
Towards Extremely Compact RNNs for Video Recognition with Fully

Decomposed Hierarchical Tucker Structure

Miao Yin1, Siyu Liao2:, Xiao-Yang Liu3, Xiaodong Wang3 and Bo Yuan1

1Rutgers University, 2Amazon, 3Columbia University

miao.yin@rutgers.edu, liasiyu@amazon.com, {xl2427, xw2008}@columbia.edu,

bo.yuan@soe.rutgers.edu

Abstract

Recurrent Neural Networks (RNNs) have been widely

used in sequence analysis and modeling. However, when

processing high-dimensional data, RNNs typically require

very large model sizes, thereby bringing a series of deploy-

ment challenges. Although various prior works have been

proposed to reduce the RNN model sizes, executing RNN

models in the resource-restricted environments is still a very

challenging problem. In this paper, we propose to develop

extremely compact RNN models with fully decomposed hi-

erarchical Tucker (FDHT) structure. The HT decomposi-

tion does not only provide much higher storage cost reduc-

tion than the other tensor decomposition approaches, but

also brings better accuracy performance improvement for

the compact RNN models. Meanwhile, unlike the existing

tensor decomposition-based methods that can only decom-

pose the input-to-hidden layer of RNNs, our proposed fully

decomposition approach enables the comprehensive com-

pression for the entire RNN models with maintaining very

high accuracy. Our experimental results on several popular

video recognition datasets show that, our proposed fully de-

composed hierarchical tucker-based LSTM (FDHT-LSTM)

is extremely compact and highly efficient. To the best of

our knowledge, FDHT-LSTM, for the first time, consistently

achieves very high accuracy with only few thousand pa-

rameters (3,132 to 8,808) on different datasets. Compared

with the state-of-the-art compressed RNN models, such as

TT-LSTM, TR-LSTM and BT-LSTM, our FDHT-LSTM si-

multaneously enjoys both order-of-magnitude (3,985ˆ to

10,711ˆ) fewer parameters and significant accuracy im-

provement (0.6% to 12.7%).

1. Introduction

Recurrent Neural Networks (RNNs), especially their ad-

vanced variants such as Long-Short Term Memory (LSTM)

:This work was done when the author was with Rutgers University.

and Gated Recurrent Unit (GRU), have achieved unprece-

dented success in sequence analysis and processing. Thanks

to their powerful capability of capturing and modeling the

temporary dependency and correlation in the sequential

data, the state-of-the-art RNNs have been widely deployed

in many important artificial intelligence (AI) fields, such as

natural language processing (NLP) [19], speech recognition

[15], and computer vision [25].

Despite their current prosperity, the efficient deployment

of RNNs is still facing several challenges, especially the

large model size problem. Due to the widespread existence

of high-dimensional input data in many applications, e.g.

NLP and video processing, the input-to-hidden weight ma-

trices of RNNs are often extremely large. For instance, as

pointed out in [23], even with small-size hidden layer such

as 256 hidden states, an LSTM working on UCF11 video

recognition dataset [14] already requires more than 50 mil-

lion parameters. Such ultra-high model size, consequently,

brings a series of deployment challenges for RNNs, includ-

ing but not limited to high difficulty of training, suscepti-

bility to overfitting, long processing latency and inefficient

energy consumption etc.

In order to address this problem, several prior works [4],

[27] use convolutional neural network (CNNs) as the front-

end feature extractors to reduce the size of input data of

back-end RNNs. Although this strategy indeed reduces the

model size as compared to the pure RNN-based solution,

the back-end RNN part is still very large. Leveraging the

popular model compression approaches in CNNs, such as

pruning and quantization, is another alternative. However,

the compression ratio provided by these methods is still

insufficient, considering the very large size of the original

RNN models.

