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Abstract

Training deep neural networks requires gradient estima-

tion from data batches to update parameters. Gradients

per parameter are averaged over a set of data and this has

been presumed to be safe for privacy-preserving training

in joint, collaborative, and federated learning applications.

Prior work only showed the possibility of recovering input

data given gradients under very restrictive conditions – a

single input point, or a network with no non-linearities, or

a small 32 ˆ 32 px input batch. Therefore, averaging gra-

dients over larger batches was thought to be safe. In this

work, we introduce GradInversion, using which input images

from a larger batch (8 – 48 images) can also be recovered

for large networks such as ResNets (50 layers), on complex

datasets such as ImageNet (1000 classes, 224ˆ 224 px). We

formulate an optimization task that converts random noise

into natural images, matching gradients while regularizing

image fidelity. We also propose an algorithm for target class

label recovery given gradients. We further propose a group

consistency regularization framework, where multiple agents

starting from different random seeds work together to find

an enhanced reconstruction of the original data batch. We

show that gradients encode a surprisingly large amount of

information, such that all the individual images can be recov-

ered with high fidelity via GradInversion, even for complex

datasets, deep networks, and large batch sizes.

1. Introduction

Sharing weight updates or gradients during training is

the central idea behind collaborative, distributed, and fed-

erated learning of deep networks [1, 22, 24, 25, 28]. In the

basic setting of federated stochastic gradient descent, each

device learns on local data, and shares gradients to update a

global model. Alleviating the need to transmit training data

offers several key advantages. This keeps user data private,

allaying concerns related to user privacy, security, and other

proprietary concerns. Further, this eliminates the need to

store, transfer, and manage possibly large datasets. With this

framework, one can train a model on medical data without

access to any individual’s data [3, 32], or perception model
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Figure 1: We propose (a) GradInversion to recover hidden training

image batches with high fidelity via inverting averaged gradients.

GradInversion formulates (b) an optimization process that trans-

forms noise to input images (Sec. 3.1). It starts with label restora-

tion from the gradient of the fully connected layer (Sec. 3.2), then

optimizes inputs to match target gradients under fidelity regular-

ization (Sec. 3.3) and registration-based group consistency regular-

ization (Sec. 3.4) to improve reconstruction quality. This enables

recovery of 224 ˆ 224 pixel ImageNet samples from ResNet-50

batch gradients, which was previously impossible (please zoom

into examples above. More in Sec. 4).

for autonomous driving without invasive data collection [41].

While this setting might seem safe at first glance, a few

recent works have begun to question the central premise of

federated learning - is it possible for gradients to leak private

information of the training data? Effectively serving as a

“proxy” of the training data, the link between gradients to the

data in fact offers potential for retrieving information: from

revealing the positional distribution of original data [33, 44],

to even enabling pixel-level detailed image reconstruction

from gradients [13, 53, 55]. Despite remarkable progress, in-
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verting an original image through gradient matching remains

a very challenging task – successful reconstruction of images

of high resolution for complex datasets such as ImageNet [9]

has remained elusive for batch sizes larger than one.

Emerging research on network inversion techniques offers

insights into this task. Network inversion enables noise-to-

image conversion via back-propagating gradients on appro-

priate loss functions to the learnable inputs. Initial solutions

were limited to shallow networks and low-resolution syn-

thesis [11, 39], or creating an artistic effect [37]. However,

the field has rapidly evolved, enabling high-fidelity, high-

resolution image synthesis on ImageNet from commonly

trained classifiers, making downstream tasks data-free for

pruning, quantization, continual learning, knowledge trans-

fer, etc. [5, 17, 42, 48]. Among these, DeepInversion [48]

yields state-of-the-art results on image synthesis for Ima-

geNet. It enables the synthesis of realistic data from a vanilla

pretrained ResNet-50 [19] classifier by regularizing feature

distributions through batch normalization (BN) priors.

Building upon DeepInversion [48], we delve into the prob-

lem of batch recovery via gradient inversion. We formulate

the task as the optimization of the input data such that the

gradients on that data match the ones provided by the client,

while ensuring realism of the input data. However, since the

gradient is also a function of the ground-truth label, one of

the main challenges is to identify the ground-truth label for

each data point in the batch. To tackle this, we propose a

one-shot batch label restoration algorithm that uses gradients

from the last fully connected layer.

