
Towards Efficient Tensor Decomposition-Based DNN Model Compression with

Optimization Framework

Miao Yin1, Yang Sui1, Siyu Liao2: and Bo Yuan1

1Department of ECE, Rutgers University, 2Amazon

{miao.yin, yang.sui}@rutgers.edu, liasiyu@amazon.com, bo.yuan@soe.rutgers.edu

Abstract

Advanced tensor decomposition, such as tensor train

(TT) and tensor ring (TR), has been widely studied for deep

neural network (DNN) model compression, especially for

recurrent neural networks (RNNs). However, compressing

convolutional neural networks (CNNs) using TT/TR always

suffers significant accuracy loss. In this paper, we propose

a systematic framework for tensor decomposition-based

model compression using Alternating Direction Method of

Multipliers (ADMM). By formulating TT decomposition-

based model compression to an optimization problem with

constraints on tensor ranks, we leverage ADMM technique

to systemically solve this optimization problem in an itera-

tive way. During this procedure, the entire DNN model is

trained in the original structure instead of TT format, but

gradually enjoys the desired low tensor rank characteris-

tics. We then decompose this uncompressed model to TT

format, and fine-tune it to finally obtain a high-accuracy TT-

format DNN model. Our framework is very general, and it

works for both CNNs and RNNs, and can be easily modified

to fit other tensor decomposition approaches. We evaluate

our proposed framework on different DNN models for image

classification and video recognition tasks. Experimental re-

sults show that our ADMM-based TT-format models demon-

strate very high compression performance with high accu-

racy. Notably, on CIFAR-100, with 2.3ˆ and 2.4ˆ com-

pression ratios, our models have 1.96% and 2.21% higher

top-1 accuracy than the original ResNet-20 and ResNet-32,

respectively. For compressing ResNet-18 on ImageNet, our

model achieves 2.47ˆ FLOPs reduction without accuracy

loss.

1. Introduction

Deep Neural Network (DNNs) have already obtained

widespread applications in many computer vision tasks,

such as image classification [19, 28], video recognition

:This work was done when the author was with Rutgers University.

[10, 2], objective detection [13, 41], and image caption

[45, 9]. Despite these unprecedented success and popular-

ity, executing DNNs on the edge devices is still very chal-

lenging. For most embedded and Internet-of-Things (IoT)

systems, the sizes of many state-of-the-art DNN models are

too large, thereby causing high storage and computational

demands and severely hindering the practical deployment

of DNNs. To mitigate this problem, to date many model

compression approaches, such as pruning [16, 17, 35, 50]

and quantization [17, 47, 40], have been proposed to reduce

the sizes of DNN models with limited impact on accuracy.

Tensor Decomposition for Model Compression. Re-

cently, tensor decomposition, as a mathematical tool that

explores the low tensor rank characteristics of the large-

scale tensor data, have become a very attractive DNN model

compression technique. Different from other model com-

pression methods, tensor decomposition, uniquely, can pro-

vide ultra-high compression ratio, especially for recurrent

neural network (RNN) models. As reported in [48, 38],

the advanced tensor decomposition approaches, such as ten-

sor train (TT) and tensor ring (TR), can bring more than

1,000ˆ parameter reduction to the input-to-hidden layers

of RNN models, and meanwhile the corresponding clas-

sification accuracy in the video recognition task can be

even significantly improved. Motivated by such strong

compression performance, many prior research works have

been conducted on tensor decomposition-based DNN mod-

els [12, 37, 43]. In addition, to fully utilize the benefits pro-

vided by those models, several TT-format DNN hardware

accelerators have been developed and implemented in dif-

ferent chip formats, such as digital CMOS ASIC [7], mem-

ristor ASIC [23] and IoT board [4].

Limitations of the State of the Art. Despite its promis-

ing potentials, the performance of tensor decomposition is

not satisfied enough as a mature model compression ap-

proach. Currently all the reported success of tensor decom-

position are narrowly limited to compressing RNN mod-

els in video recognition tasks. For compressing convo-

lutional neural network (CNN) in the image classification

task, which are the most commonly used and representa-

10674

tive setting for evaluating model compression performance,

all the state-of-the-art tensor decomposition approaches, in-

cluding TT and TR, suffer very significant accuracy loss.

For instance, even the very recent progress [32] using TR

still has 1.0% accuracy loss when the compression ratio is

only 2.7ˆ for ResNet-32 model on CIFAR-10 dataset. For

the larger compression ratio as 5.8ˆ, the accuracy loss fur-

ther increases to 1.9% .

Why Limited Performance? The above limitation of

tensor decomposition is mainly due to the unique challenges

involved in training the tensor decomposed DNN models.

In general, there are two ways to use tensor decomposition

to obtain a compressed model: 1) Train from scratch in the

decomposed format; and 2) Decompose a pre-trained un-

compressed model and then retrain. In the former case,

when the required tensor decomposition-based, e.g. TT-

format model, is directly trained from scratch, because the

structure of the models are already pre-set to low tensor

rank format before the training, the corresponding model

capacity is typically limited as compared to the full-rank

structure, thereby causing the training process being very

sensitive to initialization and more challenging to achieve

high accuracy. In the later scenario, though the pre-trained

uncompressed model provides good initialization position,

the straightforwardly decomposing full-rank uncompressed

model into low tensor rank format causes inevitable and

non-negligible approximation error, which is still very diffi-

cult to be recovered even after long-time re-training period.

Besides, no matter which training strategy is adopted, ten-

sor decomposition always brings linear increase in network

depth, which implies training the tensor decomposition-

format DNNs are typically more prone to gradient vanishing

problem and hence being difficult to be trained well.

