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Figure 1: 3D scene structure distortion of projected point clouds. While the predicted depth map is correct, the 3D scene shape of the

point cloud suffers from noticeable distortions due to an unknown depth shift and focal length (third column). Our method recovers these

parameters using 3D point cloud networks. With recovered depth shift, the walls and bed edges become straight, but the overall scene is

stretched (fourth column). Finally, with recovered focal length, an accurate 3D scene can be reconstructed (fifth column).

Abstract

Despite significant progress in monocular depth estima-

tion in the wild, recent state-of-the-art methods cannot be

used to recover accurate 3D scene shape due to an unknown

depth shift induced by shift-invariant reconstruction losses

used in mixed-data depth prediction training, and possible

unknown camera focal length. We investigate this problem

in detail, and propose a two-stage framework that first pre-

dicts depth up to an unknown scale and shift from a single

monocular image, and then use 3D point cloud encoders

to predict the missing depth shift and focal length that al-

low us to recover a realistic 3D scene shape. In addition,

we propose an image-level normalized regression loss and

a normal-based geometry loss to enhance depth prediction

models trained on mixed datasets. We test our depth model

on nine unseen datasets and achieve state-of-the-art perfor-

mance on zero-shot dataset generalization. Code is avail-

able at: https://git.io/Depth

1. Introduction

3D scene reconstruction is a fundamental task in com-

puter vision. The established approach to address this task

is SLAM or SfM [16], which reconstructs 3D scenes based

on feature-point correspondence with consecutive frames or

multiple views. In contrast, this work aims to achieve dense

3D scene shape reconstruction from a single in-the-wild im-

*Correspondence should be addressed to C. Shen.

age. Without multiple views available, we rely on monocu-

lar depth estimation. However, as shown in Fig. 1, existing

monocular depth estimation methods [10, 38, 48, 40] alone

are unable to faithfully recover an accurate 3D point cloud.

Unlike multi-view reconstruction methods, monocular

depth estimation requires leveraging high level scene priors,

so data-driven approaches have become the de facto solu-

tion to this problem [24, 29, 37, 49, 47]. Recent works have

shown promising results by training deep neural networks

on diverse in-the-wild data, e.g. web stereo images and

stereo videos [5, 7, 29, 37, 43, 44, 49]. However, the diver-

sity of the training data also poses challenges for the model

training, as training data captured by different cameras can

exhibit significantly different image priors for depth estima-

tion [11]. Moreover, web stereo images and videos can only

provide depth supervision up to a scale and shift due to the

unknown camera baselines and stereoscopic post process-

ing [23]. As a result, state-of-the-art in-the-wild monocular

depth models use various types of losses invariant to scale

and shift in training. While an unknown scale in depth will

not cause any shape distortion, as it scales the 3D scene

uniformly, an unknown depth shift will (see Sec. 3.1 and

Fig. 1). In addition, the camera focal length of a given im-

age may not be accessible at test time, leading to more dis-

tortion of the 3D scene shape. This scene shape distortion

is a critical problem for downstream tasks such as 3D view

synthesis and 3D photography.

To address these challenges, we propose a novel monoc-

ular scene shape estimation framework that consists of a
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depth prediction module and a point cloud reconstruction

module. The depth prediction module is a convolutional

neural network trained on a mixture of existing datasets that

predicts depth maps up to a scale and shift. The point cloud

reconstruction module leverages point cloud encoder net-

works that predict shift and focal length adjustment factors

from an initial guess of the scene point cloud reconstruction.

A key observation that we make here is that, when operat-

ing on point clouds derived from depth maps, and not on

images themselves, we can train models to learn 3D scene

shape priors using synthetic 3D data or data acquired by

3D laser scanning devices. The domain gap is significantly

less of an issue for point clouds than that for images, al-

though these data sources are significantly less diverse than

internet images.

We empirically show that these point cloud encoders

generalize well to unseen datasets.

Furthermore, to train a robust monocular depth predic-

tion model on mixed data from multiple sources, we pro-

pose a simple but effective image-level normalized regres-

sion loss, and a pair-wise surface normal regression loss.