Our goal is to recover the exact images that the client

possesses. By starting from noisy inputs generated by differ-

ent random seeds, multiple optimization processes are likely

to converge to different minimas. Due to the inherently

spatially-invariant nature of convolutional neural networks

(CNNs), these resulting images share spatial information

but differ in the exact location and arrangement. To allow

for improved convergence towards the ground truth images,

we compute a registered mean image from all candidates

and introduce a group consistency regularization term on

every optimization process to reduce deviation. We find that

the proposed approach and group consistency regularization

provide superior better image recovery compared to prior

optimization approaches [13, 55].

Our non-learning based image recovery method recovers

more specific details of the hidden input data when com-

pared to the state-of-the-art generative adversarial networks

(GAN), such as BigGAN [4]. More importantly, we demon-

strate that a full recovery of individual images of 224 ˆ 224

px resolution with high fidelity and visual details, by invert-

ing gradients of the batch, is now made feasible even up to

batch size of 48 images.

Our main contributions are as follows:

• We introduce GradInversion to recover hidden original

images from random noise via optimization given batch-

averaged gradients.

• We propose a label restoration method to recover ground

truth labels using final fully connected layer gradients.

• We introduce a group consistency regularization term,

based on multi-seed optimization and image registration,

to improve reconstruction quality.

• We demonstrate that a full recovery of detailed individual

images from batch-averaged gradients is now feasible

for deep networks such as ResNet-50.

• We introduce a new Image Identifiability Precision met-

ric to measure the ease of inversion over varying batch

sizes, and identify samples vulnerable to inversion.

2. Related Work

Image synthesis. GANs [16, 23, 36, 38, 50] have delivered

state-of-the-art results for generative image modeling, e.g.,

BigGAN-deep on ImageNet [4]. Training a GAN’s gen-

erator, however, requires access to original data. Multiple

works have also looked into training GANs given only a pre-

trained model [6, 34], but result in images that lack details

or perceptual similarities to original data.

Prior work in security studies image synthesis from a

pretrained single network. The model inversion attack by

Fredrikson et al. [11] optimizes inputs to obtain class images

using gradients from the target model. Follow-up works [20,

45, 47] scale to new threat scenarios, but remain limited to

shallow networks. The Secret Revealer [52] exploits priors

from auxiliary datasets and trains GANs to guide inversion,

scales the attack to modern architectures, but on the datasets

with less diverse samples, e.g., MNIST and face recognition.

Though originally aiming at understanding network prop-

erties, visualization techniques offer another viable option

to generate images from networks. Mahendran et al. [31]

explore inversion, activation maximization, and caricatur-

ization to synthesize “natural pre-images” from a trained

network [30, 31]. Nguyen et al. use global generative priors

to help invert trained networks [39] for images, followed by

Plug & Play [38] that boosts up image diversity and quality

via latent priors. These methods still rely on auxiliary dataset

information, feature embedding, or altered training.

Recent efforts focus on image generation from a pre-

trained network without any auxiliary information. Deep-

Dream [37] by Mordvintsev et al. hints on “dreaming” new

visual features onto images leveraging gradients on inputs,

extendable towards noise-to-image conversion. Saturkar et

al. [42] extended the approach to more realistic images. The

more recent extensions [5, 48] significantly improved state-

of-the-art performance on image synthesis from off-the-shelf

classifiers, without auxiliary information nor additional train-

ing but relying on BN statistics.

Gradient-based inversion. There have been early attempts

16338



to invert gradients in pursuit of proxy information of the

original data, e.g., the existence of certain training sam-

ples [33, 44] or sample properties [21, 44] of the dataset.

These methods primarily focus on very shallow networks.