Technical Preview and Contributions. To overcome

the current limitations of tensor decomposition and fully

unlock its potentials for model compression, in this pa-

per we propose a systematic framework for tensor decom-

position-based model compression using alternating direc-

tion method of multipliers (ADMM). By formulating TT

decomposition-based model compression to an optimiza-

tion problem with constraints on tensor ranks, we leverage

ADMM technique [1] to systemically solve this optimiza-

tion problem in an iterative way. During this procedure

the entire DNN model is trained in the original structure

instead of TT format, but gradually enjoys the desired low

tensor rank characteristics. We then decompose this uncom-

pressed model to TT format, and fine-tune it to finally ob-

tain a high-accuracy TT-format DNN model. In overall, the

contributions of this paper are summarized as follows:

• We propose a systematic framework to formulate and

solve the tensor decomposition-based model compres-

sion problem. With formulating this problem to a con-

strained non-convex optimization problem, our frame-

work gradually restricts the DNN model to the target

tensor ranks without explicitly training on the TT for-

mat, thereby maintaining the model capacity as well as

avoiding huge approximation error and increased net-

work depth.

• We propose to use ADMM to efficiently solve this re-

formulated optimization problem via separately solv-

ing two sub-problems: one is to directly optimize the

loss function with a regularization of the DNN by

stochastic gradient descent, and the other is to use the

introduced projection to constraint the tensor ranks an-

alytically.

• We evaluate our proposed framework on different

DNN models for image classification and video recog-

nition tasks. Experimental results show that our

ADMM-based TT-format models demonstrate very

high compression performance with high accuracy.

Notably, on CIFAR-100, with 2.3ˆ and 2.4ˆ com-

pression ratios, our models have 1.96% and 2.21%

higher top-1 accuracy than the original ResNet-20 and

ResNet-32, respectively. For compressing ResNet-18

on ImageNet, our model achieves 2.47ˆ FLOPs reduc-

tion with no accuracy loss.

2. Related Work on DNN Model Compression

Sparsification. Sparsification is the most popular DNN

compression approach. Different levels of network struc-

ture can be sparse, such as weight [16, 17], filter [35, 20]

and channel [22, 52]. To obtain the sparsity, a DNN model

can be either pruned [16, 35] or trained with sparsity-aware

regularization [33, 51]. Also, the introduced sparsity can be

either structured or unstructured. Unstructured sparse mod-

els [16, 50] enjoy high accuracy and compression ratio, but

brings irregular memory access and imbalanced workload

problems [15] to the underlying hardware platform. Struc-

tured sparse models [44] are more hardware friendly; how-

ever, their compression ratio and accuracy are typically in-

ferior to the unstructured counterparts.

Quantization. Quantization [40, 16, 47] is another

widely adopt model compression approach. By reduc-

ing the number of bits for weight representation, quanti-

zation enables immediate reduction in DNN model size.

The most aggressive quantization scheme brings binary net-

works [40, 6], which only use 1-bit weight parameters.

Quantization is inherently hardware friendly, and have be-

come a standard adopted model compression method for

most DNN hardware accelerators [15, 3, 25]. However,

quantization is limited by the maximum compression ratio

that can be offered (up to 32ˆ).

Tensor Decomposition. Rooted in tensor theory, ten-

sor decomposition approach factorizes weight tensors into

10675

smaller tensors to reduce model sizes. In [24], matrix-

oriented singular value decomposition (SVD), as the low-

dimensional instance of tensor decomposition, is used to

perform model compression. However, using this method,

or other classical high-dimensional tensor decomposition

methods, such as Tucker [42] and CP decomposition [18],

causes significant accuracy loss (ą 0.5%) with limited com-

pression ratios [26, 30, 14, 39]. Starting from [12], ad-

vanced tensor decomposition approaches, such as tensor

train (TT) and tensor ring (TR) decomposition, have be-

come the more popular options. These methods have very

attractive advantages – the compression ratio can be very

high (e.g. ą 1,000ˆ) because of their unique mathe-

matical property. Such benefits have been demonstrated

on RNN compression in video recognition tasks. As re-

ported in [48, 38], 17,560ˆ to 34,203ˆ compression ra-

tios can be achieved by using TT or TR decomposition on

the input-to-hidden layer of RNN models for video recog-

nition. However, TT and TR approaches do not perform

well on CNN models. For instance, even the very recent

progress [43, 32] still suffers 1.0% accuracy loss with 2.7ˆ
compression ratio, or even 1.9% accuracy loss with 5.8ˆ
compression ratio, both for ResNet-32 model on CIFAR-

10 dataset. From the perspective of practical deployment,

such non-negligible accuracy degradation severely hinders

the widespread adoption of tensor decomposition for many

CNN-involved model compression scenarios.

3. Background and Preliminaries

3.1. Notation

X P R
n1ˆn2ˆ¨¨¨ˆnd , X P R

n1ˆn2 , and x P R
n1 rep-

resent d-order tensor, matrix and vector, respectively. Also,

X pi1,¨¨¨ ,idq and Xpi,jq denote the single entry of tensor X

and matrix X , respectively.

3.2. Tensor Train (TT) Decomposition

Given a tensor A P R
n1ˆn2ˆ¨¨¨ˆnd , it can be decom-

posed to a sort of 3-order tensors via Tensor Train Decom-

position (TTD) as follows:

Api1,i2,¨¨¨ ,idq “ G1p:,i1,:qG2p:,i2,:q ¨ ¨ ¨Gdp:,id,:q

“
r0,r1,¨¨¨rdÿ

α0,α1¨¨¨αd

G1pα0,i1,α1qG2pα1,i2,α2q ¨ ¨ ¨

Gdpαd´1,id,αdq,

(1)

where Gk P R
rk´1ˆnkˆrk are called TT-cores for k “

1, 2, ¨ ¨ ¨ , d, and r “ rr0, r1, ¨ ¨ ¨ , rds, r0 “ rd “ 1 are

called TT-ranks, which determine the storage complexity of

TT-format tensor. An example is demonstrated in Figure 1.