Tensor Decomposition-based RNNs. Due to the above

described limitations, recent RNN compression studies

have mainly focused on a new direction – building the com-

pact RNN models using low-rank tensor decomposition. By

its nature, tensor decomposition can represent a very large

tensor with the combination of multiple very small tensor

12085

cores. Correspondingly, the number of the required repre-

sentation parameters can be significantly reduced. Based

on this unique and powerful capability, various compact

RNN models have been developed using different tensor de-

composition approaches. In [23], TT-LSTM and TT-GRU,

which decompose input-to-hidden layer of RNNs to Tensor

Train (TT) format, are proposed for video recognition. Sim-

ilarly, BT-LSTM [24] and TR-LSTM [24] are also devel-

oped by decomposing the input-to-hidden layer via Block-

Term Tensor (BT) and Tensor Ring (TR) formats, respec-

tively. Besides those compact RNN models for computer

vision tasks, in [26] a TT-structure LSTM is developed for

long-term forecasting in dynamic systems. Compared with

the original large-size RNNs, these compact models show

significant model size reduction with maintaining competi-

tive classification/prediction accuracy.

Limitations of Prior Works. Despite their promis-

ing potentials, the state-of-the-art tensor decomposition-

based RNN models are still facing two inherent limita-

tions: (1) Only the input-to-hidden layers, instead of the

entire RNNs, are decomposed to small tensor cores. Con-

sequently, there are still a large amount of parameters in the

uncompressed hidden-to-hidden layers of RNNs, thereby

making the large model size problem may still exist, es-

pecially in the resource-constrained scenarios (see Figure

2). Performing additional tensor decomposition on hidden-

to-hidden layers is an alternative solution; however, as will

be shown in the next section, straightforward decomposing

on both input-to-hidden and hidden-to-hidden layers causes

significant accuracy degradation. (2) The underlying ten-

sor decomposition approaches used in the state-of-the-art

compact RNN models have inherent constraints and limi-

tations. For instance, TT decomposition requires the bor-

der tensor cores have to be rank-1, thereby directly hinder-

ing the representation power of TT-LSTM. Also, BT-LSTM

models suffers computation overhead due to the extra flat-

ten and permutation operations incurred by BT structure.

More generally, from the perspective of tensor theory, nei-

ther TT, TR nor BT decomposition provides the best space

complexity reduction. Consequently, the existing tensor

decomposition-based solutions are still not ideal for design-

ing high-accuracy ultra-compact RNN models.

Technical Preview & Benefits. To overcome these lim-

itations, in this paper we propose to develop extremely

compact RNN models with fully decomposed hierarchical

Tucker (FDHT) structure. As shown in Figure 1, our pro-

posed FDHT-structure RNN models have two main fea-

tures. First, Hierarchical Tucker (HT) decomposition [7],

a little explored but powerful tool for capturing and model-

ing the correlation and structure in high-dimensional data,

is used to build the underlying RNN structure. Second, the

entire RNN models, instead of one or few component lay-

ers, are constructed in the HT structure in a homogeneous

HT Decomposition

TT Decomposition

(a)

(b)

Figure 1: Architecture of tensor decomposition-based

LSTM. f is the forget gate’s activation vector, u is the input

gate’s activation vector, c̃ is the cell input activation vector,

and o is the output gate’s activation vector in LSTM. (a)

State-of-the-art TT-LSTM. (b) The proposed fully decom-

posed hieararchical Tucker LSTM (FDHT-LSTM).

way. Such exploration on the low-rank correlation among

multiple component layers of RNN models is non-trivial,

and brings order-of-magnitude parameter reduction over the

state-of-the-art approaches with still maintaining very high

accuracy. The benefits of the proposed FDHT-based RNN

models are summarized as follows:

• Benefits of Hierarchical Tucker Structure. The un-

derlying HT structure enables the RNN models en-

joy much fewer model parameters and simultaneously

higher accuracy than the state of the art. Compared

with its well-explored counterparts (e.g. TT, TR and

BT decomposition) adopted in the prior works, HT

decomposition inherently provides higher space com-

plexity reduction on the same-size tensor data with the

same selected rank. By leveraging such theoretical ad-

vantage, the large-size RNN models can be constructed

with very few parameters in the HT format. Addi-

tionally, the inherent hierarchical structure of HT also

enables better weight sharing and hierarchical repre-

sentation from high-dimensional data, thereby signif-

icantly improving RNN models’ representation capa-

bility. As verified by our empirical experiments on

different datasets, the LSTM models built on HT struc-

ture consistently outperform the existing LSTM mod-

els using other tensor decomposition in terms of both

classification accuracy and model size reduction.