A more challenging task aims at reconstructing the ex-

act images from gradients. The early attempt by Phong et

al. [26] brought theoretical insights on this task by showing

provable reconstruction feasibility on single neuron or single

layer networks. Wang et al. [46] empirically inverted out

single image representations from gradients of a 4-layer net-

work. Along the same line, Zhu et al. [55] pushed gradient

inversion towards deeper architectures by jointly optimizing

for “pseudo” labels and inputs to match target gradients. The

method leads to accurate reconstruction up to pixel-level,

while remains limited to continuous models (e.g., ones with

sigmoid instead of ReLU) without any strides, and scales up

to low-resolution CIFAR datasets. Zhao et al. [53] extend

the approach with a label restoration step, hence improving

speed of single image reconstruction. The very recent work

by Geiping et al. [13] for the first time pushed the boundary

towards ImageNet-level gradient inversion - it reconstructs

single images from gradients. Despite remarkable progress,

the field struggles on ImageNet for any batch size larger than

one, when gradients get averaged.

3. GradInversion

In this section, we explain GradInversion in detail. We

first frame the problem of input reconstruction from gradi-

ents as an optimization process. Then, we explain our batch

label restoration method, followed by the auxiliary losses

used to ensure realism and group consistency regularization.

3.1. Objective Function

Given a network with weights W and a batch-averaged

gradient ∆W calculated from a ground truth batch with

images x˚ and labels y˚, our optimization solves for

x̂˚ “ argmin
x̂

Lgradpx̂;W,∆Wq ` Rauxpx̂q, (1)

where x̂ P R
KˆCˆHˆW (K,C,H,W being the batch size,

number of color channels, height, width) is a “synthetic” in-

put batch, initialized as random noise and optimized towards

the ground truth x˚. Lgradp¨q enforces matching of the gradi-

ents of this synthetic data (on the original loss for a network

with weights W) with the provided gradients ∆W. This

is augmented by auxiliary regularization Rauxp¨q based on

image fidelity and group consistency regularization,

Rauxpx̂q “ Rfidelitypx̂q ` Rgrouppx̂q. (2)

We next elaborate on each term individually. For gradient

matching, we minimize the `2 distances between gradients

on the synthesized images x̂ and the ground truth gradient:

Lgradpx̂;W,∆Wq “ ↵G

∞

l ||rWplqLpx̂, ŷq ´ ∆Wplq||2, (3)

where ∆Wplq “ rWplqLpx˚,y˚q refers to ground truth

gradient at layer l, and the summation, scaled by ↵G, runs

over all layers. One key yet missing component here is the

ŷ that initiates the backpropagation. We next explain an

effective algorithm for restoring batch-wise label from the

gradients of the fully connected classification layer.

3.2. Batch Label Restoration

Considering the cross-entropy loss for the classification

task, the ground truth gradient of x˚ “ rx1, x2, ..., xKs of

batch size K can be decomposed into:

rWLpx˚,y˚q “
1

K

ÿ

k

rWLpxk, ykq, (4)

where xk, yk denotes an original image/label pair. For each

image xk, the gradient w.r.t. the network final logits z at

index n is rzn,k
Lpxk, ykq “ pk,n ´ yk,n, where pk,n is

the post-softmax probability in range (0, 1), and yk,n is the

binary presentation of yk at index n among N total classes.

Consequentially, this leaves sign
`

rzn,k
Lpxk, ykq

˘

negative

iff n “ n˚
k at the ground truth index, and positive other-

wise. However, we do not have access to rzn,k
Lpxk, ykq as

gradients are only given w.r.t. the model parameters.

Denote the parameters of the final fully connected classi-

fication layer by W(FC) P R
MˆN with M being the number

of embedded features, and N being the number of target

classes. Define ∆W
(FC)
m,n,k :“ rwm,n

Lpxk, ykq as the gradi-

ent of the training loss for image xk w.r.t. W(FC)
m,n, connecting

feature m to logits n. We are only given the average of

the tensor ∆W(FC) along the batch dimension k. Using the

chain rule we have:

∆W
(FC)
m,n,k “ rzn,k

Lpxk, ykq ˆ
Bzn,k

Bwm,n

. (5)

Note that
Bzn,k

Bwm,n
“ om,k where om,k is the mth input of the

fully connected layer, and is also the mth output of previous

layer. If the previous layer has commonly used activation

functions such as ReLU or sigmoid, om,k is always non-

negative. This hints on target label existence via signs of a

new informative indicator:

Sn,k :“
ÿ

m

∆W
(FC)
m,n,k “

ÿ

m

rzn,k
Lpxk, ykq

loooooooomoooooooon

neg. iff n = n
˚
k

ˆ om,k
loomoon

non-neg.