3.3. Tensor Train (TT)­format DNN

TT Fully-Connected Layer. Consider a simple fully-

connected layer with weight matrix W P R
MˆN and in-

TTD

Figure 1: Illustration of Tensor Train Decomposition (TTD)

for a 4-order tensor. r0 and r4 are always equal to 1.

put x P R
N , where M “

śd

k“1
mk and N “

śd

k“1
nk,

the output y P R
M is obtained by y “ Wx. In order to

transform this standard layer to TT fully-connected (TT-FC)

layer, we first tensorize the weight matrix W to a weight

tensor W P R
pm1ˆn1qˆ¨¨¨ˆpmdˆndq by reshaping and order

transposing. Then W can be decomposed to TT-format:

Wppi1,j1q,¨¨¨ ,pid,jdqq “ G1p:,i1,j1,:q ¨ ¨ ¨Gdp:,id,jd,:q. (2)

Here, each TT-core Gk P R
rk´1ˆmkˆnkˆrk is a 4-order

tensor, which is one dimension more than the standard one

since the output and input dimensions of W are divided

separately. Hence, the forward progagation on the TT-FC

layer can be expressed in tensor format as follows:

Ypi1,¨¨¨ ,idq “
ÿ

j1,¨¨¨ ,jd

G1p:,i1,j1,:q ¨ ¨ ¨Gdp:,id,jd,:qX pj1,¨¨¨ ,jdq,

(3)
where X P R

m1ˆ¨¨¨ˆmd and Y P R
n1ˆ¨¨¨ˆnd are the ten-

sorized input and output corresponding to x and y, respec-

tively. The details about TT-FC layer is introduced in [37].

TT Convolutional Layer. For a conventional convolu-

tional layer, its forward computation is to perform convo-

lution between a 3-order input tensor rX P R
WˆHˆN and

a 4-order weight tensor ĂW P R
KˆKˆMˆN to produce the

3-order output tensor rY P R
pW´K`1qˆpH´K`1qˆM . In

a TT convolutional (TT-CONV) layer, the input tensor rX
is reshaped to a tensor X P R

WˆHˆn1ˆ¨¨¨ˆnd , while the

weight tensor ĂW is reshaped and transposed to a tensor

W P R
pKˆKqˆpm1ˆn1qˆ¨¨¨ˆpmdˆndq and then decomposed

to TT-format:

Wppk1,k2q,pi1,j1q,¨¨¨ ,pid,jdqq “G0pk1,k2qG1p:,i1,j1,:q ¨ ¨ ¨

Gdp:,id,jd,:q,
(4)

where M “
śd

k“1
mk and N “

śd

k“1
nk. Similar with

TT-FC layer, here Gk P R
rk´1ˆmkˆnkˆrk is a 4-order

tensor except G0 P R
KˆK . Then the new output tensor

Y P R
pW´K`1qˆpH´K`1qˆm1ˆ¨¨¨ˆmd is obtained by

Ypw,h,i1,¨¨¨ ,idq “

Kÿ

k1“1

Kÿ

k2“1

ÿ

j1,¨¨¨ ,jd

X pk1`w´1,k2`h´1,j1,¨¨¨ ,jdq

G0pk1,k2qG1p:,i1,j1,:q ¨ ¨ ¨Gdp:,id,jd,:q.

(5)

The detailed description of TT-CONV layer is in [12].

Training on TT-format DNN. As TT-FC layer, TT-

CONV layer and the corresponding forward propagation

schemes are formulated, standard stochastic gradient de-

scent (SGD) algorithm can be used to update the TT-cores

10676

Train ADMM-

Regularized

Uncompressed Model

Fine-Tune TT-Format

Model

Update by

optimizing

subproblem (11)

Update by

optimizing

subproblem (12)

Update by

(13)

Decompose

to TT-cores

Update

by SGD

Uncompressed Model

with Randomly

Initialized

TT-Format Model

with Well

Optimized

Figure 2: Procedure of the proposed compression framework using ADMM for a TT-format DNN model.

with the rank set r, which determines the target compres-

sion ratio. The initialization of the TT-cores can be either

randomly set or obtained from directly TT-decomposing a

pre-trained uncompressed model.

4. Systematic Compression Framework

Analysis on Existing TT-format DNN Training. As

mentioned in the last paragraph, currently a TT-format

DNN is either 1) trained from with randomly initialized

tensor cores; or 2) trained from a direct decomposition of

pre-trained model. For the first strategy, it does not utilize

any information related to the high-accuracy uncompressed

model; while other model compression methods, e.g. prun-

ing and knowledge distillation, have shown that proper uti-

lization of the pre-trained models are very critical for DNN

compression. For the second strategy, though the knowl-

edge of the pre-trained model is indeed utilized, because

the pre-trained model generally lacks low TT-rank property,

after direct low-rank tensor decomposition the approxima-

tion error is too significant to be properly recovered even

using long-time re-training. Such inherent limitations of the

existing training strategies, consequently, cause significant

accuracy loss for the compressed TT-format DNN models.

Our Key Idea. We believe the key to overcome these

limitations is to maximally retain the knowledge contained

in the uncompressed model, or in other words, minimize the

approximation error after tensor decomposition with given

target tensor ranks. To achieve that, we propose to for-

mulate an optimization problem to minimize the loss func-

tion of the uncompressed model with low tensor rank con-

straints. With proper advanced optimization technique (e.g.