The former loss transforms the depth data to a canonical

scale-shift-invariant space for more robust training, while

the latter improves the geometry of our predicted depth

maps. To summarize, our main contributions are:

• A novel framework for in-the-wild monocular 3D

scene shape estimation. To the best of our knowledge,

this is the first fully data-driven method for this task,

and the first method to leverage 3D point cloud neural

networks for improving the structure of point clouds

derived from depth maps.

• An image-level normalized regression loss and a pair-

wise surface normal regression loss for improving

monocular depth estimation models trained on mixed

multi-source datasets.

Experiments show that our point cloud reconstruction mod-

ule can recover accurate 3D shape from a single image, and

that our depth prediction module achieves state-of-the-art

results on zero-shot dataset transfer to 9 unseen datasets.

2. Related Work

Monocular depth estimation in the wild. This task has

recently seen impressive progress [5, 6, 7, 24, 37, 40, 43,

44, 49, 47]. The key properties of such approaches are what

data can be used for training, and what objective function

makes sense for that data. When metric depth supervision

is available, networks can be trained to directly regress these

depths [10, 25, 48]. However, obtaining metric ground truth

depth for diverse datasets is challenging. As an alternative,

Chen et al. [5] collect diverse relative depth annotations for

internet images, while other approaches propose to scrape

stereo images or videos from the internet [29, 37, 43, 44,

49]. Such diverse data is important for generalizability, but

as the metric depth is not available, direct depth regression

losses cannot be used. Instead, these methods rely either on

ranking losses which evaluate relative depth [5, 43, 44] or

scale and shift invariant losses [29, 37] for supervision. The

later methods produce especially robust depth predictions,

but as the camera model is unknown and an unknown shift

resides in the depth, the 3D shape cannot be reconstructed

from the predicted depth maps. In this paper, we aim to

reconstruct the 3D shape from a single image in the wild.

3D reconstruction from a single image. A number of

works have addressed reconstructing different types of ob-

jects from a single image [2, 39, 42], such as humans [30,

31], cars, planes, tables, etc. The main challenge is how to

best recover objects details, and how to represent them with

limited memory. Pixel2Mesh [39] proposes to reconstruct

the 3D shape from a single image and express it in a triangu-

lar mesh. PIFu [30, 31] proposes an memory-efficient im-

plicit function to recover high-resolution surfaces, includ-

ing unseen/occluded regions, of humans. However, all these

methods rely on learning priors specific to a certain object

class or instance, typically from 3D supervision, and can

therefore not work for full scene reconstruction.

On the other hand, several works have proposed recon-

structing 3D scene structure from a single image. Saxena et

al. [32] assume that the whole scene can be segmented into

several pieces, of which each one can be regarded as a small

plane. They predict the orientation and the location of the

planes and stitch them together to represent the scene. Other

works propose to use image cues, such as shading [28]

and contour edges [20] for scene reconstruction. However,

these approaches use hand-designed priors and restrictive

assumptions about the scene geometry. Our method is fully

data driven, and can be applied to a wide range of scenes.

Camera intrinsic parameter estimation. Recovering a

camera’s focal length is an important part of 3D scene

understanding. Traditional methods utilize reference ob-

jects such as a planar calibration grids [51] or vanishing

points [9], which can then be used to estimate a focal length.

Other methods [18, 41] propose a data driven approach

where a CNN recovers the focal length on in-the-wild data

directly from an image. In contrast, our point cloud module

estimates the focal length directly in 3D, which we argue is

an easier task than operating on natural images directly.