,

(6)

where S “ tSn,ku is an N ˆ K-matrix, constructed by

summing the tensor ∆W(FC) along the feature dimension

m. Interestingly, S contains negative values for the ground

truth label of each instance. Thus, the kth column of S

can be used to restore the ground truth label for the kth

image by simply identifying the index of the negative entry.

Zhao et al. [53] explored this rule for single image label

restoration. However, we do not have access to S in our
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multi-sample batch setup as the given gradients are averaged

over all images.

Motivated by this, we define the N -dimensional batch-

level vector s “ tsnu by averaging S along its columns:

sn :“
1

K

ÿ

k

Sn,k “
ÿ

m

` 1

K

ÿ

k

∆W
(FC)
m,n,k

loooooooomoooooooon

given in ∆W(FC)

˘

.
(7)

The appealing property of s is that it can be computed easily

from the given gradient for the fully connected layer by

summing it along the feature dimension m as shown on the

right hand side of Eqn. 7.

As noted above, each column in S is a vector, contain-

ing a single negative peak at the label index and positive

otherwise. Since the vector s is a linear super-position of

S’s columns, from all individual images xk’s in the batch,

this information can be lost during summation. However,

we empirically observe that the encoded positions often pos-

sess larger magnitudes |Sn˚
k
,k| " |Sn‰n˚

k
,k|. This leaves a

negative sign mostly intact when the summation brings in

positive values from other images.

To further enable a more robust propagation of negative

signs, we utilize column-wise minimum values, instead of

summation along the feature dimension for the s calculation:

to have a sum along the feature dimension be negative, at

least one of its positions has to be negative, but not vice

versa. This further boosts up the label restoration accuracy,

especially when the batch size is large. Thus, we formulate

the final label restoration algorithm for batch size K as:

ŷ “ arg sort
`

min
m

r
W

(FC)
m,n

Lpx˚,y˚q
˘

r: Ks, (8)

with m corresponding to the feature embedding dimension

before the fully connected layer. The resulting ŷ supports

Eqn. 3 in subsequent x̂ optimization in pursuit for x˚. One

limitation of the proposed method is that it assumes non-

repeating labels in the batch, which generally holds for a

randomly sampled batch of size K that is much smaller than

the number of classes at 1000 for ImageNet.

Even with correct y˚, finding the global minima for

Lgradp¨q remains challenging. The task is under-constrained,

suffers from information loss due to non-linearity and pool-

ing layers, and has only one correct solution [13, 55]. We

next introduce Rauxp¨q based on fidelity and group consis-

tency regularization to assist with this optimization.

3.3. Fidelity (Realism) Regularization

We use the strong prior proposed in DeepInversion [48] to

guide the optimization towards natural images. Specifically,

we add Rfidelityp¨q to the loss function to steer x̂ away from

unrealistic images with no discernible visual information:

Rfidelitypx̂q “ ↵tvRTVpx̂q`↵`2R`2px̂q`↵BNRBNpx̂q, (9)

original results of independent optimization processes

Figure 2: Reconstruction variation in single-path optimization,

focusing on one target from a batch of size 8. Optimizations follow

the exact same loss hyperparameters, given only varying random

seeds for pixel-wise initialization of x̂.

where RTV and R`2 denote standard image priors [30, 37,

40] that penalize the total variance and `2 norm of x̂, resp.,

with scaling factors ↵tv, ↵`2 . The key insight of DeepInver-

sion resides in exploiting a strong prior in BN statistics:

RBNpx̂q “
ÿ

l

|| µlpx̂q ´ BNlpmeanq||2`

ÿ

l

|| �2

l px̂q ´ BNlpvarianceq||2,
(10)

where µlpx̂q and �2

l px̂q are the batch-wise mean and variance

estimates of feature maps corresponding to the lth convolu-

tional layer. By enforcing valid intermediate distributions

at all levels, Rfidelityp¨q yields convergence towards realistic-

looking solutions.