ADMM)-regularized training procedure, the uncompressed

DNN models can gradually exhibit low tensor rank proper-

ties. After the ADMM-regularized training phase, the ap-

proximation error brought by the explicit low-rank tensor

decomposition becomes negligible, and can be easily re-

covered by the SGD-based fine-tuning. Figure 2 shows the

main steps of our proposed overall framework.

4.1. Problem Formulation

As mentioned above, the first phase of our framework is

to gradually impose low tensor rank characteristics onto a

high-accuracy uncompressed DNN model. Mathematically,

this goal can be formulated as a optimization problem to

minimize the loss function of the object model with con-

straints on TT-ranks of each layer (convolutional or fully-

connected):
min
W

ℓpWq,

s.t. rankpWq ď r˚,
(6)

where ℓ is the loss function of the DNN , rankp¨q is a

function that returns the TT-ranks r “ rr0, ¨ ¨ ¨ , rds of the

weight tensor cores, and r˚ “ rr˚
0
, ¨ ¨ ¨ , r˚

d s are the de-

sired TT-ranks for the layer. To simplify the notation, here

r ď r˚ means ri ď r˚
i , i “ 0, ¨ ¨ ¨ , d, for each ri in r.

4.2. Optimization Using ADMM

Obviously, solving the problem (6) is generally difficult

via using normal optimization algorithms since rankp¨q is

non-differentiable. To overcome this challenge, we first

rewrite it as

min
W

ℓpWq,

s.t. W P S,
(7)

where S “ tW | rankpWq ď r˚u. Hence, the objective

form (7) is a classic non-convex optimization problem with

constraints, which can be properly solved by ADMM [1].

Specifically, we can first introduce an auxiliary variable Z

and an indicator function gp¨q of S , i.e.

gpWq “

#
0 W P S,

`8 otherwise.
(8)

And then the problem (7) is equivalent to the following

form:
min
W,Z

ℓ pWq ` gpZq,

s.t. W “ Z.
(9)

To ensure convergence without assumptions like strict con-

vexity or finiteness of ℓ, instead of Lagrangian, the corre-

sponding augmented Lagrangian in the scaled dual form of

the above problem is given by

LρpW ,Z,Uq “ℓpWq ` gpZq

`
ρ

2
}W ´ Z ` U}2F `

ρ

2
}U}2F ,

(10)

10677

where U is the dual multiplier, and ρ ą 0 is the penalty

parameter. Thus, the iterative ADMM scheme can be ex-

plicitly performed as

Wt`1 “ argmin
W

Lρ

`
W ,Zt,U t

˘
, (11)

Zt`1 “ argmin
Z

Lρ

`
Wt`1,Z,U t

˘
, (12)

U t`1 “ U t ` Wt`1 ´ Zt`1, (13)

where t is the iterative step. Now, the original problem (9)

is separated to two subproblems (11) and (12), which can

be solved individually. Next, we introduce the detailed so-

lution of each subproblem.

W-subproblem. The W-subproblem (11) can be refor-

mulated as follows:

min
W

ℓpWq `
ρ

2

››W ´ Zt ` U t
››2
F
, (14)

where the first term is the loss function, e.g. cross-entropy

loss in classification tasks, of the DNN model, and the sec-

ond term is the L2 regularization. This subproblem can be

directly solved by SGD since both these two terms are dif-

ferentiable. Correspondingly, the partial derivative of (14)

with respect to W is calculated as

BLρpW ,Zt,U tq

BW
“

BℓpWq

BW
` ρpW ´ Zt ` U tq. (15)

And hence W can be updated by

Wt`1 “ Wt ´ η
BLρpW ,Zt,U tq

BW
, (16)

where η is the learning rate.

Z-subproblem. To solve Z-subproblem (12), we first

explicitly formulate it as follows:

min
Z

gpZq `
ρ

2

››Wt`1 ´ Z ` U t
››2
F
, (17)

where the indicator function gp¨q of the non-convex set S

is non-differentiable. Then, according to [1], in this format

updating Z can be performed as:

Zt`1 “ ΠSpWt`1 ` U tq, (18)

where ΠSp¨q is the projection of singular values onto S , by

which the TT-ranks of pWt`1 `U tq are truncated to target

ranks r˚. Algorithm 1 describes the specific procedure of

this projection in the TT-format scenario.

In each ADMM iteration, upon the update of W and Z ,

the dual multiplier U is updated by (13). In overall, to solve

(9), the entire ADMM-regularized training procedure is per-

formed in an iterative way until convergence or reaching the

pre-set maximum iteration number. The overall procedure

is summarized in Algorithm 2.

4.3. Fine­Tuning

After ADMM-regularized training, we first decompose

the trained uncompressed DNN model into TT format. Here

the decomposition is performed with the target TT-ranks r˚

Algorithm 1 TT-SVD-based Projection for Solving (18)

Input: d-order tensor A P R
n1ˆ¨¨¨ˆnd , target TT-ranks r˚.

Output: Â “ ΠSpAq.

1: Temporary tensor T “ A;

2: for k “ 1 to d ´ 1 do

3: T :“ reshapepT , rr˚
k´1

nk,´1sq;

4: Compute matrix SVD: U ,S,V :“ SVDpT q;

5: U :“ Up1:r˚

k
,:q;

6: S :“ Sp1:r˚

k
,1:r˚

k
q;

7: V :“ Vp:,1:r˚

k
q;

8: Gk :“ reshapepU , rr˚
k´1

, nk, r
˚
k sq;

9: T :“ SV T ;

10: T :“ G1;

11: for k “ 1 to d ´ 1 do

12: T1 :“ reshapepT , r´1, r˚
k sq;

13: T2 :“ reshapepGk`1, rr˚
k ,´1sq;

14: T :“ T1T2;

15: Â “ reshapepT , rn1, ¨ ¨ ¨ , ndsq.