3. Our Method

Our two-stage single image 3D shape estimation pipeline

is illustrated in Fig. 2. It is composed of a depth prediction

module (DPM) and a point cloud module (PCM). The two

modules are trained separately on different data sources,

and are then combined together at inference time. The DPM

takes an RGB image and outputs a depth map [49] with un-
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Figure 2: Method Pipeline. During training, the depth prediction model (top left) and point cloud module (top right) are trained separately

on different sources of data. During inference (bottom), the two networks are combined together to predict depth d and from that, the depth

shift ∆d and focal length f · αf that together allow for an accurate scene shape reconstruction. Note that we employ point cloud networks

to predict shift and focal length scaling factor separately. Please see the text for more details.
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Figure 3: Illustration of the distorted 3D shape caused by incor-

rect shift and focal length. A ground truth depth map is projected

in 3D and visualized. When the focal length is incorrectly esti-

mated (f > f∗), we observe significant structural distortion, e.g.,

see the angle between two walls A and B. Second row (front view):

a shift (d∗ +∆d) also causes the shape distortion, see the roof.

known scale and shift in relation to the true metric depth

map. The PCM takes as input a distorted 3D point cloud,

computed using a predicted depth map d and an initial esti-

mation of the focal length f , and outputs shift adjustments

to the depth map and focal length to improve the geometry

of the reconstructed 3D scene shape.

3.1. Point Cloud Module

We assume a pinhole camera model for the 3D point

cloud reconstruction, which means that the unprojection

from 2D coordinates and depth to 3D points is:







x = u−u0

f
d

y = v−v0
f

d

z = d

(1)

where (u0, v0) are the camera optical center, f is the fo-

cal length, and d is the depth. The focal length affects the

point cloud shape as it scales x and y coordinates, but not z.

Similarly, a shift of d will affect the x, y, and z coordinates

non-uniformly, which will result in shape distortions.

For a human observer, these distortions are immediately

recognizable when viewing the point cloud at an oblique

angle (Fig. 3), although they cannot be observed looking at

a depth map alone. As a result, we propose to directly an-

alyze the point cloud to determine the unknown shift and

focal length parameters. We tried a number of network ar-

chitectures that take unstructured 3D point clouds as input,

and found that the recent PVCNN [26] performed well for

this task, so we use it in all experiments here.

During training, a perturbed input point cloud with in-

correct shift and focal length is synthesized by perturbing

the known ground truth depth shift and focal length. The

ground truth depth d∗ is transformed by a shift ∆∗

d drawn

from U(−0.25, 0.8), and the ground truth focal length f∗ is

transformed by a scale α∗

f drawn from U(0.6, 1.25) to keep

the focal length positive and non-zero.

When recovering the depth shift, the perturbed 3D point

cloud is F(u0, v0, f
∗, d∗ +∆∗

d) is given as input to the shift

point cloud network Nd(·), trained with the objective:

L = min
θ

|Nd(F(u0, v0, f
∗, d∗ +∆∗

d), θ)−∆∗

d| (2)

where θ are network weights and f∗ is the true focal length.

Similarly, when recovering the focal length, the point

cloud F(u0, v0, α
∗

ff
∗, d∗) is fed to the focal length point

cloud network Nf (·), trained with the objective:

L = min
θ

∣

∣Nf (F(u0, v0, α
∗

ff
∗, d∗), θ)− α∗

f

∣

∣ (3)
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During inference, the ground truth depth is replaced with

the predicted affine-invariant depth d, which is normalized

to [0, 1] prior to the 3D reconstruction. We use an initial

guess of focal length f , giving us the reconstructed point

cloud F(u0, v0, f, d), which is fed to Nd(·) and Nf (·) to

predict the shift ∆d and focal length scaling factor αf re-

spectively. In our experiments we simply use an initial focal

length with a field of view (FOV) of 60◦. We have also tried

to employ a single network to predict both the shift and the

scaling factor, but have empirically found that two separate

networks can achieve a better performance.

3.2. Monocular Depth Prediction Module

We train our depth prediction on multiple data sources

including high-quality LiDAR sensor data [50], and low-

quality web stereo data [29, 37, 44] (see Sec. 4). As these

datasets have varied depth ranges and web stereo datasets

contain unknown depth scale and shift, we propose an

image-level normalized regression (ILNR) loss to address

this issue. Moreover, we propose a pair-wise normal re-

gression (PWN) loss to improve local geometric features.