3.4. Group Consistency Regularization

An additional challenge of gradient-based inversion lies

in the exact localization of the target object, due to transla-

tional invariance of CNNs. Unlike an ideal scenario where

optimization converges to one ground truth, we observe that

when repeating the optimization with different seeds, e.g., as

in Fig. 2, each optimization process unveils a local minimum

that allocates semantically correct image features at all levels,

but differs from others – images shift around the ground truth,

focusing on slightly different details. During the forward

pass, the existence of pooling layers, strided convolutions,

and zero-padding, jointly causes spatial equivariance among

the restored images, as also observed by Geiping et al. [13].

A combination of the restored images from varying seeds,

however, hints at the potential for a better restoration of the

final image closer to the ground truth.

We introduce a group consistency regularization term that

exploits multiple seeds simultaneously in a joint optimization

manner, as shown in Fig 3. Intuitively, a joint exploration

with multiple paths can expand and enlarge the search space

during gradient descent. However, we have to regularize

them to prevent too much divergence, at least in the final

stages, given the search for a single target. We optimize

each input using the target Eqn. 1. To facilitate information

exchange, we regularize all the inputs simultaneously with a

new group consistency regularization term:

Rgrouppx̂, x̂gPGq “ ↵group||x̂ ´ Epx̂gPGq||2, (11)

that jointly considers all the image candidates across all the
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Figure 3: Overview of group consistency regularization.

seeds, and penalizes any candidate x̂g once it deviates away

from the “consensus” image Epx̂gPGq of the group.

One quick and intuitive option for Epx̂gPGq is pixel-wise

averaging. Though “lazy” as it seems, pixel-wise mean

already leads to visual improvements by mixing the infor-

mation and feedback from all seeds in the group, as we will

show later. To further explore the underlying transformations

across seeds and create better consensus, we add in image

registration to improve Epx̂gPGq:

Epx̂gPGq “
1

|G|

ÿ

g

F
x̂gÑ 1

|G|

∞

g

x̂g
px̂gq. (12)

This leads to our final group consistency regularization

shown in Fig. 3. We (i) first compute the pixel-wise mean

within the candidate set of size |G| as a coarse registration

target, (ii) register each individual image towards the tar-

get via Fp¨q, and (iii) obtain the post-registered mean as

the target for regularization. We use RANSAC-flow [43]

for Fp¨q. As we will show later, group consistency regular-

ization enables consistent improvements in recovery across

various evaluation metrics, further closing the gap between

reconstructed and original batches.

3.5. The Final Update

Using all the above losses, we update the input in an

iterative manner. To further encourage exploration and di-

versity, we add pixel-wise random Gaussian noise in each

update, inspired by the Langevin updates in energy-based

models [10, 12, 15]. Our final optimization steps are:

∆x̂ptq Ð rx̂

`

Lgradpx̂pt´1q,rWq ` Rauxpx̂pt´1qq
˘

⌘ Ð N p0, Iq

x̂ptq
Ð x̂pt´1q ` �ptq∆x̂ptq ` �ptq↵n⌘

where ∆x̂ptq corresponds to an optimizer update, ⌘ denotes

randomly sampled noise to encourage exploration, �ptq is

the learning rate, and ↵n re-scales the finally added noise.

4. Experiments

We evaluate our method for the classification task on the

large-scale 1000-class ImageNet ILSVRC 2012 dataset [9] at

224 ˆ 224 pixels. We first perform a number of ablations to

evaluate the contribution of each component of our method.

Then, we show the success of GradInversion and compare

with prior art. Finally, we increase the batch size to explore

the limits of gradient inversion.

Implementation details. In all cases, image pixels are ini-

tialized i.i.d. from Gaussian noise of µ “ 0 and � “ 1. We

primarily focus on the ResNet-50 architecture for the clas-

sification task, pre-trained with MOCO V2 and fine-tuned

only the classification layer, achieving 71.0% top-1 accuracy

on ImageNet1. We observe that stronger feature extraction

leads to better restoration as compared to the default pre-

trained PyTorch model, and shallower network architectures

(ResNet-18). We use Adam for optimization with a 0.1 learn-

ing rate with cosine learning rate decay, and 50 iterations as

warm up. We use ↵tv “ 1 ¨ 10´4,↵`2 “ 1 ¨ 10´6,↵BN “
0.1,↵G “ 0.001,↵group “ 0.01,↵n “ 0.2 as loss scaling

constants. For feature distribution regularization, we primar-

ily focus on the case when BN statistics of the target batch is

jointly provided with the gradients as commonly required in

distributed learning for global BN updates [29, 49, 54]. We

also analyze regularization towards network BN means and

variances - averaged over dataset, they offer proxy for single

batch statistics. We synthesize image batches of resolution

224ˆ 224 using NVIDIA V100 GPUs and automatic-mixed

precision (AMP) [35] acceleration. Optimization of each

batch consumes 20K optimization iterations.

