, {(zsi , z
c
i )} and {(zti, z

c
i )},

for the surface completion networks ψs and ψt of the source

and target domains, respectively, where zci stands for a dense

surface point cloud in the canonical domain from which

we can sample both a source-domain point cloud z
s
i and a

target-domain point clouds z
t
i. It is important to note that

the training data for the surface completion network SVCN

could be different from that for semantic segmentation, so

we use different notations here. Indeed, one advantage

of surface completion is that it can be learned from self-

supervision which does not require manual labels. Exemplar

supervisions include dense surface points via simulation,

multi-view registration, and high-resolution LiDAR point

clouds, to name a few. We first describe how we obtain the

dense surface point clouds {zci}, followed by how to sample

domain-specific incomplete point clouds {zsi} or {zti} for

constructing the training pairs for SVCN.

Dense surface point clouds. To obtain the dense point

clouds of complete 3D surfaces, we leverage the LiDAR

sequences in existing autonomous driving datasets, for ex-

ample [51]. Specifically, we aggregate multiple LiDAR

frames within a sequence to generate a denser and more

complete point cloud. Poisson surface reconstruction [26] is

then applied to recover the underlying mesh surfaces with a

SurfaceTrimmer step removing parts with low sampling den-

sity. We discretize a surface by uniformly sampling points

on it, ensuring the point resolution is higher than the resolu-

tions in the source or target domain. An example is shown

in Figure 4(a). The complete scene point clouds act as a

canonical domain with uniform sampling patterns.

Domain-specific incomplete point clouds. Given the

dense, complete surface point clouds {zci}, we simulate a
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“virtual LiDAR” to generate incomplete point clouds for

the source (target) domain such that the virtual LiDAR

point clouds {zsi} ({zti}) share the same distribution as

the real point clouds in that domain. In particular, we

propose a polar sampling scheme to implement the “vir-

tual LiDAR”. First, we randomly pick up a reference point

cloud from a domain and compute the polar coordinate

(r, θ, φ) for each point (x, y, z), where r =
√

x2 + y2 + z2,

θ = atan2(
√

x2 + y2, z), φ = atan2(y, x). We argue that

(θ, φ) reveals the sampling pattern in this point cloud with-

out much scene-specific information and can be used to

re-sample a different complete scene point cloud to simulate

the corresponding sampling pattern. Second, we select a

sensor location in the complete scene point cloud, remove

occluded points, and convert the rest points into their po-

lar coordinates. Finally, we search for the nearest neighbor

point in the complete scene point cloud for each point in a

reference frame and sample these points to imitate the refer-

ence sampling pattern. Notice this is done in the (θ, φ) space

to transfer the sampling pattern only. In Figure 4 (b) and

(c), we shown the simulated incomplete point clouds with

sampling patterns transferred from reference point clouds in

the Waymo [51] and nuScenes [4] datasets, respectively.

3.2.3 Training Algorithm

Given the paired training data, we convert them to voxels

and employ a voxel-wise binary cross-entropy loss to first

pre-train the structure generation sub-net. We then fix it

and switch it to the inference mode, using the predicted

voxel existence probability as the input to train the structure

refinement sub-net with another voxel-wise binary cross-

entropy loss.

Local Adversarial Learning. Since we have a strong prior

that voxels densified by SVCN should lie on 3D surfaces, we

propose an adversarial loss to capture this prior, in a similar

spirit to [28, 56, 30]. This loss can be added to the training

of either the structure generation sub-net or the refinement

sub-net. A notable property of our adversarial loss is that

it is imposed over local surface patches, as opposed to the

global output of SVCN. Please refer to the supplementary

materials for more details.

3.3. Segmentation in the Canonical Domain

We train a semantic segmentation network φ(·) over the

canonical domain using the labeled data {(xs
i ,y

s
i )} in the

source domain. We leverage a state-of-the-art 3D semantic

segmentation method, MinkowskiNet [7], as our segmenta-

tion network. Given a test point cloud x
t
i in the target do-

main, we first map it to the canonical domain by the surface

completion network SVCN ψt(xt
i), apply the segmentation

network over it φ(ψt(xt
i)), and finally project the segmen-

tation results back to the original target-domain point cloud

x
t
i. Please refer to the supplementary material for how to

propagate the source-domain labels to the dense, complete

point clouds in the canonical domain and how to project

segmentation results to the target domain. Both depend on

nearest neighbor search and majority voting.