Image-level normalized regression loss. Depth maps of

different data sources can have varied depth ranges. There-

fore, they need to be normalized to make the model training

easier. Simple Min-Max normalization [13, 35] is sensitive

to depth value outliers. For example, a large value at a sin-

gle pixel will affect the rest of the depth map after the Min-

Max normalization. We investigate more robust normaliza-

tion methods and propose a simple but effective image-level

normalized regression loss for mixed-data training.

Our image-level normalized regression loss transforms

each ground truth depth map to a similar numerical range

based on its individual statistics. To reduce the effect of

outliers and long-tail residuals, we combine tanh normal-

ization [35] with a trimmed Z-score, after which we can

simply apply a pixel-wise mean average error (MAE) be-

tween the prediction and the normalized ground truth depth

maps. The ILNR loss is formally defined as follows.

LILNR =
1

N

N
∑

i

∣

∣

∣
di − d

∗

i

∣

∣

∣
+
∣

∣tanh(di/100)− tanh(d
∗

i/100)
∣

∣

where d
∗

i = (d∗

i
−µtrim)/σtrim and µtrim and σtrim are the

mean and the standard deviation of a trimmed depth map

which has the nearest and farthest 10% of pixels removed,

d is the predicted depth, and d∗ is the ground truth depth

map. We have tested a number of other normalization meth-

ods such as Min-Max normalization [35], Z-score normal-

ization [12], and median absolute deviation normalization

(MAD) [35]. In our experiments, we found that our pro-

posed ILNR loss achieves the best performance.

Pair-wise normal loss. Normals are an important geo-

metric property, which have been shown to be a comple-

mentary modality to depth [34]. Many methods have been

proposed to use normal constraints to improve the depth

quality, such as the virtual normal loss [48]. However, as the

virtual normal only leverages global structure, it cannot help

improve the local geometric quality, such as depth edges

and planes. Recently, Xian et al. [44] proposed a structure-

guided ranking loss, which can improve edge sharpness. In-

spired by these methods, we follow their sampling method

but enforce the supervision in surface normal space. More-

over, our samples include not only edges but also planes.

Our proposed pair-wise normal (PWN) loss can better con-

strain both the global and local geometric relations.

The surface normal is obtained from the reconstructed

3D point cloud by local least squares fitting [48]. Before

calculating the predicted surface normal, we align the pre-

dicted depth and the ground truth depth with a scale and

shift factor, which are retrieved by least squares fitting [29].

From the surface normal map, the planar regions where nor-

mals are almost the same and edges where normals change

significantly can be easily located. Then, we follow [44]

and sample paired points on both sides of these edges. If

planar regions can be found, paired points will also be sam-

pled on the same plane. In doing so, we sample 100K

paired points per training sample on average. In addi-

tion, to improve the global geometric quality, we also ran-

domly sample paired points globally. The sampled points

are {(Ai, Bi), i = 0, ..., N}, while their corresponding nor-

mals are {(nAi, nBi), i = 0, ..., N}. The PWN loss is:

LPWN =
1

N

N
∑

i

|nAi · nBi
− n∗

Ai · n
∗

Bi| (4)

where n∗ denotes ground truth surface normals. As this loss

accounts for both local and global geometry, we find that it

improves the overall reconstructed shape.

Finally, we also use a multi-scale gradient loss [24]:

LMSG =
1

N

K
∑

k=1

N
∑

i=1

∣

∣

∣
▽k

xdi −▽k
xd

∗

i

∣

∣

∣
+
∣

∣

∣
▽k

ydi −▽k
yd

∗

i

∣

∣

∣

(5)

Dataset

Structure guided

ranking loss
ILNR

PWN

(plane)

PWN

(local)

Multi-scale

gradient loss

Taskonomy X X X X X

3D Ken Burns X X X X X

DIML X X X X

HRWSI+Holopix X

Weight 1 1 1 1 0.5

Table 1: Losses on different datasets.

Different losses are enforced on different dataset (see Ta-

ble 1).