• Benefits of Full Decomposition. Built on the top

of the underlying HT structure, enabling full decom-

12086

Figure 2: With compressing only input-to-hidden layer,

hidden-to-hidden layer becomes the bottleneck of the state-

of-the-art compact RNN models. The details of vanilla and

compressed LSTM models are described in Table 2.

position with maintaining high accuracy brings fur-

ther performance improvement for our proposed com-

pact RNN models. As analyzed before, the existing

tensor decomposition-based RNN models are limited

by their uncompressed hidden-to-hidden layers. Al-

though the same tensor decomposition can be per-

formed on each individual uncompressed layers to fur-

ther reduce model size, as will be shown in the ex-

periment, such layer-wise decomposition causes sig-

nificant accuracy degradation. Unlike this straight-

forward strategy, our proposed full decomposition ap-

proach integrates different RNN layers together, and

then compresses the entire RNN model in a homoge-

neous way. Such integration-based full decomposition

maintains the homogeneity of the model and avoid the

accuracy loss. Consequently, our fully decomposed

HT-structure RNN models further require even much

fewer parameters than the non-fully decomposed HT-

structure model with still remaining high accuracy.

Realizing Few Thousand Parameters-only RNN

Models. By jointly using these two approaches, we de-

velop extremely compact RNN models with high accuracy.

Experiments show that, our proposed FDHT-LSTM con-

sistently achieves very high accuracy with only very few

parameters (3,132 to 8,808) on different video recognition

datasets. To the best of our knowledge, it is the first RNN

model that can only use few thousand parameters to achieve

high accuracy on video recognition tasks. Compared with

the state-of-the-art compressed RNN models, such as TT-

LSTM, TR-LSTM and BT-LSTM, our FDHT-LSTM si-

multaneously enjoys both order-of-magnitude (3,985ˆ to

10,711ˆ) fewer parameters and significant accuracy im-

provement (0.6% to 12.7%).

Difference from Other Tucker/HT RNN/CNN Works.

Recently in learning theory community, HT decomposition

has been used to analyze the expressive power of RNNs and

CNNs [16], [3] and [8]. However, these prior works focus

on representing an uncompressed neural network models

with HT format to explore the theoretical property such as

expressive power. Instead, our work focus on building com-

pressed RNN models via performing HT decomposition

to its layers. Also, using Tucker decomposition to com-

press CNN/RNN is studied in [21], [10]. However, these

works utilized Tucker decomposition, instead of Hierarchi-

cal Tucker decomposition, to compress models. In tensor

theory, HT decomposition is different from Tucker decom-

position, and HT enjoys much higher space complexity re-

duction than Tucker decomposition. Therefore, the com-

pression ratio of our FDHT-RNN is much higher than the

prior Tucker decomposition-based models.

2. Compact Fully Decomposed Hierarchical

Tucker RNN Model

2.1. Preliminaries

Notation. Throughout the paper we use boldface calli-

graphic script letters, boldface capital letters, and boldface

lower-case letters to represent tensors, matrices, and vec-

tors, respectively, e.g. X P R
n1ˆn2ˆ¨¨¨ˆnd , X P R

n1ˆn2 ,

and x P R
n1 . Also, X pi1,¨¨¨ ,idq P R denotes the entry of

tensor X .

Similarly, Xpi,jq represents the entry of matrix X .

Tensor Contraction. An HT-decomposed tensor is es-

sentially the consecutive product of multiple tensor con-

traction results, where tensor contraction is executed be-

tween two tensors with at least one matched dimension.

For instance, given two tensors A P R
n1ˆn2ˆl and B P

R
lˆm1ˆm2 , where the 3rd dimension of A matches the 1st

dimension of B with length l, the tensor contraction result

is a size- n1 ˆ n2 ˆ m1 ˆ m2 tensor as

pA ˆ3

1
Bqpi1,i2,j1,j2q “

l
ÿ

α“1

Api1,i2,αqBpα,j1,j2q.