4. Experiments

We experiment with three autonomous driving datasets

captured by different LiDAR configurations.

• Waymo open dataset [51]: It contains LiDAR point

cloud sequences from 1K scenes, each sequence con-

taining about 200 frames. There are five LiDAR sensors.

We use the top 64-beam LiDAR in our experiments.

The LiDAR frames are labeled with 3D object bound-

ing boxes in four categories, from which we crop the

LiDAR point clouds to obtain per-point semantic la-

bels. The data is officially split into 798 training scenes

and 202 validation scenes. Following this slit, we have

~160K training frames and ~40K validation frames.

• nuScenes-lidarseg dataset [4]: It contains ~40K LiDAR

frames annotated with per-point semantic labels from

1K scenes. Officially these points are cast into 16 cat-

egories for the semantic segmentation task with one

additional “ignored” class excluded from evaluations.

Different from the Waymo open dataset, it adopts a

32-beam LiDAR sensor with different configurations,

causing a sampling gap from the Waymo point clouds.

Following the dataset’s recommendation, we train our

models using ~28K frames from 700 training scenes

and evaluate on ~6K frames from 150 validation scenes.

• SemanticKITTI dataset [1, 13]: It adopts a Velodyne

64-beam LiDAR similar to Waymo but with a different

sensor configuration. Points are classified into 19 cat-

egories with one additional “ignored” class excluded

from evaluations. Following the official recommenda-

tion, we use sequence 00-07 and 09-10 for training and

evaluate on sequence 08, resulting in ~19K training

frames and ~4K frames for evaluation.

While transferring semantic segmentation from Waymo to

nuScenes-lidarseg and SemanticKITTI or the inverse, we

consider the only two overlapping categories in all these

three datasets: vehicles and pedestrians. The two classes

are both common and safety-critical in self-driving scenes.

For the domain transfer between nuScenes-lidarseg and Se-

manticKITTI, we consider all the 10 overlapping categories

between the two datasets: car, bicycle, motorcycle, truck,

other vehicle, pedestrian, drivable surface, sidewalk, terrain,

and vegetation. We carefully remap the semantic categories

to guarantee the class definitions in different datasets are

consistent. Please refer to the supplementary material for the

remapping process. The three datasets provide an organic,

large-scale testbed to study domain adaptation methods for
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3D point clouds. By design, our approach copes with the

domain discrepancy among the three datasets caused by dif-

ferent configurations of LiDAR sensors.

4.1. Sparse LiDAR Point Cloud Completion

We first evaluate our sparse voxel completion network

(SVCN) in this section.

Training data. SVCN takes as input an incomplete point

cloud and predicts its underlying complete 3D surfaces in a

dense volumetric form. To generate data pairs for training

and evaluation, we aggregate multiple frames within each

sequence from the Waymo open dataset, resulting in 2400

complete scene point clouds for training and 200 for test. We

then sample incomplete point clouds via the “virtual LiDAR”

described in Section 3.2. We voxelize the complete point

clouds using a voxel size of 20cm to provide ground truth

supervision for various learning methods.

Evaluation. We use two evaluation metrics. One is voxel-

level intersection over union (IoU). The other is the Cham-

fer Distance (CD) between the predicted voxel set and the

ground truth voxel set. To compute the CD between two

voxel sets, we convert each voxel set into a point cloud

by keeping the center of each voxel and then compute CD

between the two point clouds.

SVCN vs. Baselines. There is not much prior work on using

sparse convolution to complete sparse LiDAR inputs. The

closest baseline is ESSCNet [66] which achieves state-of-

the-art results for semantic indoor scene completion. Our

structure generation network (the first half of SVCN) is a

variant of ESSCNet with two improvments. It leverages

only one group in the spatial group convolution for higher

generation quality, and we densely supervise voxel pruning

at each resolution with resolution balancing weights. So we

will also refer to the ablation baseline of our SVCN without

the structure refinement as ESSCNet++. A second ablation

baseline is our full SVCN network trained without the local

adversarial loss.