4. Experiments

Datasets and implementation details. To train the PCM,

we sampled 100K Kinect-captured depth maps from Scan-

Net, 114K LiDAR-captured depth maps from Taskonomy,
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Dataset # Img
Scene Evaluation Supervision

Type Metric Type

NYU 654 Indoor AbsRel & δ1 Kinect

ScanNet 700 Indoor AbsRel & δ1 Kinect

2D-3D-S 12256 Indoor LSIV LiDAR

iBims-1 100 Indoor
AbsRel &

εPE &εDBE
LiDAR

KITTI 652 Outdoor AbsRel & δ1 LiDAR

Sintel 641 Outdoor AbsRel & δ1 Synthetic

ETH3D 431 Outdoor AbsRel & δ1 LiDAR

YouTube3D 58054 In the Wild WHDR SfM, Ordinal pairs

OASIS 10000 In the Wild
WHDR

& LSIV

User clicks,

Small patches with GT

DIODE 771
Indoor

& Outdoor

AbsRel &

δ1
LiDAR

Table 2: Overview of the test sets in our experiments.

and 51K synthetic depth maps from the 3D Ken Burns pa-

per [27]. We train the network using SGD with a batch size

of 40, an initial learning rate of 0.24, and a learning rate de-

cay of 0.1. For parameters specific to PVCNN, such as the

voxel size, we follow the original work [26].

To train the DPM, we sampled 114K RGBD pairs from

LiDAR-captured Taskonomy [50], 51K synthetic RGBD

pairs from the 3D Ken Burns paper [27], 121K RGBD

pairs from calibrated stereo DIML [21], 48K RGBD pairs

from web-stereo Holopix50K [19], and 20K web-stereo

HRWSI [44] RGBD pairs. Note that when doing the ab-

lation study about the effectiveness of PWN and ILNR, we

sampled a smaller dataset which is composed of 12K im-

ages from Taskonomy, 12K images from DIML, and 12K

images from HRWSI. During training, 1000 images are

withheld from all datasets as a validation set. We use the

depth prediction architecture proposed in Xian et al. [44],

which consists of a standard backbone for feature extrac-

tion (e.g., ResNet50 [17] or ResNeXt101 [46]), followed by

a decoder, and train it using SGD with a batch size of 40,

an initial learning rate 0.02 for all layer, and a learning rate

decay of 0.1. Images are resized to 448×448, and flipped

horizontally with a 50% chance. Following [49], we load

data from different datasets evenly for each batch.

Evaluation details. The focal length prediction accuracy

is evaluated on 2D-3D-S [1] following [18]. Furthermore,

to evaluate the accuracy of the reconstructed 3D shape, we

use the Locally Scale Invariant RMSE (LSIV) [7] metric

on both OASIS [7] and 2D-3D-S [1]. It is consistent with

the previous work [7]. The OASIS [7] dataset only has the

ground truth depth on some small regions, while 2D-3D-S

has the ground truth for the whole scene.

To evaluate the generalizability of our proposed depth

prediction method, we take 9 datasets which are un-

seen during training, including YouTube3D [6], OA-

SIS [7], NYU [34], KITTI [14], ScanNet [8], DIODE [36],

ETH3D [33], Sintel [4], and iBims-1 [22]. On OASIS

and YouTube3D, we use the Weighted Human Disagree-

ment Rate (WHDR) [43] for evaluation. On other datasets,

Method
ETH3D NYU KITTI Sintel DIODE

AbsRel ↓
Baseline 23.7 25.8 23.3 47.4 46.8
Recovered Shift 15.9 15.1 17.5 40.3 36.9

Table 3: Effectiveness of recovering the shift from 3D point

clouds with the PCM. Compared with the baseline, the AbsRel

is much lower after recovering the depth shift over all test sets.
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Figure 4: Comparison of recovered focal length on the 2D-3D-S

dataset. Left, our method outperforms Hold-Geoffroy et al. [18].

