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Abstract

This paper proposes a framework for the interactive

video object segmentation (VOS) in the wild where users

can choose some frames for annotations iteratively. Then,

based on the user annotations, a segmentation algorithm

refines the masks. The previous interactive VOS paradigm

selects the frame with some worst evaluation metric, and the

ground truth is required for calculating the evaluation met-

ric, which is impractical in the testing phase. In contrast, in

this paper, we advocate that the frame with the worst eval-

uation metric may not be exactly the most valuable frame

that leads to the most performance improvement across the

video. Thus, we formulate the frame selection problem in

the interactive VOS as a Markov Decision Process, where

an agent is learned to recommend the frame under a deep

reinforcement learning framework. The learned agent can

automatically determine the most valuable frame, making

the interactive setting more practical in the wild. Experi-

mental results on the public datasets show the effectiveness

of our learned agent without any changes to the underlying

VOS algorithms. Our data, code, and models are available

at https://github.com/svip-lab/IVOS-W .

1. Introduction

Video object segmentation aims to segment the objects

of interest in a video sequence. It has been widely applied

to many downstream applications such as video editing

and object tracking. Recently, DAVIS dataset [24, 25] and

YouTube-VOS dataset [36] are introduced and significantly

drive forward this task. However, collecting such densely-

annotated datasets is expensive and time-consuming. For
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Figure 1. The frame with the worst segmentation quality vs. the

most valuable frame in a single round. The frame with the worst

segmentation quality only improves the performance of VOS by

18.31%, while the most valuable one improves the performance

by 20.57%.

example, labeling a single object in one frame of DAVIS

dataset requires more than 100 seconds [2], finally resulting

in either limited sizes [24, 25] or coarse annotations [36] in

the existing VOS datasets.

To minimize the human efforts, Caelles et al. [2] intro-

duces a human-in-the-loop VOS setting, i.e., the interactive

VOS with scribble supervision. Specifically, the interactive

VOS algorithm will predict an initial segmentation mask for

each frame based on the initial scribbles provided by a user.

It will then gradually refine the segmentation masks with

additional scribbles of some frames selected by the user,

who may evaluate the result by the segmentation quality be-

tween the predictions and the ground truths. Whereas, the

ground-truth segmentation masks are not available in prac-

tice, so the user cannot select a potential frame based on

the segmentation quality. Further, the frame with the worst

segmentation quality may not be exactly the most valuable

one contributing the most to the refinement performance,

as shown in Figure 1. In this paper, we claim that the most

valuable frame is not necessarily the one with the worst seg-

mentation quality for the interactive VOS task.
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This paper aims to develop a criterion for determining

the worthiness of the frame. The worthiness of a frame re-

flects how much it can improve the segmentation perfor-

mance across the video sequence if it is selected to provide

additional scribbles. However, measuring the worthiness is

difficult due to the complexity and variety of videos and un-

certainties in the refinement process. To this end, we formu-

late the frame recommendation problem as a Markov Deci-

sion Process (MDP) and train the recommendation agent

with Deep Reinforcement Learning (DRL). To narrow the

state space, we define the state as the segmentation quality

of each frame instead of the image frames and segmentation

masks. We also include the recommendation history of each

frame in the state. Inspired by Mask Scoring R-CNN [15],

we use a segmentation quality assessment module to esti-

mate the segmentation quality. Given the user scribbles on

the recommended frame, we leverage the off-the-shelf in-

teractive VOS algorithms [12, 19, 21] to refine the segmen-

tation masks. Without any ground-truth information, the

learned agent can recommend the frame. To further eval-

uate the ability of generalization of our agent, we follow

the DAVIS dataset [2] to extend a subset of YouTube-VOS

dataset [36] with initial scribbles. The experimental re-

sults show that our learned agent outperforms all baseline

frame selection strategies on DAVIS and YouTube-VOS

dataset without any changes to underlying VOS algorithms,

whether the ground truth is available or not.