Hierarchical Tucker Decomposition. The Hierarchi-

cal Tucker decomposition is a special type of tensor de-

composition approach with hierarchical levels with respect

to the order of the tensor. As illustrated in Figure 3, an

HT-decomposed tensor can be recursively decomposed into

intermediate components, referred as frames, from top to

bottom in a binary tree, where each frame corresponds to

a unique node, and each node is associated with a dimen-

sion set. In general, for a HT-decomposed tensor X P
R

n1ˆ¨¨¨ˆnd , we can build a binary tree with a root node

associated with D “ t1, 2, ¨ ¨ ¨ , du and X “ UD as the

root frame. We define s Ĺ D is associated with the node

corresponding to Us, and s1, s2 Ĺ s are associated with

the left and right child nodes of the s-associated node.

Hence, as µs “ minpsq, νs “ maxpsq, each non-leaf frame

Us P R
rsˆnµsˆ¨¨¨ˆnνs can be recursively decomposed to

its left and right child frames (Us1 and Us2) and transfer

tensor Gs P R
rsˆrs1ˆrs2 as

Us “ Gs ˆ2

1
Us1 ˆ2

1
Us2 . (1)

12087

N
o

n
-l

e
a

f
L
e

a
f

Root
Node:

Frame:

Transfer
tensor:

Figure 3: Example HT decomposition with a tensor of 4 or-

ders. All the dashed lines and boxes describe a binary tree

with root D “ t1, 2, 3, 4u, where the dashed boxes repre-

sent the nodes. Here node t1u is a leaf node, whose parent

and sibling are node t1, 2u and node t2u, respectively. Here

X is decomposed to a set of orange-colored transfer tensors

and blue-colored leaf frames.

Consequently, by performing this recursive decomposi-

tion till the bottom of the binary tree, we can decompose

the original n1 ˆ ¨ ¨ ¨ ˆ nd-order tensor X “ UD into the

combination of the 2-order leaf frames and 3-order transfer

tensors. Notice that here rs, as hierarchical rank, is an im-

portant parameter that determines the decomposition effect.

2.2. Compact HT­structure Linear Layer

In this subsection we describe the details of building a

compact HT-structure linear layer, which will be used as

the foundation to build the compact FDHT-RNN models.

Tensorization. In general, the key idea of building HT

structured linear layer is to transform the weight matrix

W P R
MˆN to the HT-based format. Considering W is

a 2-D matrix, while HT decomposition is mainly performed

on high-order tensor, we first need to reshape W as well

as its affiliated input vector x P R
N and output vector

y P R
M to tensor format as W P R

m1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd ,

X P R
n1ˆ¨¨¨ˆnd and Y P R

m1ˆ¨¨¨ˆmd , respectively, where

M “
śd

i“1
mi and N “

śd
j“1

nj .

Decomposing W . Given a tensorized W as W P
R

m1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd , we can now leverage HT decom-

position to represent the large-size W using a set of small-

size matrices and tensors. In general, following Equation

(1), W can be decomposed as

Wpi1,¨¨¨ ,id,j1,¨¨¨ ,jdq “
rD
ÿ

k“1

rD1
ÿ

p“1

rD2
ÿ

q“1

pGDqpk,p,qq

¨pUD1
qpp,ϕD1

pi,jqqpUD2
qpq,ϕD2

pi,jqq,

(2)

where ϕspi, jq is a mapping function that produces the cor-

rect indices i “ pi1, ¨ ¨ ¨ , idq and j “ pj1, ¨ ¨ ¨ , jdq for a

specified frame Us with the given s and d. For instance,

with d “ 6 and s “ t3, 4u, the output of ϕspi, jq is

pi3, i4, j3, j4q. In addition, UD1
and UD2

can be recursively

computed as

pUsqpk,ϕspi,jqq “

rs1
ÿ

p“1

rs2
ÿ

q“1

pGsqpk,p,qq

¨pUs1qpp,ϕs1
pi,jqqpUs2qpq,ϕs1

pi,jqq,

(3)

where D “ t1, 2, ¨ ¨ ¨ , du, D1 “ t1, ¨ ¨ ¨ , td{2uu and D2 “
trd{2s, ¨ ¨ ¨ , du are associated with left and right child nodes

of the root node.

HT-structure Layer. With the HT-decomposed weight

matrix, a linear layer with HT structure can now be devel-

oped. Specifically, the HT-format matrix-vector multiplica-

tion, as the kernel computation in the forward propagation

procedure on the layer, is performed as follows:

Ypiq “
ÿ

j

rD
ÿ

k“1

rD1
ÿ

p“1

rD2
ÿ

q“1

pGDqpk,p,qq

¨pUD1
qpp,ϕD1

pi,jqqpUD2
qpq,ϕD2

pi,jqqX pjq.