Table 1. Comparison for sparse LiDAR point cloud completion (W:

Waymo, N: nuScenes-lidarseg, K: SemanticKITTI).

Test domain Metric ESSCNet++

[66]

SVCN w/o

adv.

SVCN

W
IoU(%) ↑ 44.1 46.3 47.5

CD(m) ↓ 1.070 1.013 0.968

N
IoU(%) ↑ 24.9 26.7 28.8

CD(m) ↓ 1.745 1.730 1.610

K
IoU(%) ↑ 40.9 42.9 44.3

CD(m) ↓ 1.147 1.122 1.052

Results. Table 1 shows the comparison results. Our full net-

work with local adversarial learning outperforms all compet-

ing methods for the inputs with the sampling patterns of all

three datasets. Comparing ESSCNet++ and SVCN without

the local adversarial loss, we can see that the structure refine-

(a) Waymo Frames (b) KITTI Frames (c) nuScenes Frames

Figure 5. Visualizations of the surface completion results from dif-

ferent datasets. Black points indicate the original sparse incomplete

LiDAR points, and we use colored points to represent the output of

our sparse voxel completion network.

ment network does improve the scene completion quality.

Finally, the local adversarial loss, which accounts for surface

priors, results in better completions than SVCN without it.

Notice that the LiDAR point clouds from nuScenes-lidarseg

hold a much sparser sampling pattern compared with those

from Waymo or SemanticKITTI, and are thus more chal-

lenging for the completion task. This is revealed by the

relatively low IoU and high CD scores when the inputs hold

nuScenes-lidarseg sampling patterns.

To better understand how our surface completion network

SVCN could canonicalize different sampling patterns and

therefore mitigate the corresponding domain gap, we visual-

ize the surface completion results from different datasets in

Figure 5. We use black points to represent the incomplete Li-

DAR inputs and colored points for the outputs of our SVCN.

It is clear that SVCN is able to recover the underlying sur-

faces regardless of the input sampling patterns. SVCN is also

able to fill small holes to make the geometry more complete.

Comparing the vehicles from Waymo and nuScenes-lidarseg

datasets respectively, we observe a clear domain gap in the

inputs. In contrast, after surface completion they share more

similar sampling patterns and geometry.

4.2. Unsupervised Domain Adaptation Results

In this section, we study the domain transfer ability of

our approach among the Waymo, nuScenes-lidarseg and Se-

manticKITTI datasets. We compare our method with the pre-

vious state-of-the-art method of SqueezeSegV2 (SQSGV2)

on this topic [59], which projects LiDAR point clouds to

form 2D range images and uses 2D convolutional neural

networks as the segmentation backbone. Since domain adap-

tation methods for 3D LiDAR point cloud segmentation has

not been studied much previously, we also compare with
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(a) Ground Truth (b) No Adaptation (c) FeaDA (d) OutDA (e) Ours(a) Ground Truth (b) No Adaptation (c) FeaDA (d) OutDA (e) Ours

Figure 6. A comparison of different domain adaptation methods on an example Waymo frame. We consider the domain adaptation direction

from nuScenes-lidarseg to Waymo dataset. Different colors indicate different semantic classes. FeaDA and OutDA represent feature space

domain and output space domain adaptation respectively. We use green circles to highlight the prediction errors.

state-of-the-art adaptation methods for 2D semantic segmen-

tation, including feature space adversarial domain adaptation

(FeaDA) [6], output space adversarial domain adaptation

(OutDA) [54], and Sliced Wasserstein Discrepancy-based

domain adaptation (SWD) [29]. In addition, we incorporate

the geodesic correlation alignment technique used in [59]

with our 3D segmentation backbone, forming another base-

line named 3DGCA. We report the results in Table 2.