In summary, our contributions are as follows: (i) We

demonstrate that the frame used in the current interactive

VOS paradigm, i.e., the frame with the worst segmenta-

tion quality, for user annotation is not the best one. (ii)

We propose a novel deep reinforcement recommendation

agent for interactive VOS, where the agent recommends

the most valuable frame for user annotation. The agent

does not require any ground-truth information in the test-

ing phase, therefore it is more practical. (iii) Following the

interactive VOS setting [2], we extend a subset of YouTube-

VOS dataset [36] with initial scribbles for performance

evaluation. (iv) Extensive experiments on the challenging

datasets, namely DAVIS dataset and YouTube-VOS dataset,

validate the effectiveness of our proposed method.

2. Related Work

2.1. Semi­supervised VOS

Semi-supervised VOS aims to segment objects based on

the object mask given in the first frame. With the advent

of deep learning in computer vision, Convolutional Neural

Networks (CNNs) have recently been investigated to solve

the VOS task. One line of work [1, 5, 14, 30, 34, 37] de-

tects the objects using the appearance in the first frame. For

instance, OSVOS [1] fine-tunes the network using the first-

frame ground truth when testing. FEELVOS [34] uses pixel-

level embedding together with a global and local match-

ing mechanism. Another line of work [16, 20, 23] learns

to propagate the segmentation mask from one frame to the

next. DyeNet [18] takes advantage of both detection and

mask propagation approaches. Recently, Griffin and Corso

[8] demonstrates that instead of using the first frame as the

prior, selecting another frame for annotation will lead to

performance improvement. Similar to [8], in this paper, we

find this is also applicable to the interactive VOS setting.

2.2. Interactive VOS

Interactive VOS relies on the user input, such as scrib-

bles [2, 12, 19, 21] or points [5], to segment objects of

interest in an interactive manner. Caelles et al. [2] pro-

poses a CNN-based method built upon OSVOS and fine-

tunes the model based on the user annotations in each round.

IPN [21] and ATNet [12] use two segmentation networks

to handle interaction and propagation, respectively. AT-

Net [12] further uses a global and local transfer module

to transfer segmentation information to other frames. Built

upon FEELVOS, MANet [19] employs a memory aggrega-

tion mechanism to record all the previous user annotations.

However, all these approaches follow the paradigm of [2]

and assume the user selects the frame with the worst seg-

mentation quality. In this paper, we argue that the frame

with the worst segmentation quality is not exactly the one

with the most potential performance improvement.

2.3. Reinforcement Learning in Vision and Video

Reinforcement Learning (RL) is a promising approach to

tackle sequential decision-making problems. Many meth-

ods try to formulate vision tasks in the spatial and temporal

domain as sequential decision-making problems and apply

RL to solve them at different levels. Song et al. [31] pro-

poses an RL-based method to gradually generate a set of

points for the interactive image segmentation. The gener-

ated points are used to refine segmentation via an off-the-

shelf segmentation algorithm. Some approaches [4, 27, 28]

introduce RL to tackle the object tracking problem by learn-

ing to transfer the bounding box of the target object from

the previous frame to an appropriate place in a new frame

without scanning all the possible regions. Some other ap-

proaches are proposed to locate key-frames in a video se-

quence for more effective processing at the frame-level. For

example, Tang et al. [33] use RL to find a criterion to se-

lect a set of representative frames for action recognition.

Wang et al. [35] learn to locate the activity in a video ac-

cording to the query language by leveraging an agent to ob-

serve selected frames in a video to find the temporal bound-

aries. Gao et al. [6] locate the start frame of action in an

untrimmed video by conducting a class-agnostic start de-

tector based on observing the action scores for each frame.