Evaluation metrics. We present visual comparisons of im-

ages obtained under different settings and evaluate three

quantitative metrics for image similarity. To account for

pixel-wise mismatch, we compute: (i) the cosine similarity

in FFT2D frequency response, (ii) post-registration PSNR,

and (iii) LPIPS perceptual similarity score [51] between

reconstruction and original images.

4.1. Ablation Studies

4.1.1 Label restoration

We first restore labels from the gradients of the fully con-

nected layer. Table 1 summarizes the averaged label restora-

tion accuracy on ImageNet training and validation sets, given

10K randomly drawn samples divided into varying batch

sizes. In a zero-shot method, GradInversion restores original

labels accurately, improving upon prior art [53].

4.1.2 Batch reconstruction

We next gradually add each proposed loss to the optimization

process. Here we focus on a batch of 8 images for algorithm

ablations before expanding towards a larger batch size. We

summarize results in Table 5 and discuss insights next:

Adding Lgrad. We find `2 loss outperforms cosine similar-

ity [13] for gradient matching - see Appendix for details.

1Based on https://github.com/facebookresearch/moco.

MOCO V2 (Chen et al. [8]) enhances MOCO (He et al. [18]) with SimCLR

(Chen et al. [7]) and reports ImageNet top-1 accuracy at 71.1% [8].
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Batch
Label Restoration Accuracy (%)

Training Set Validation Set

size [53]: ours [53]: ours

1 100.0 100.0 100.0 100.0

8 95.89 99.56 96.08 99.47

32 89.88 99.29 90.32 99.19

64 84.51 98.79 82.27 98.21

96 80.53 97.88 82.13 98.11

Table 1: Average restoration accuracy over 10K random samples

of different batch size from the ImageNet training/validation sets

without label repeats. :: the original method [53] only works for

single image - we extend it by adopting its sum rule for Eqn. 7 and

then show improvements.

Obj. Function Lgradpx̂˚;rWq
Distance to Original Images

FFT2D Ó PSNR Ò LPIPS Ó

N p0, Iq 8.625 0.706 9.964 1.351

Lgrad 4.190 0.404 10.753 0.919

+ Rfidelity 3.206 0.279 12.058 0.655

+ Rgroup.lazy 2.918 0.233 12.261 0.578

+ Rgroup.reg 2.685 0.175 12.929 0.484

x˚ Lgrad `Rfidelity `Rgroup.lazy `Rgroup.reg

Table 2: Ablation study when each proposed loss to optimization

objective function - quantitative (up) and qualitative (bottom) com-

parison. Original batch contains 8 samples - we show 4 samples

visually here amid space limit, see Appendix for entire batch.

Model
Distance to Original Images

FFT2D Ó PSNR Ò LPIPS Ó

ResNet-50 (MOCO V2) 0.175 12.929 0.484

ResNet-50 (standard) 0.204 11.771 0.584

ResNet-18 (standard) 0.218 10.729 0.693

Table 3: Reconstruction under varying feature extraction strength.

Reconstructed images remain noisy. Partial original features

emerge, but leak among images within the batch.

Adding Rfidelity. Adding fidelity regularization immediately

improves image quality. Conditioned on image prior, gradi-

ent inversion starts to allocate visual details towards individ-

ual images, enabling both visual and quantitative improve-

ments in Table 5.