Right, we conduct an experiment on the effect of the initialization

of field of view (FOV). Our method remains robust across different

initial FOVs, with a slight degradation in quality past 25◦ and 65
◦.

except for iBims-1, we evaluate the absolute mean rela-

tive error (AbsRel) and the percentage of pixels with δ1 =

max( di

d∗

i

,
d∗

i

di

) < 1.25. We follow Ranftl et al. [29] and align

the scale and shift before evaluation. To evaluate the ge-

ometric quality of the depth, i.e. the quality of edges and

planes, we follow [27, 44] and evaluate the depth boundary

error [22] (εacc
DBE, ε

comp
DBE ) as well as the planarity error [22]

(εplan
PE , εorie

PE ) on iBims-1. εplan
PE and εorie

PE evaluate the flatness

and orientation of reconstructed 3D planes compared to the

ground truth 3D planes respectively, while εacc
DBE and εcomp

DBE

demonstrate the localization accuracy and the sharpness of

edges respectively. More details as well as a comparison of

these test datasets are summarized in Table 2

4.1. 3D Shape Reconstruction

Shift recovery. To evaluate the effectiveness of our depth

shift recovery, we perform zero-shot evaluation on 5
datasets unseen during training. We recover a 3D point

cloud by unprojecting the predicted depth map, and then

compute the depth shift using our PCM. We then align the

unknown scale [3, 15] of the original depth and our shifted

depth to the ground truth, and evaluate both using the Ab-

sRel error. The results are shown in Table 3, where we see

that, on all test sets, the AbsRel error is lower after recov-

ering the shift. We also trained a standard 2D convolutional

neural network to predict the shift given an image composed
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Figure 5: Qualitative comparison. We compare the reconstructed 3D shape of our method with several baselines. As MiDaS [29] does

not estimate the focal length, we use the focal length recovered from [18] to convert the predicted depth to a point cloud. “Ours-Baseline”

does not recover the depth shift or focal length and uses an orthographic camera, while “Ours” recovers the shift and focal length. We can

see that our method better reconstructs the 3D shape, especially at edges and planar regions (see arrows).

of the unprojected point coordinates, but this approach did

not generalize well to samples from unseen datasets.

Focal length recovery. To evaluate the accuracy of our

recovered focal length, we follow Hold-Geoffroy et al. [18]

and compare on the 2D-3D-S dataset, which is unseen

during training for both methods. The model of [18] is

trained on the in-the-wild SUN360 [45] dataset. Results

are illustrated in Fig. 4, where we can see that our method

demonstrates better generalization performance. Note that

PVCNN is very lightweight and only has 5.5M parameters,

but shows promising generalizability, which could indicate

that there is a smaller domain gap between datasets in the

3D point cloud space than in the image space where appear-

ance variation can be large.

Furthermore, we analyze the effect of different initial fo-

cal lengths during inference. We set the initial field of view

(FOV) from 20◦ to 70◦ and evaluate the accuracy of the

recovered focal length, Fig. 4 (right). The experimental re-

sults demonstrate that our method is not particularly sensi-

tive to different initial focal lengths.

Evaluation of 3D shape quality. Following OASIS [7],

we use LSIV for the quantitative comparison of recov-

ered 3D shapes on the OASIS [7] dataset and the 2D-3D-

S [1] dataset. OASIS only provides the ground truth point

Method
OASIS 2D-3D-S

LSIV ↓ LSIV↓

Orthographic Camera Model

MegaDepth [24] 0.64 2.68
MiDaS [29] 0.63 2.65
Ours-DPM 0.63 2.65

Pinhole Camera Model

MegaDepth [24] + Hold-Geoffroy [18] 1.69 1.81
MiDaS [29] + Hold-Geoffroy [18] 1.60 0.94
MiDaS [29] + Ours-PCM 1.32 0.94
Ours + Hold-Geoffroy [18] 2.66 0.99
Ours 0.52 0.80

Table 4: Quantitative evaluation of the reconstructed 3D shape

quality on OASIS and 2D-3D-S. Our method can achieve better

performance than previous methods. Compared with the ortho-

graphic projection, using the pinhole camera model can obtain

better performance. DPM and PCM refers to our depth prediction

module and point cloud module respectively.

cloud on small regions, while 2D-3D-S covers the whole

3D scene. Following OASIS [7], we evaluate the recon-

structed 3D shape with two different camera models, i.e.

the orthographic projection camera model [7] (infinite fo-

cal length) and the (more realistic) pinhole camera model.
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Figure 6: Qualitative comparisons with state-of-the-art methods, including MegaDepth [24], Xian et al. [44], and MiDaS [29]. It shows

that our method can predict more accurate depths at far locations and regions with complex details. In addition, we see that our method

generalizes better on in-the-wild scenes.