Hu et al. [13] leverage RL to determine a set of most in-
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Figure 2. Our proposed interactive VOS framework. In the beginning, the user selects one frame that best represents objects of interest and

labels them with initial scribbles. Then, we adopt off-the-shelf VOS algorithm to segment the target object and estimate the segmentation

quality for each frame. Afterward, taking the segmentation quality as input, the agent recommends the most valuable frame to the user, who

finally draws additional scribbles to refine the masks. Later, the VOS algorithm, the agent, and the user constitute a loop that iteratively

refines the predicted masks.

formative frames and group relevant relations inferred from

the selected frames.

Recently, RL is also introduced to the VOS. Han et al. [9]

integrates the RL into the VOS task to refine the bounding

box when propagating the results from the previous frame to

the current frame. Gowda et al. [7] group the object propos-

als sequentially over both space and time. Chai [3] uses RL

to locate a patch of the area as hard attention for VOS to per-

form the segmentation based on a set of collected memory.

Sun et al. [32] propose a method to generate a pixel-level

region of interest for more effective online adaptation. Sim-

ilar to [32], our proposed method is based on existing VOS

methods but focuses on frame-level optimization rather than

pixel-level, which is more compatible with the interactive

VOS setting.

3. Methods

Given N frames {I1, I2, . . . , IN}, the corresponding

segmentation masks {M1,M2, . . . ,MN} for the target ob-

jects of interest and any previously provided annotations,

the agent recommends the most valuable frame for addi-

tional user annotation. Figure 2 shows the overall pipeline

of our proposed framework.

3.1. Learning to Recommend

We formulate the frame recommendation problem in the

interactive VOS as an MDP, where the frame selection is

only based on the segmentation masks at each step. Specif-

ically, considering the t-th iteration, the agent observes the

segmentation masks, which are regarded as state st, and de-

termines the recommendation action at. Then, the state st
is transferred to st+1 by the VOS algorithm, and the corre-

sponding reward rt will be obtained.

State. Intuitively, the state should contain enough informa-

tion, such as video frames and segmentation masks. How-

ever, this leads to higher dimensional state space. Thus,

we use the segmentation quality qt ∈ [0, 1]N as a proxy

of video frames and masks, where N represents the total

number of frames in the video sequence. We further in-

clude recommendation history ht ∈ {0, 1, ..., T}N , where

T is the maximum number of interaction, and the n-th value

in ht represents the number of times that the n-th frame is

recommended. Thus, the state st is defined as:

st = CONCAT(qt, ht), (1)

where CONCAT(·) denotes the concatenation operator.

Action. The action at ∈ {1, . . . , N} at t-th iteration is to

determine the next frame for user annotation. We design

a Bi-Directional Long Short-Term Memory (LSTM) based

network1 to learn the expected recommendation agent. The

network takes the state st as input, and outputs the action at.

The action of the agent is the recommended frame index.

Reward. The reward reflects the quality of the learned

frame recommendation strategy. In the interactive VOS, it

is impractical to measure the worthiness of each frame in

1Please refer to supplementary material for the detail of network archi-

tecture.
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a single interaction since the contribution of the annotated

frame to the final performance cannot be determined with-

out global optimization. Inspired by [26], we design a goal-

only reward based on the final performance P achieved by

the action sequence until the maximum number of iterations

T is reached.

We expect that the learned recommendation policy is at

least better than the random selection policy when t = T .

To get the performance P̂ of the random selection policies,

we first run experiments 30 times with the random selec-

tion strategy for each training video sequence. We assume

that P̂ follows the t-distribution, and get the expected mean

value µ̂ and variance σ̂. An intuitive reward function can

be designed by comparing the performances between the

learned recommendation policy and the random selection

policy:

r
goal
t (P ) =

P − µ̂

σ̂
. (2)

The reward in Eq. (2) is positive when the performance

P is greater than the average performance µ̂ of the random

selection policy. Otherwise, the reward will be negative.