Algorithm 2 ADMM-Regularized Training Procedure

Input: Weight tensor W , target TT-ranks r˚, penalty pa-

rameter ρ, feasibility tolerance ǫ, maximum iterations

T .

Output: Optimized W .

1: Randomly initialize W ;

2: Z :“ W , U :“ 0;

3: while }Wt ´ Zt} ą ǫ and t ď T do

4: Updating W via (16);

5: Updating Z via (17) (Algorithm 1);

6: Updating U via (13);

7: end

for tensor cores. Because the ADMM optimization proce-

dure has already imposed the desired low TT-rank struc-

ture to the uncompressed model, such direction decompo-

sition, unlike their counterpart in the existing TT-format

DNN training, will not bring significant approximation er-

ror (More details will be analyzed in Section 5.1). Then,

the decomposed TT-format model is fine-tuned using stan-

dard SGD. Notice that in the fine-tuning phase the loss func-

tion is ℓptGiuq without other regularization term introduced

by ADMM. Typically this fine-tuning phase is very fast

with requiring only a few iterations. This is because the

decomposed TT model at the starting point of this phase

already has very closed accuracy to the original uncom-

pressed model.

5. Experiments

To demonstrate the effectiveness and generality of the

proposed compression framework, we evaluate different

10678

DNN models in different computer vision tasks. For im-

age classification tasks, we evaluate multiple CNN models

on MNIST, CIFAR-10, CIFAR-100 and ImageNet datasets

[31, 27, 8]. For video classification tasks, we evaluate

different LSTM models on UCF11 and HMDB51 datasets

[34, 29]. We follow the same rank selection scheme adopted

in prior works – set ranks to satisfy the need of the targeted

compression ratio. To simplify selection procedure, most of

the ranks in the same layer are set to equal.

5.1. Convergence and Sensitivity Analysis

As shown in (10), ρ is the additional hyperparameter

introduced in the ADMM-regularized training phase. To

study the effect of ρ on the performance as well as facilitat-

ing hyperparameter selection, we study the convergence and

sensitivity of the ADMM-regularized training for ResNet-

32 model with different ρ settings on CIFAR10 dataset.

Convergence. Figure 3a shows the loss curves in the

ADMM-regularized training phase. It is seen that differ-

ent curves with very different ρ values (e.g. 0.001 vs 0.02),

exhibit very similar convergence speed. This phenomenon

therefore demonstrates that ρ has little impact on the con-

vergence of ADMM-regularized training.

Sensitivity. Considering the similar convergence behav-

ior does not necessarily mean that different ρ would bring

the similar accuracy, we then analyze the performance sen-

sitivity of ADMM-regularized training with respect to ρ.

Notice that ideally after ADMM-regularized training, W ,

though in the uncompressed format, should exhibit strong

low TT-rank characteristics and meanwhile enjoy high ac-

curacy. Once W meets such two criteria simultaneously,

that means TT-cores tGiu, whose initialization is decom-

posed from W , will already have high accuracy even before

fine-tuning.

To examine the required low TT-rank behavior of W , we

observe }W´Z}2F , which measures the similarity between

W and Z , in the ADMM-regularized training (see Figure

3b). Since according to (17) Z is always updated with low

TT-rank constraints, the curves shown in Figure 3b reveal

that W indeed quickly exhibits low TT-rank characteris-

tics during the training, except when ρ “ 0.001. This phe-

nomenon implies that to ensure the weight tensors are well

regularized to the target TT-ranks by ADMM, ρ should not

be too small (e.g. less than 0.001). On the other hand, Fig-

ure 3c shows the test accuracy of W as training progresses.

Here it is seen that smaller ρ tends to bring better perfor-

mance. Based on these observations, ρ “ 0.005 can be an

appropriate choice to let the trained W meet the aforemen-

tioned two criteria.

5.2. Image Classification

MNIST. Table 1 shows the experimental results of

LeNet-5 model [31] on MNIST dataset. We compare our

Model
Comp.

Method

Top-1

(%)

Comp.

Ratio

Uncompressed - 99.21 1.0ˆ
Standard TR[43]

TR

99.10 10.5ˆ
PSTRN-M[32] 99.43 16.5ˆ
PSTRN-S[32] 99.51 6.5ˆ
Standard TT[12]

TT

99.07 17.9ˆ
Ours 99.48 17.9ˆ
Ours 99.51 8.3ˆ

Table 1: LeNet-5 on MNIST dataset using different TT/TR-

format compression approaches.

Model
Comp.

Method

Top-1

(%)

Comp.

Ratio

ResNet-20

Uncompressed - 91.25 1.0ˆ
Standard TR[43, 32]

TR

87.5 5.4ˆ
TR-RL[5] 88.3 6.8ˆ
PSTRN-M[32] 88.50 6.8ˆ
PSTRN-S[32] 90.80 2.5ˆ
Standard TT[12]

TT

86.7 5.4ˆ
Ours 91.03 6.8ˆ
Ours 91.47 4.5ˆ

ResNet-32

Uncompressed - 92.49 1.0ˆ
Standard TR[43]

TR

90.6 5.1ˆ
PSTRN-M[32] 90.6 5.8ˆ
PSTRN-S[32] 91.44 2.7ˆ
Standard TT[12, 43]

TT

88.3 4.8ˆ
Ours 91.96 5.8ˆ
Ours 92.87 4.8ˆ

Table 2: ResNet-20 and ResNet-32 on CIFAR-10 dataset

using different TT/TR-format compression approaches.