As MiDaS [29] and MegaDepth [24] do not estimate the

focal length, we use the focal length recovered from Hold-

Geoffroy [18] to convert the predicted depth to a point

cloud. We also evaluate a baseline using MiDaS instead

of our DPM with the focal length predicted by our PCM

(“MiDaS + Ours-PCM”). From Table 4 we can see that

with an orthographic projection, our method (“Ours-DPM”)

performs roughly as well as existing state-of-the-art meth-

ods. However, for the pinhole camera model our combined

method significantly outperforms existing approaches. Fur-

thermore, comparing “MiDaS + Ours-PCM” and “MiDaS +

Hold-Geoffroy”, we note that our PCM is able to generalize

to different depth prediction methods.

A qualitative comparison of the reconstructed 3D shape

on in-the-wild scenes is shown in Fig. 5. It demonstrates

that our model can recover more accurate 3D scene shapes.

For example, planar structures such as walls, floors, and

roads are much flatter in our reconstructed scenes, and the

angles between surfaces (e.g., walls) are also more realistic.

Also, the shape of the car has less distortions.

4.2. Depth prediction

In this section, we conduct several experiments to

demonstrate the effectiveness of our depth prediction

method, including a comparison with state-of-the-art meth-

ods, an ablation study of our image-level normalized regres-

sion loss, and an analysis of the effectiveness of our pair-

wise normal regression loss.

Comparison with state-of-the-art methods. In this

comparison, we test on datasets unseen during training. We

compare with methods that have been shown to best gen-

eralize to in-the-wild scenes. Their results are obtained by

running the publicly released code and weight. When com-

paring the AbsRel error, we follow Ranftl et al. [29] to align

the scale and shift before the evaluation. From Table 6, we

can see that our method outperforms prior works, and using

ResNeXt101 backbone further improves the results. Fig. 6

shows the qualitative comparison.

Pair-wise normal loss. To evaluate our full method on

edges and planes, we compare our depth model with pre-

Method
iBims-1

εacc
DBE ↓ ε

comp

DBE ↓ ε
plan

PE ↓ εorie
PE ↓ AbsRel↓

Xian et al. [44] 7.72 9.68 5.00 44.77 0.301

MegaDepth [24] 4.09 8.28 7.04 33.03 0.20

MiDaS [29] 1.91 5.72 3.43 12.78 0.104

3D Ken Burns [27] 2.02 5.44 2.19 10.24 0.097

Ours† w/o PWN 2.05 6.10 3.91 13.47 0.106

Ours†
1.91 5.70 2.95 11.59 0.101

Ours Full 1.90 5.73 2.0 7.41 0.079

Table 5: Quantitative comparison of the quality of depth bound-

aries (DBE) and planes (PE) on the iBims-1 dataset. † indicates

when a method was trained on the small training subset.
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Method Backbone
OASIS YT3D NYU KITTI DIODE ScanNet ETH3D Sintel

Rank
WHDR↓ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑

OASIS [7] ResNet50 32.7 27.0 21.9 66.8 31.7 43.7 48.4 53.4 19.8 69.7 29.2 59.5 60.2 42.9 6.7
MegaDepth [24] Hourglass 33.5 26.7 19.4 71.4 20.1 66.3 39.1 61.5 19.0 71.2 26.0 64.3 39.8 52.7 6.7
Xian et al. [44] ResNet50 31.6 23.0 16.6 77.2 27.0 52.9 42.5 61.8 17.4 75.9 27.3 63.0 52.6 50.9 6.7
WSVD [37] ResNet50 34.8 24.8 22.6 65.0 24.4 60.2 35.8 63.8 18.9 71.4 26.1 61.9 35.9 54.5 6.6
Chen et al. [6] ResNet50 33.6 20.9 16.6 77.3 32.7 51.2 37.9 66.0 16.5 76.7 23.7 67.2 38.4 57.4 5.6
DiverseDepth [49, 47] ResNeXt50 30.9 21.2 11.7 87.5 19.0 70.4 37.6 63.1 10.8 88.2 22.8 69.4 38.6 58.7 4.4
MiDaS [29] ResNeXt101 29.5 19.9 11.1 88.5 23.6 63.0 33.2 71.5 11.1 88.6 18.4 75.2 40.5 60.6 3.5
Ours ResNet50 30.2 19.5 9.1 91.4 14.3 80.0 28.7 75.1 9.6 90.8 18.4 75.8 34.4 62.4 1.9
Ours ResNeXt101 28.3 19.2 9.0 91.6 14.9 78.4 27.1 76.6 9.5 91.2 17.1 77.7 31.9 65.9 1.1