In practice, we find that it is not sufficient to make

learned agent only better than the average performance of

the random selection policy. Thus, we set the reward posi-

tive only if P > µ̂ + σ̂. The final reward is formulated as

follows:

r
goal
t (P ) =

P − (µ̂+ σ̂)

σ̂
. (3)

We set the reward r
goal
t = 0 when t < T , since the contri-

bution of the intermediate actions to the final performance

improvement cannot be measured directly.

Due to the motion and viewpoint, the appearance of the

object may change significantly in the video. Intuitively, the

recommended frames should cover more distinct frames,

which may lead to better performance. To this end, we de-

sign an auxiliary reward at each step to encourage more di-

verse recommendation frames and punish the action that is

not the fewest one in the action history:

raux
t =

{

1, at = argminht,

−1, otherwise.
(4)

Double Q-learning. We solve this MDP by the double Q-

learning [10]. Considering both two rewards, the underly-

ing action-value function for the step t is defined as follows:

Q∗

t =

{

δ · rgoal
t , t = T,

δ · raux
t + γ ·QT (st+1, at+1), t < T,

(5)

we set the scaling factor δ = 0.1 and the discount factor γ =
0.95. We use the policy network QP (·) to determine the

action by at+1 = argmaxaQ
P (st+1, a), and use the target

network QT (·) to evaluate the value of the action at+1 by

QT (st+1, at+1).
We use the mean squared error loss MSE(·) to supervise

the learning of the agent:

Lagent = MSE(Qt, Q
∗

t ). (6)

Task decomposition. The standard RL focuses on maxi-

mizing the reward received from the whole episode (e.g.,

actions across the T interactions) and only consider maxi-

mizing the final performance. However, the interactive VOS

aims to achieve the highest performance with minimal inter-

actions. This motivates us to treat any interaction as an in-

dependent procedure and decompose the frame recommen-

dation task with a maximum number of T iterations into

T sub-tasks to maximize the performance at each interac-

tion. For each sub-task, the maximum number of iteration

T ′ = 1, . . . , T . Thus, st can be intermediate state in the

sub-task with t < T ′. Meanwhile, the st is the terminal

state for sub-task with t = T ′.

3.2. Segmentation Quality Assessment

To narrow the state space, we use the segmentation qual-

ity as a proxy state for our frame recommendation agent.

Inspired by Mask Scoring R-CNN [15], we use a quality

assessment module to estimate the segmentation quality for

each frame.

Suppose that there are K target objects of interest in the

video. We first calculate the tight bounding box Bn,k con-

taining the foreground mask for each instance k based on

the segmentation probability map M̂n,k. Then, we enlarge

the bounding box Bn,k by a factor of 1.5. To ignore the

background regions, we crop the RGB image In and cor-

responding probability map M̂n,k based on the enlarged

bounding box Bn,k. Then, we concatenate the cropped

RGB image and probability map as the input of the segmen-

tation quality assessment module and obtain the segmenta-

tion quality estimation qn,k of each object of interest. We

implement this module with a ResNet-50 [11] followed by

a fully connected layer from 2048 to 1.

The segmentation quality qn of each frame is the aver-

age segmentation qualities over all objects of interest within

each frame:

qn =
1

K

K
∑

k=1

qn,k. (7)

We use MSE(·) to supervise the learning of the segmen-

tation quality:

Lquality = MSE(qn,k, q∗,n,k), (8)

where q∗,n,k is the corresponding ground-truth segmenta-

tion quality.
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Setting Strategy
DAVIS YouTube-VOS

IPN [21] MANet [19] ATNet [12] IPN [21] MANet [19] ATNet [12]

Oracle
Worst 48.02 70.85 73.68 44.67 66.03 74.89
Ours 48.25 71.11 74.01 43.86 66.90 75.37

Wild

Random 47.52(4) 69.81(1) 72.99(3) 43.22(5) 64.97(8) 74.11(8)
Linspace 46.97 70.10 72.93 42.75 64.75 73.47
Worst 47.26 69.32 73.33 43.29 65.98 74.69
Ours 47.99 70.82 74.10 43.69 66.85 75.33

Table 1. Quantitative results (AUC) of the interactive VOS on DAVIS and YouTube-VOS dataset.