ADMM-based TT-format model with the uncompressed

model as well as the state-of-the-art TT/TR-format works.

It is seen that our ADMM-based compression can achieve

the highest compression ratio and the best accuracy.

CIFAR-10. Table 2 compares our ADMM-based TT-

format ResNet-20 and ResNet-32 models with the state-

of-the-art TT/TR-format works on CIFAR-10 dataset. For

ResNet-20, it is seen that standard training on TT/TR-

format models causes severe accuracy loss. Even for the

state-of-the-art design using some advanced techniques,

such as heuristic rank selection (PSTRN-M/S) and rein-

forcement learning (TR-RL), the performance degradation

is still huge, especially with high compression ratio 6.8ˆ.

On the other side, with the same high compression ratio our

ADMM-based TT-format model has only 0.22% accuracy

drop, which means 2.53% higher than the state-of-the-art

PSTRN-M. Furthermore, with moderate compression ratio

4.5ˆ our method can even outperform the uncompressed

10679

(a) Training loss. (b) }W ´ Z}2F . (c) Top-1 test accuracy.

Figure 3: Training loss, Frobenius norm and test accuracy in ADMM-regularized training procedure with different ρ.

Model
Comp.

Method

Top-1

(%)

Comp.

Ratio

ResNet-20

Uncompressed - 65.4 1.0ˆ
Standard TR[43, 32]

TR

63.55 4.7ˆ
PSTRN-M[32] 63.62 4.7ˆ
PSTRN-S[32] 66.13 2.3ˆ
Standard TT[12]

TT

61.64 5.6ˆ
Ours 64.92 5.6ˆ
Ours 67.36 2.3ˆ

ResNet-32

Uncompressed - 68.10 1ˆ
Standard TR[43]

TR

66.70 4.8ˆ
PSTRN-M[32] 66.77 5.2ˆ
PSTRN-S[32] 68.05 2.4ˆ
Standard TT[12, 43]

TT

62.90 4.6ˆ
Ours 67.17 5.2ˆ
Ours 70.31 2.4ˆ

Table 3: ResNet-20 and ResNet-32 on CIFAR-100 dataset

using different TT/TR-format compression approaches.

model with 0.22% accuracy increase.

For ResNet-32, again, standard training on compressed

models using TT or TR decomposition causes huge perfor-

mance degradation. The state-of-the-art PSTRN-S/M in-

deed brings performance improvement, but the test accu-

racy is still not satisfied. Instead, our highly compressed

(5.8ˆ) TT-format model only has 0.53% accuracy loss,

which means it has 1.36% higher accuracy than PSTRN-M

with the same compression ratio. More importantly, when

compression ratio is relaxed to 4.8ˆ, our ADMM-based TT-

format model achieves 92.87%, which is even 0.38% higher

than the uncompressed model.

CIFAR-100. Table 3 shows the experimental results on

CIFAR-100 dataset. Again, our ADMM-based TT-format

model outperforms the state-of-the-art work. For ResNet-

20, with even higher compression ratio (Our 5.6ˆ vs 4.7ˆ
in PSTRN-M), our model achieves 1.3% accuracy increase.

With 2.3ˆ compression ratio, our model achieves 67.36%

Top-1 accuracy, which is even 1.96% higher than the un-

compressed model. For ResNet-32, with the same 5.2ˆ

Model
Comp.

Method

Top-5

(%)
FLOPsÓ

ResNet-18

Uncompressed - 89.08 1.00ˆ
Standard TR[43] TR 86.29 4.28ˆ
TRP[46] Matrix

SVD

86.74 2.60ˆ
TRP+Nu[46] 86.61 3.18ˆ
DACP[52]

Pruning

87.60 1.89ˆ
FBS[11] 88.22 1.98ˆ
FPGM[21] 88.53 1.72ˆ
DSA[36] 88.35 1.72ˆ
Standard TT[12]

TT

85.64 4.62ˆ
Ours 87.47 4.62ˆ
Ours 89.08 2.47ˆ

Table 4: ResNet-18 on ImageNet dataset using compression

approaches. We do not list PSTRN-M/S since [32] does

not report results on ImageNet. Also the listed pruning and

SVD works do not report compression ratios in their pa-

pers. The uncompressed baseline model is from Torchvi-

sion. Note that the reported Top-5 accuracy of [11, 21]

in this table are obtained from pruning the baselines with

higher accuracy.

compression ratio, our approach brings 0.4% accuracy in-

crease over the state-of-the-art PSTRN-M. With the same

2.4ˆ compression ratio, our approach has 2.26% higher ac-

curacy than PSTRN-S. Our model even outperforms the un-

compressed model with 2.21% accuracy increase.

ImageNet. Table 4 shows the results of compressing

ResNet-18 on ImageNet dataset. Because no prior TT/TR

compression works report results on this dataset, we use

standard TT and TR-based training in [43, 12] for compari-

son. We also compare our approach with other compression

methods, including pruning and matrix SVD. Since these

works report FLOPs reduction instead of compression ra-

tio, we also report FLOPs reduction brought by tensor de-

composition. It is seen that with the similar FLOPs reduc-

tion ratio (4.62ˆ), our ADMM-based TT-format model has

1.83% and 1.18% higher accuracy than standard TT and

TR, respectively. Compared with other compression ap-

proaches with non-negligible accuracy loss, our ADMM-

10680

Model
Comp.

Method

Top-1

(%)
Para.

Comp.