Adding Rgroup. Group consistency regularization further

improves reconstruction. For this analysis, we use 8 random

seeds, each determining a Gaussian initialization of inputs

and the associated pixel-wise perturbations. All seeds are

jointly optimized, compatible with standard multi-node train-

ing pipeline that supports synchronization only for Epx̂gPGq
computation. For better insights, we next compare the choice

of (i) “lazy” pixel-wise mean, and (ii) registration-augmented

mean as the regularization target.

a) Lazy regularization. We observe “lazy” pixel-wise mean

as regularization target already brings in performance im-

provements. Though not yet accommodating for inter-seed

variation, pixel-wise mean hints on correct “perceived” posi-

tions of the target objects. Objects start to emerge at correct

positions with improved orientations.

b) Registration enhancement. We then add in registration

to exploit consensus among candidates. We start registration

after 5K initial optimization iterations to allow for sufficient

feature emergence, then iterate every 100 iterations. Ideally,

each candidate shall be registered to its original image for the

best spatial adjustment. While given no such access, regis-

tration to pixel-wise mean turns out to be effective. The final

registration-based regularization helps close the remaining

gap - it improves all evaluation metrics in Table 5. At this

stage, GradInversion accurately allocates detailed original

contents to individual images, from averaged gradients.

Inverting different networks. We observe that gradients

from a stronger feature extractor leak more information - see

a quick comparison in Table 3. Self-supervised pretraining

of ResNet-50 leads to the best image reconstruction, when

compared to a standard training recipe of the same ResNet-

50 architecture, and a weaker ResNet-18. We continue our

analysis with ResNet-50 MOCO V2 to study the limits of

batch reconstruction under gradient inversion.

4.2. Comparison with the state-of-the-art

We next compare with prior art on the batch size of 8

images with 224x224px. We summarize both qualitative

(Fig. 4) and quantitative results (Table 4). We compare with

three viable methods for image synthesis:

(i) Gradient inversion [13, 55]: We first compare with prior

model inversion methods for gradient matching: (i) deep

gradient leakage method by Zhu et al. [55] and (ii) federated

gradient inversion by Geiping et al. [13]. We first extend both

techniques towards ImageNet batch restoration following

the authors’ public open-sourced repository [14, 56]. For

an additional fair comparison, we also compare with both

methods at batch size one in Fig. 5, and show notable fidelity

and localization improvements.

(ii) DeepInversion [48]: We also analyze performance im-

provements over the baseline DeepInversion method that

synthesizes images conditioned on ground-truth labels.

(iii) GAN latent space projection [23]: We finally compare

with the GAN-based latent code optimization method. We

applied latent code projection as in StyleGAN2 [23] for

BigGAN-deep generator [4] at resolution 256 ˆ 256. Given

no access to original images for projection loss [23], we

16342



Original batch - ground truth

GradInversion (Ours) - LPIPS Ó: 0.484

Latent Projection (Karras et al. CVPR’20 [23]) of BigGAN-deep (Brock et al. ICLR’19 [4]) for Gradient Matching - LPIPS Ó: 0.732

DeepInversion (Yin et al. CVPR’20 [48]) - LPIPS Ó: 0.728

Inverting Gradients (Geiping et al. NeurIPS’20 [13]) - LPIPS Ó: 0.749

Deep Gradient Leakage (Zhu et al. NeurIPS’19 [55]) - LPIPS Ó: 1.319

Figure 4: ImageNet batch gradient inversion for ResNet-50 visual comparison with state-of-the-art methods. GradInversion labels rearranged

in ascending order to match ground truth after label restoration at 100% accuracy. Best viewed in color.

base the target loss on `2 distances between synthesized and

ground truth gradients.

GradInversion outperforms prior art both visually (Fig. 4)

and numerically (Table 4). Without label restoration, a joint

optimizing to seek for image-label pairs [55] struggles to

converge on ImageNet, as also observed by [13] even at

batch size one. Total variation prior and magnitude-invariant

loss as in [13] help improve reconstruction, but remain too

weak to guide optimization towards ground truth. The Deep-

Inversion [48] baseline improves image fidelity as expected,

but inverts images with little observable links to the orig-

inal batch. Projection onto BigGAN’s latent space offers

a balance between image fidelity and restored details, but

falls short under a weaker guidance from original gradients

rather than original images, as projection to latent space is

NP-hard [27] and misses visual details [23].