3.3. Training and Inference

Training. We train the frame recommendation agent on

DAVIS dataset. We adopt the VOS algorithm, i.e., AT-

Net [12], as the state transition function. It is impractical

to train the agent using the whole video sequence due to

the various sequence lengths. For each original training se-

quence, we sample N ′ consecutive frames to form the sub-

sequence and use the corresponding ground-truth segmenta-

tion quality to form the state. We use the experience replay

mechanism [29] to make the training process more stable.

At the beginning of the agent training, we fill the experi-

ence buffer by randomly selecting the frames and then train

the agent with ǫ-greedy policy. To train the segmentation

quality assessment module, we use the segmentation masks

generated by ATNet.

Inference. Given a test video sequence and initial segmen-

tation masks, the segmentation quality assessment mod-

ule first estimates the segmentation quality for each frame.

Then, the agent takes the segmentation quality and recom-

mendation history as input and outputs Q value for each

frame. Finally, we recommend the frame with the highest Q

value for user annotation. During testing, we use the whole

video sequence.

4. Experiments

In this section, we conduct experiments to evaluate the

performance of the proposed method on DAVIS dataset [25]

and YouTube-VOS dataset [36].

4.1. Dataset and Evaluation Metrics

Datasets. DAVIS dataset [25] contains 60 training se-

quences and 30 validate sequences. DAVIS dataset provides

high-quality densely-annotated segmentation mask anno-

tation for each frame. To test the generalization of the

proposed method, we further sample 50 sequences from

YouTube-VOS dataset [36]. Since YouTube-VOS dataset

does not contain the applicable annotations for the interac-

tive VOS task, we extend such initial scribbles by follow-

ing [2].

Evaluation metrics. To validate the performance of seg-

mentation, we use the region similarity in terms of inter-

section over union J and the boundary accuracy F as used

in [24]. Caelles et al. [2] propose to use the curve of J&F
versus the time. Since we focus on evaluating the frame

selection strategy, we do not take the time into account. In-

stead, we use the curve of J&F versus the number of in-

teractions and measure its Area Under Curve (AUC) to vali-

date the interactive setting. The segmentation quality is also

measured by J&F .

4.2. Implementation Details

We implement our model with PyTorch [22] and train all

models on a single NVIDIA Tesla V100 GPU device. We

use Adam [17] optimizer with learning rate 5× 10−6 and

batch size 32. The experience buffer is set to 5760. ǫ de-

creases from 0.7 to 0.25 over 5000 steps exponentially. To

accelerate the training process, we set the maximum of in-

teractions T = 5 during training, and T = 8 during testing

following [2]. It is impractical to generate the scribble an-

notations by human annotators during training, so we use

the human-simulated scribbles2 by comparing the segmen-

tation predictions and corresponding ground truths. We set

N ′ = 25 to the length of the shortest sequence in the train-

ing set. It takes approximately 10 hours for the agent to

converge.

4.3. Main Results

Strategies for comparison. We compare our learned agent

under two settings:

• “Oracle”: When the ground-truth segmentation mask

is available, we compare our method with [2], i.e.,

select the frame with the worst segmentation quality

(“Worst”). In this setting, we feed the ground-truth

segmentation quality to our agent.

• “Wild”: When the ground-truth segmentation mask is

unavailable, we compare our agent with the following

2https : / / github . com / albertomontesg / davis -

interactive
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Figure 3. The curve of J&F versus the number of rounds on DAVIS dataset.