Ratio

Uncompressed - 69.7 59M 1.0ˆ
TR-LSTM[38] TR 86.9 1,725 34.2Kˆ
TT-LSTM[48]

TT
79.6 3,360 17.6Kˆ

Ours 89.0 1,656 35.6Kˆ

Table 5: LSTM on UCF11 dataset using different TT/TR-

format compression approaches.

based TT-format models achieve much better accuracy with

more FLOPs reduction. In particular, with 2.47ˆ FLOPs

reduction, our model has the same accuracy as the uncom-

pressed baseline model.

5.3. Video Recognition

UCF11. In this experiment, we use the same uncom-

pressed LSTM model, data pre-processing and experimen-

tal settings adopted in [49, 38]. To be consistent with

[49, 38], only the ultra-large input-to-hidden layer is com-

pressed for fair comparison. Table 5 compares our ADMM-

based TT-format LSTM with the uncompressed model and

the existing TT-LSTM [48] and TR-LSTM [38]. Note that

[32] does not report the performance of PSTRN-M/S on

UCF11 dataset.

From Table 5 , it is seen that both TT-LSTM and TR-

LSTM provide remarkable performance improvement and

excellent compression ratio. As analyzed in [48], such huge

improvement over the uncompressed model mainly comes

from the excellent feature extraction capability of TT/TR-

format LSTM models on the ultra-high-dimensional inputs.

Compared with these existing works, our ADMM-based

TT-format model achieves even better performance. With

fewer parameters, our method brings 2.1% higher top-1 ac-

curacy than the state-of-the-art TR-LSTM.

HMDB51. To be consistent with the setting adopted in

[32, 38], in this experiment we use the same Inception-V3

as the front-end pre-trained CNN model, and the same back-

end uncompressed LSTM model. For fair comparison, we

follow the compression strategy adopted in [32, 38] as only

compressing the ultra-large input-to-hidden layer of LSTM.

Table 6 summarizes the experimental results. It is seen

that comparing with the state-of-the-art TT/TR-format de-

signs, our ADMM-based TT-format model shows excellent

performance. With the highest compression ratio (84.0ˆ),

our model achieves 64.09% top-1 accuracy. Compared

with the state-of-the-art TR-LSTM, our model brings 3.35ˆ
more compression ratio with additional 0.29% accuracy in-

crease.

5.4. Discussion on Tensor Format and Generality

Why Choosing TT-format. Recently several state-

of-the-art tensor decomposition-based compression works

[43, 38, 49] report that TT decomposition is inferior to

Model
Comp.

Method

Top-1

(%)
Para.

Comp.

Ratio

Uncompressed - 62.9 16.8M 1.0ˆ
TR-LSTM[38]

TR

63.8 0.67M 25.0ˆ
PSTRN-M[32] 59.67 0.36M 46.7ˆ
PSTRN-S[32] 60.04 0.48M 34.7ˆ
TT-LSTM[48]

TT
62.24 0.67M 25.0ˆ

Ours 64.09 0.20M 84.0ˆ

Table 6: LSTM on HMDB51 dataset using different

TT/TR-format compression approaches.

other advanced approach (e.g. TR) on DNN compression,

in terms of compression ratio and test accuracy. To fully

demonstrate the excellent effectiveness of our approach, in

this paper we choose TT, the tensor format that is believed

to be not the best for model compression, and adapt the

ADMM-regularized compression framework to TT-format.

As presented in the experimental results, all the ADMM-

based TT-format models consistently outperform the exist-

ing TT/TR-format models with higher accuracy and higher

compression ratio over different datasets, thereby compre-

hensively demonstrating the huge benefits brought by our

proposed framework.

Generality of Our Framework. Although in this pa-

per our focus is to compress TT-format DNN models, be-

cause ADMM is a general optimization technique, our pro-

posed framework is very general and can be easily applied

for model compression using other tensor decomposition

approaches, such as Tensor Ring (TR), Block-term (BT),

Tucker etc. To adapt to other tensor decomposition sce-

nario, the main modification on our proposed framework is

to modify the Euclidean projection (Algorithm 1) to make

the truncating methods being compatible to the correspond-

ing tensor decomposition methods.

6. Conclusion

In this paper, we present a systematic compression

framework for tensor-format DNNs using ADMM. Un-

der the framework, the tensor decomposition-based DNN

model compression is formulated to a nonconvex optimiza-

tion problem with constraints on target tensor ranks. By

performing ADMM to solve this problem, a uncompressed

but low tensor-rank model can be obtained, thereby finally

bringing the decomposed high-accuracy TT-format model.

Extensive experiments for image and video classification

show that our ADMM-based TT-format models consistently

outperform the state-of-the-art works in terms of compres-

sion ratio and test accuracy.

Acknowledgements

This work was partially supported by National Science

Foundation under Grant CCF-1955909.

10681

References

[1] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed opti-

mization and statistical learning via the alternating direction

method of multipliers. Now Publishers Inc, 2011. 2, 4, 5

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017. 1

[3] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A

spatial architecture for energy-efficient dataflow for convo-

lutional neural networks. ACM SIGARCH Computer Archi-

tecture News, 44(3):367–379, 2016. 2

[4] Yuan Cheng, Guangya Li, Ngai Wong, Hai-Bao Chen, and

Hao Yu. Deepeye: A deeply tensor-compressed neural

network hardware accelerator. In 2019 IEEE/ACM Inter-

national Conference on Computer-Aided Design (ICCAD),

pages 1–8. IEEE, 2019. 1

[5] Zhiyu Cheng, Baopu Li, Yanwen Fan, and Yingze Bao. A

novel rank selection scheme in tensor ring decomposition

based on reinforcement learning for deep neural networks.

In ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

3292–3296. IEEE, 2020. 6

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in Neural

Information Processing Systems, pages 3123–3131, 2015. 2

[7] Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin,

Zhongfeng Wang, and Bo Yuan. Tie: energy-efficient ten-

sor train-based inference engine for deep neural network. In

Proceedings of the 46th International Symposium on Com-

puter Architecture, pages 264–278, 2019. 1

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255. Ieee, 2009. 6

[9] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2625–2634, 2015. 1

[10] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisser-

man. Convolutional two-stream network fusion for video

action recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1933–

1941, 2016. 1

[11] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,

and Cheng-zhong Xu. Dynamic channel pruning: Feature

boosting and suppression. In International Conference on

Learning Representations, 2019. 7

[12] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov,

and Dmitry Vetrov. Ultimate tensorization: compress-

ing convolutional and fc layers alike. arXiv preprint

arXiv:1611.03214, 2016. 1, 3, 6, 7

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 1

[14] Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev,

Larisa Markeeva, Philip Blagoveschensky, Andrzej Ci-

chocki, and Ivan Oseledets. Automated multi-stage compres-

sion of neural networks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, 2019.

3

[15] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A Horowitz, and William J Dally. Eie: effi-

cient inference engine on compressed deep neural network.

ACM SIGARCH Computer Architecture News, 44(3):243–

254, 2016. 2

[16] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1, 2

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in Neural Information Processing Systems, pages

1135–1143, 2015. 1, 2

[18] Richard A Harshman et al. Foundations of the parafac pro-

cedure: Models and conditions for an” explanatory” multi-

modal factor analysis. 1970. 3

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 1

[20] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. In Proceedings of the Twenty-Seventh Inter-

national Joint Conference on Artificial Intelligence, IJCAI-

18, pages 2234–2240, 2018. 2

[21] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4340–4349, 2019. 7

[22] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017. 2

[23] Hantao Huang, Leibin Ni, and Hao Yu. Ltnn: An energy-

efficient machine learning accelerator on 3d cmos-rram for

layer-wise tensorized neural network. In 2017 30th IEEE In-

ternational System-on-Chip Conference (SOCC), pages 280–

285. IEEE, 2017. 1

[24] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014. 3

[25] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings

of the 44th Annual International Symposium on Computer

Architecture, pages 1–12, 2017. 2

10682

[26] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim

Choi, Lu Yang, and Dongjun Shin. Compression of deep

convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015. 3

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 6

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Communications of the ACM, 60(6):84–90, 2017. 1

[29] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

database for human motion recognition. In International

Conference on Computer Vision, pages 2556–2563. IEEE,

2011. 6

[30] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-

eledets, and Victor Lempitsky. Speeding-up convolutional

neural networks using fine-tuned cp-decomposition. arXiv

preprint arXiv:1412.6553, 2014. 3

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

6

[32] Nannan Li, Yu Pan, Yaran Chen, Zixiang Ding, Dongbin

Zhao, and Zenglin Xu. Heuristic rank selection with pro-

gressively searching tensor ring network. arXiv preprint

arXiv:2009.10580, 2020. 2, 3, 6, 7, 8

[33] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen,

and Marianna Pensky. Sparse convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 806–814, 2015. 2

[34] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing re-

alistic actions from videos “in the wild”. In 2009 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1996–2003. IEEE, 2009. 6

[35] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-

ter level pruning method for deep neural network compres-

sion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 5058–5066, 2017. 1, 2

[36] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu

Wang, and Huazhong Yang. Dsa: More efficient budgeted

pruning via differentiable sparsity allocation. In The Euro-

pean Conference on Computer Vision (ECCV), 2020. 7

[37] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin,

and Dmitry P Vetrov. Tensorizing neural networks. In

Advances in Neural Information Processing Systems, pages

442–450, 2015. 1, 3

[38] Yu Pan, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun

Bai, and Zenglin Xu. Compressing recurrent neural networks

with tensor ring for action recognition. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages

4683–4690, 2019. 1, 3, 8

[39] Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin,

Dmitry Ermilov, Julia Gusak, Petr Tichavskỳ, Valeriy

Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-

rank tensor decomposition for compression of convolutional

neural network. In European Conference on Computer Vi-

sion, pages 522–539. Springer, 2020. 3

[40] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, pages 525–542. Springer, 2016. 1, 2

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016. 1

[42] Ledyard R Tucker. Implications of factor analysis of three-

way matrices for measurement of change. Problems in Mea-

suring Change, 15:122–137, 1963. 3

[43] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and

Vaneet Aggarwal. Wide compression: Tensor ring nets. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9329–9338, 2018. 1, 3, 6,

7, 8

[44] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 2074–2082, 2016. 2

[45] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In International Conference on

Machine Learning, pages 2048–2057, 2015. 1

[46] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,

Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong.

Trp: Trained rank pruning for efficient deep neural networks.

In Proceedings of the Twenty-Ninth International Joint Con-

ference on Artificial Intelligence, IJCAI-20, pages 977–983,

2020. 7

[47] Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin,

and Hongkai Xiong. Deep neural network compression

with single and multiple level quantization. arXiv preprint

arXiv:1803.03289, 2018. 1, 2

[48] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-

train recurrent neural networks for video classification. In In-

ternational Conference on Machine Learning, pages 3891–

3900, 2017. 1, 3, 8

[49] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian

Zhe, Xinqi Chu, and Zenglin Xu. Learning compact recur-

rent neural networks with block-term tensor decomposition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9378–9387, 2018. 8

[50] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-

jie Wen, Makan Fardad, and Yanzhi Wang. A systematic

dnn weight pruning framework using alternating direction

method of multipliers. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 184–199, 2018.

1, 2

[51] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more:

Towards compact cnns. In European Conference on Com-

puter Vision, pages 662–677. Springer, 2016. 2

[52] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018. 2, 7

10683