4.3. Effect of scaling up the batch size

We next increase the batch size. Our current analysis

scales up to batch size 48 using a 32GB NVIDIA V100

GPU. As shown in Fig. 6, the amount of recoverable image

content gradually decreases as batch size increases. As ex-

pected, more averaging of gradient information in a batch

better protects privacy of an individual image. Surprisingly,

GradInversion still unveils a decent amount of original vi-

sual information at batch size 48, and sometimes a viable

complete reconstruction, as shown in Fig. 7.

Image Identifiablity Precision (IIP). We formulate a new

score that measures the amount of “image-specific” features

revealed by gradient inversion. Intuitively, this measures
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Method
Requirements Distance to Original Images

y˚ GAN FFT2D Ó PSNR Ò LPIPS Ó

Noise N p0, Iq (starting point) - - 0.706 9.964 1.351

Latent projection (Karras et al. CVPR’20 [23]) of BigGAN-deep (Brock et al. ICLR’19 [4]) X X 0.275 10.149 0.722

DeepInversion (Yin et al. CVPR’20 [48]) X - 0.238 10.131 0.728

Inverting Gradients (Geiping et al. NeurIPS’20 [13]) X - 0.355 11.703 0.749

Deep Gradient Leakage (Zhu et al. NeurIPS’19 [55]) - - 0.602 10.252 1.319

GradInversion - BNapprox. (ours) - - 0.232 11.235 0.633

GradInversion - BNexact (ours) - - 0.175 12.929 0.484

Table 4: Comparison of GradInversion with state-of-the-art methods for ResNet-50 gradient inversion on ImageNet1K. BNapprox. denotes

regularizing towards BN statistics in the network learnt from the original dataset; BNexact denotes the BN statistics of target batch shared (or

leaked) in distributed setup for global BN updates, e.g., Synchronized Batch Normalization [49].

Original Zhu et al. [55] Geiping et al. [13]

(d) Ours - BNapprox. (e) Ours - BNexact

Figure 5: Comparison with prior art on ResNet-50 (ImageNet) gra-

dient inversion at batch size 1 for a “challenging” sample from [13].

Original
batch size 4 batch size 16 batch size 48

Restored

Figure 6: Reduced amount of restored original visual features as

batch size increases.

how easy it is to identify a particular image, given only

its reconstruction, among all its similar peers in the origi-

nal dataset. Quantifiably, we calculate the fraction of exact

matches between an original image and the nearest neigh-

bor to its reconstruction. The resulting metric, referred to

as Image Identifiability Precision (IIP), evaluates gradient

inversion strength across varying batch sizes. Fig. 8 plots

the IIP curve for GradInversion. As expected, reconstruc-

tion efficacy gradually decreases as batch size increases, as

also seen in Fig. 6. We make a surprising observation that

many samples („ 28%) can be correctly identified even after

averaging gradient from 48 images.

The Vulnerable Population. We empirically observe a pos-

itive correlation between reconstruction efficacy and gradient

magnitude. Delving deeper into this observation, we identify

a new set of images that are more “vulnerable” to leak infor-

mation under GradInversion. To this end, we identify one

image per ImageNet class category whose gradient `2 norm

is the largest within that class folder. When compared to

random images in Fig. 8, batches sampled from such “vulner-

able population” increases the IIP by large margins, nearly

doubled at batch size 48. This advocates for careful attention

(a) details restored

(b) semantics restored

(c) no visual information

Figure 7: Varying level of information leakage at batch size 48

on ImageNet validation set. Each block containing a pair of (left)

original sample and its (right) reconstruction by GradInversion.

Figure 8: The Image Indentifiability Precision (IIP) curve of Grad-

Inversion on ImageNet validation set, as a function of increasing

batch size. Each point averaged per 256 randomly selected samples

of varying batch sizes (240 samples for batch size 48). Nearest

neighbors measured in avgpool feature space cosine similarity.

to such vulnerable samples before gradient sharing.

Conclusions

We introduced GradInversion to reconstruct individual

images in a batch, given averaged gradients. We showed that

the assumption of privacy when sharing gradients from deep

networks on complex datasets even at large batch sizes, does

not hold. This offers new insights into the development of

privacy-preserving deep learning frameworks.

It can also be fruitful to study the underlying mechanism

of information transfer that enables original data recovery

from gradients. We hope that future work can study vulnera-

bilities of aggregration-based federated learning [2], as well

as further strengthen them to prevent inversion.
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