Ground-truth Worst (Oracle) Ours (Oracle) Random Linspace Worst (Wild) Ours (Wild)

Figure 4. Qualitative comparison on DAVIS (the first two rows) and YouTube-VOS dataset (the last two rows). All result masks are sampled

after 8 rounds. The ground truth is available (“Oracle”) in the second and third columns, while the ground truth is unknown (“Wild”) in

the last four columns. We show the segmentation quality J&F on each frame.

frame selection strategies: (i) select uniformly from

all frames (“Random”), (ii) select frames with a fixed-

length step (“Linspace”), (iii) “Worst”. In this setting,

we use the predicted segmentation quality for “Worst”.

We run “Random” selection strategy 5 times and report

the mean and variance.

Segmentation algorithm. We choose three off-the-shelf

interactive VOS approaches, IPN [21]3, MANet [19]4 and

ATNet [12]5, based on their performance and source code

availability. All the segmentation algorithms are only

trained on DAVIS dataset.

Quantitative evaluation. Table 1 shows the quantitative

results on DAVIS dataset and YouTube-VOS dataset. We

make the following observations: (i) Our learned agent

achieves state-of-the-art performance on DAVIS dataset

and generalizes well to YouTube-VOS dataset without any

changes to the underlying VOS algorithms, no matter if the

ground truth is available or not. (ii) Our agent outperforms

3https://github.com/seoungwugoh/ivs-demo
4https://github.com/lightas/CVPR2020_MANet
5https://github.com/yuk6heo/IVOS-ATNet

the worst frame selection strategy (with the exception of

IPN) when ground truth is available (“Oracle”), demonstrat-

ing that the frame with the worst evaluation result is not

exactly the best one for user annotation. (iii) When ground

truth is not available (“Wild”), our method also outperforms

all baseline strategies. Due to the space limitation, we refer

readers to the supplementary material for the curves of all

results on YouTube-VOS dataset.

Figure 3 shows the curves of J&F versus the number

of rounds on DAVIS dataset. As one can see, our agent

outperforms other frame selection strategies in all rounds

when ground truth is available (“Oracle”). When ground

truth is not available (“Wild”), our agent can outperform all

baselines, i.e., Random, Worst, and Linspace.

Qualitative evaluation. Figure 4 shows the qualitative re-

sults of ATNet on DAVIS validation set. We sample re-

sults generated by the different frame selection policies af-

ter 8 rounds. As one can see, our approach produces accu-

rate segmentation masks. We also show the frames recom-

mended by our agent and the worst frames at each round in

Figure 5. The worst frame selection strategy tends to select

a small range of frames. However, the user could not pro-
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Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

W
o
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t

Frame 1 Frame 59 Frame 62 Frame 55 Frame 54 Frame 53 Frame 65 Frame 63

O
u

rs

Frame 1 Frame 61 Frame 74 Frame 49 Frame 38 Frame 67 Frame 54 Frame 45

Figure 5. Recommended frames for the “india” sequence in DAVIS dataset. The worst frame selection strategy in the top row achieves

66.92% in terms of J&F , while ours in the bottom row achieves 72.25%.

Annotator AUC Time (s)

Human 73.09 14.01
Ours 74.10 0.70

Table 2. Comparison with humans on DAVIS dataset.

VOS PCC MSE

IPN [21] 0.47 0.05
MANet [19] 0.42 0.01
ATNet [12] 0.51 0.01

Table 3. Quantitative results of the segmentation quality assess-

ment module on DAVIS dataset.

vide additional information for the objects on these frames.

We refer readers to supplementary materials for more qual-

itative results.

Comparison with humans. We further compare our pro-

posed frame recommendation agent with the human on

DAVIS validation set. In this experiment, we adopt ATNet

as the VOS algorithm. We overlay the segmentation mask

on the RGB image and show the overlaid frame to the hu-

man. We only ask the human to select the valuable frame

for annotation, and then the chosen frame is annotated by

the human-simulated scribbles [2]. As shown in Table 2,

our learned agent outperforms the human in both accuracy

and efficiency.