Table 6: Quantitative comparison of our depth prediction with state-of-the-art methods on eight zero-shot (unseen during training) datasets.

Our method achieves better performance than existing state-of-the-art methods across all test datasets.

RGB GT point cloud  W/o PWN W PWN

Figure 7: Qualitative comparison of reconstructed point clouds.

Using the pair-wise normal loss (PWN), we can see that edges and

planes are better reconstructed (see highlighted regions).

vious state-of-the-art methods on the iBims-1 dataset. In

addition, we evaluate the effect of our proposed pair-wise

normal (PWN) loss through an ablation study. The ablation

is conducted on the small training subset to to limit the com-

putational overhead. The results are shown in Table 5. We

can see that our full method outperforms prior work for this

task. In addition, under the same settings, both edges and

planes are improved by adding the PWN loss. We further

show a qualitative comparison in Fig. 7.

Image-level normalized regression loss. To show the ef-

fectiveness of our proposed ILNR loss, we compare it with

the scale-shift invariant loss (SSMAE) [29] and the scale-

invariant multi-scale gradient loss [37]. All methods are

trained on the small training subset to limit the computa-

tional overhead, and are compared on datasets that are un-

seen during training. All models have been trained for 50
epochs, and we have verified that all models fully converged

by then. The quantitative comparison is shown in Table

7, where we can see an improvement of ILNR over other

scale and shift invariant losses. Furthermore, we also an-

alyze different options for normalization, including image-

level Min-Max (MinMax) normalization and median abso-

lute deviation (MAD) normalization, and find that our ILNR

Method RedWeb NYU KITTI ScanNet DIODE

WHDR↓ AbsRel↓
SMSG [37] 19.1 15.6 16.3 13.7 36.5
SSMAE [29] 19.2 14.4 18.2 13.3 34.4

MinMax 19.1 15.0 17.1 13.3 46.1
MAD 18.8 14.8 17.4 12.5 34.6

ILNR 18.7 13.9 16.1 12.3 34.2

Table 7: Quantitative comparison of different losses on zero shot

generalization to 5 datasets unseen during training.

performs a bit better. Note that tanh term is not enforced for

other normalization methods.

5. Limitations

We observed a few limitations of our method. For exam-

ple, our PCM cannot recover accurate focal length or depth

shift when the scene does not have enough geometric cues,

e.g. when the whole image is mostly a sky region. The ac-

curacy of our method will also decrease with images taken

from uncommon view angles (e.g., top-down) or extreme

focal lengths. More diverse training data may address these

failure cases. Furthremore, we do not model the radial dis-

tortion and thus the reconstructed scene shape can be dis-

torted in cases with severe radial distortion. Studying how

to recover the radial distortion parameters using PCM can

be an interesting future direction.

Conclusion In summary, we presented, to our knowledge,

the first fully data driven method that reconstructs 3D scene

shape from a monocular image. To recover the shift and fo-

cal length for 3D reconstruction, we proposed to use point

cloud networks trained on datasets with known global depth

shifts and focal lengths. This approach showed strong gen-

eralization capabilities and we are under the impression that

it may be helpful for related depth-based tasks. Extensive

experiments demonstrated the effectiveness of our scene

shape reconstruction method and the superior generalizabil-

ity to unseen data.
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