From Table 2, we can see an obvious performance drop

when transferring segmentation networks from one domain

to another. For example, compared with both training and

testing on nuScenes-lidarseg (N→N), training on the Waymo

dataset while evaluating on the nuScenes-lidarseg dataset

(W→N) would cause the mean IoU (mIoU) to drop from

69.9% to 42.9%. This shows the importance of studying the

domain adaptation problem. Our method successfully brings

the mIoU to 50.2% and outperforms the prior arts. We draw

the same observation on the other pairs of domains tested.

The 2D domain adaptation methods do not work well

on the 3D point clouds. FeaDA tries to bring close two

domains in a global feature space, but it fails to model rich

local cues in 3D point clouds, such as sampling patterns,

surfaces, and contexts. OutDA fails in most cases with no

surprise because it assumes that the segmentation masks of

two domains are indistinguishable. While this assumption

works for 2D scenes, it breaks given different 3D sampling

patterns in two domains. SWD in general does a better

job than the previous two methods. However, since it does

not explicitly model the cause of the domain gap, we do

not observe a huge performance improvement either. The

performance of SQSGV2 is significantly lower than the other

methods when evaluated on 3D point clouds. It requires

projecting LiDAR point clouds onto range images to exploit

2D convolutional methods. When projecting the predicted

labels back to 3D, we observe huge errors especially along

object boundaries, leading to the subpar performance. The

performance improvement by 3DGCA is also restricted.

Qualitative Results. Figure 6 shows some qualitative re-

sults of both surface completion and semantic segmentation

when adapting from nuScenes-lidarseg to Waymo. We can

see that the baseline methods mislabel objects that are both

close to and distant from the sensor location. The sparsity

of distant objects is a great challenge for all methods. Our

approach completes the underlying 3D surfaces from only

sparse observations, making it easier for the segmentation

network to handle those distant objects.

Correlation between scene completion and domain

adaptation. We provide additional ablation studies about

the correlation between the quality of scene completion and

the performance of domain adaptation. We replace SVCN

in our method with its variants described in Section 4.1 and

report the resulting segmentation results in Table 3. It can

be clearly seen that better scene completion qualities lead to

better domain transfer performances.

Comparison with handcrafted baselines. The sampling

patterns differ across the autonomous driving datasets due to

complex interactions of various factors, such as the heights,

poses, and types of LiDAR sensors, making it hard to design

analytical solutions to align them. To show the difficulty of

the problem and demonstrate the necessity of our approach,

we also study some analytical methods aiming to align dif-

ferent sampling patterns. Consider the Waymo open dataset

captured by 64-beam LiDARs and nuScenes consisting of

32-beam LiDAR data. We design two handcrafted baselines

to align them: B1) analytically downsampling or upsampling

the LiDAR beams and B2) piecewise linear interpolation.

For both baselines, we first convert a LiDAR point cloud into

a H ×W range image, where H equals the beam number

of the LiDAR and W is set to 2048. We say two points are

adjacent if they have the same column index and their row

indices are off by one. In B1, we simply remove the points of

every other row in the range image to downsample Waymo

point clouds. To upsample nuScenes, we add the midpoint of

every pair of adjacent points. In B2, we linearly interpolate

every pair of adjacent points, densely adding points to the

line segment and making their spacing follow a hyperpa-

rameter δ. We use the same δ while densifying Waymo and

nuScenes to bring their sampling patterns close.

We compare our approach with the above two baselines in

Table 4. Our method outperforms both by large margins. B1

fails because the sampling pattern difference is on more than

just the number of LiDAR beams. B2 densifies the point

cloud by interpolation, but it produces “phantom” points

along back-projections of silhouette boundaries and does not

complete occluded regions. This study shows the importance

of our learning-based approach and the SVCN network.
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Table 2. Unsupervised domain adaptation for 3D semantic segmentation among the Waymo, nuScenes-lidarseg and SemanticKITTI datasets.

N denotes nuScenes-lidarseg, W denotes Waymo and K denotes SemanticKITTI. We report the mIoU in each cell.