Evaluation of the segmentation quality assessment. To

validate the accuracy of the segmentation quality assess-

ment module, we adopt the Pearson correlation coeffi-

cient (PCC) and MSE between predictions and their ground

truths. As shown in Table 3, the regression model trained

only on the data generated by ATNet can also generalize

well to other VOS algorithms.

4.4. Ablation Studies

We run several ablation studies to analyze the frame rec-

ommendation agent. In all ablation studies, we adopt the

ATNet as the VOS algorithm and report the AUC on DAVIS

validation set.

Variants Oracle Wild

Eq. (2) 71.82 71.97
Eq. (3) 74.01 74.10

Table 4. Reward function.

Variants Oracle Wild

rgoal 73.75 73.76
raux 72.06 72.00
rgoal + raux

74.01 74.10

Table 5. Reward.

Variants Oracle Wild

qt 73.71 73.55
ht 73.92 73.92
qt + ht 74.01 74.10

Table 6. State.

Reward function. We first verify the effectiveness of the

proposed reward function. We compare the two reward

functions, i.e., Eq. (2) and Eq. (3). The reward in Eq. (2)

is positive if P > µ̂, while the reward in Eq. (3) is posi-

tive if P > µ̂ + σ̂. The results are shown in Table 4. As

expected, the proposed reward function has better results.

We further show the change in reward according to the

training episode from 2nd round to 5th round in Figure 6.

As shown in Figure 6a, the reward in Eq. (2) is mostly pos-

itive, and the performance is hard to improve after a certain

training episode. In contrast, the reward in Eq. (3) shown in

Figure 6b can continuously improve. Figure 6c shows the

change in J&F of the training process. As expected, the

reward in Eq. (3) has better results than that in Eq. (2).

Reward. To evaluate the effectiveness of goal-only reward

rgoal in Eq. (3) and auxiliary reward raux in Eq. (4), we re-

move either one of them. The results are shown in Table 5.

As one can see, the agent trained with both rewards achieves

the best performance. This demonstrates that both segmen-

tation quality and frame selection diversity are helpful to the

frame recommendation.
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Figure 6. Training curves on DAVIS dataset. (a) and (b) show the reward obtained in each round with the reward function in Eq. (2) and

Eq. (3), respectively. (c) shows the segmentation quality in each round. The dashed and solid lines in (c) represent the performance based

on Eq. (2) and Eq. (3), respectively. All curves are smoothed using a weighed moving average algorithm.
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Figure 7. Failure case. We show the recommended frames for the “car-roundabout” sequence in DAVIS dataset. The worst frame selection

strategy in the top row achieves 96.75% in terms of J&F , while ours in the bottom row achieves 94.43%.

Variants Oracle Wild

✗ 72.58 72.55
✓ 74.01 74.10

Table 7. Task decomposition.

State. To evaluate the effectiveness of the state, we remove

either the segmentation quality qt or the recommendation

history ht. As shown in Table 6, both states play an impor-

tant role in representing the agent.

Task decomposition. Finally, we investigate the effective-

ness of the task decomposition. We train an agent without

the task decomposition. The results are shown in Table 7.

The agent with task decomposition performs better, which

illustrates the advantage of the task decomposition.

4.5. Failure Case

Figure 7 shows the failure case. In this case, the fore-

ground object (i.e., car) moves smoothly away from the

camera. As the appearance of the foreground object does

not change significantly, the VOS algorithm works very

well across the whole video sequence. Thus, it is hard

for the agent to select the most valuable frame. Our agent

achieves comparable performance to the “Worst” strategy

(94.43% vs. 96.75%).

5. Conclusion

This paper hypothesizes that the frame with the worst

segmentation quality selected in the current interactive VOS

is not exactly the best one for annotation. To this end, we

formulate the frame recommendation problem as a Markov

Decision Process and solve it in the DRL manner. The ex-

perimental results on public datasets show that our learned

recommendation agent outperforms all baseline strategies

without any changes to the underlying VOS algorithms.
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