Source→Target #classes No DA FeaDA [6] OutDA [54] SWD [29] SQSGV2 [59] 3DGCA Ours

N→N 2 69.9 - - - - - -

W→N 2 42.9 44.2 40.2 42.4 14.2 43.85 50.2

N→N 10 54.4 - - - - - -

K→N 10 27.9 27.2 26.5 27.7 10.1 27.4 31.6

W→W 2 86.3 - - - - - -

N→W 2 46.2 48.7 43.6 49.3 30.4 48.7 59.7

K→W 2 46.3 43.9 43.4 47.2 34.2 46.1 52.0

K→K 10 50.2 - - - - - -

N→K 10 23.5 21.4 22.7 24.5 13.4 23.9 33.7

K→K 2 61.0 - - - - - -

W→K 2 55.0 56.4 54.1 56.8 36.8 56.2 60.4

Table 3. The segmentation mIoU of our approach when using dif-

ferent scene completion methods.

Source→

Target

Ours w/o

refinement

Ours w/o adv. Ours-full

W→N 46.6 49.1 50.2

N→W 58.2 59.0 59.8

Table 4. Comparison with handcrafted sampling aligning baselines.

Src→Tgt No DA B1 B2 Ours

W→N 42.9 46.0 45.1 50.2

N→W 46.2 55.6 55.2 59.8

4.3. Domain Generalization Results

Getting rid of the dependency on target domain data dur-

ing training was argued to be an important feature in real

applications [65], which allows domain generalization to

multiple unseen target domains. In this section, we demon-

strate our approach performs well for domain generalization.

We choose the Waymo dataset as our source domain

and aim at generalizing a segmentation neural network to

nuScenes-lidarseg and SemanticKITTI without accessing

them during training. Our strategy is to train a generic sur-

face completion network. For this purpose, we introduce

data augmentation while generating virtual LiDAR point

clouds {zsi} from complete surface point clouds {zci}. More

concretely, we use (θ, φ) to denote the polar coordinates of

a Waymo point cloud and we evenly quantize θ into 64 bins.

We randomly select 30% to 70% of the bins and use the cor-

responding points as our augmented reference sampling pat-

tern. This augmentation strategy enforces SVCN to handle

various sampling patterns, therefore generalizing to different

target domains. After training our SVCN using only the

reference point clouds from Waymo (with the data augmen-

tation strategy), we evaluate its surface completion quality

for the nuScenes-lidarseg and SemanticKITTI sampling pat-

terns. The evaluation metric is the same as in Section 4.1.

Furthermore, we show how the surface completion quality

contributes to the domain generalization performance of the

semantic segmentation task using mIoU as the evaluation

metric. Table 5 shows the results, where we additionally

report the domain adaptation results for comparison (i.e., by

training a target-domain-specific SVCN).

Table 5. Domain generalization from Waymo to nuScenes-lidarseg

and SemanticKITTI by training a generic SVCN.

Source→Target Method Surface

Completion

IoU(%)/CD(m)

Semantic

Segmentation

mIoU(%)

No Adaptation -/- 42.9

W→N Adaptation 28.8/1.610 50.2

Generalization 25.7/1.800 49.8

No Adaptation -/- 55.0

W→K Adaptation 44.3/1.052 60.4

Generalization 42.8/1.115 59.6

We can see that generic SVCN trained under the domain

generalization setting performs a little worse on surface com-

pletion and slightly degrades the semantic segmentation re-

sults on nuScenes-lidarseg and SemanticKITTI, compared

with the target-domain-specific SVCNs learned under the

domain adaptation setting. However, both adaptation and

generalization are better than the no adaptation baselines by

large margins, indicating the efficacy of our method.

5. Conclusion

In this paper, we present “complete and label”, a novel do-

main adaptation approach designed to overcome the domain

gap in 3D point clouds acquired with different LiDAR sen-

sors. We show that by leveraging geometric priors, we can

transform this domain adaptation problem into a 3D surface

completion task, and then perform downstream tasks such as

semantic segmentation on the completed 3D surfaces with

sensor-agnostic networks. Extensive experiments with multi-

ple autonomous driving datasets demonstrate the significant

improvement of our approach over prior arts.
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