(4)

Considering the desired output y of HT-structure layer

is a vector, the calculated Y needs to be re-shaped again to

the 1-D format. Consequently, we denote the entire forward

computing procedure from input x to output y as

y “ HTLpW ,xq. (5)

Figure 4 illustrates the computation process in an HT-

structure layer. Here the arrows in a sequence represent the

whole computation flow. As shown in this figure, the input

vector is first tensorized, and then tensor contraction is per-

formed in a hierarchical way. Finally the tensorized output

is obtained.

Benefits on Low Cost. One major benefit of using

HT-structure linear layer is that its inherent high complex-

ity reduction. As shown in Table 1, compared with the

vanilla uncompressed linear layer as well as other tensor

decomposition-based layers, using HT structure can bring

the lower space complexity with the same rank setting. Be-

sides theoretical complexity analysis, we also verify this

low-cost benefits of HT structure via empirical experiments.

Figure 5 shows the number of parameters to store a compact

weight matrix. Here we adopt the size-57, 600ˆ256 weight

matrix used in [23] [24] [17] for evaluation. From Fig-

ure 5 it is seen that HT-based approach indeed require the

fewest parameters than other tensor decomposition-based

methods. Our evaluation results in the Experiments Sec-

tion also verify such advantages on compression ratios over

various datasets.

12088

Tensor
Contraction

Figure 4: Example computation process in an HT-structure

layer with d=4. Solid lines with arrow connect two tensors

that are contracted. Note that different from Figure 3, the

leaf frames U here is 3-dimensional. This is because the

dimensions of input tensor X here is different.

Compressed Linear Layer Space Complexity

Uncompressed OpNMq

Tensor Train (TT)-structure Opdmnr2q

Tensor Ring (TR)-structure Opdmnr2q

Block-Term (BT)-structure Opdmnr ` rdq

Hierarchical Tucker (HT)-structure Opdmnr ` dr3q

Table 1: Comparison of space complexity among different

tensor decomposition-based linear layers. C is the CP rank-

value defined in BT decomposition, and r “ maxsĹD rs,

m “ maxkPD mk, n “ maxkPD nk.

2.3. Fully Decomposing the HT­structure RNN

Challenges of Fully Compressing RNN. Based on the

proposed HT-structure layer, next we aim to compress the

entire RNN models using HT decomposition. A straightfor-

ward way is to simply build each component layer of RNNs

with HT format. In other words, all of the weight matrices

of input-to-hidden and hidden-to-hidden layers are decom-

posed into HT structure. Although indeed providing further

compression on the hidden-to-hidden layers, such layer-

wise compression strategy suffers huge accuracy drop. As

shown in Figure 6, the layer-wise compression using HT

decomposition causes 2.4% accuracy drop as compared to

the input-to-hidden-only compression. Therefore, realizing

the full compression of the entire RNN models without ac-

curacy drop is non-trivial but challenging.

Proposed FDHT-RNN. To achieve that, we propose

to develop the entire compact RNNs in a homogeneous

way, namely fully decomposed HT (FDHT) structure. Take

LSTM, as the most popular and advanced variant of RNNs,

for example. As illustrated in Figure 1, our key idea is to

Figure 5: Comparison on number of parameters with dif-

ferent tensor decomposition for the same weight matrix.

All the tensor decomposition methods use the same setting

d “ 5, pn1, ¨ ¨ ¨ , n5q “ p8, 10, 10, 9, 8q, pm1, ¨ ¨ ¨ ,m5q “
p4, 4, 2, 4, 2q, and r is the rank.

Figure 6: Comparison of number of parameters and accu-

racy between layer-wise compression and the proposed full

decomposition. Evaluation dataset is UCF11.

first concatenate all the weight matrix as a single big ma-

trix. In other words, the entire LSTM model can be inter-

preted as a single ”mega” linear layer. From the perspective

of forward propagation, at each time step, all the intermedi-

ate results can be viewed as being calculated using only one

matrix multiplication:

»

—

—

–

f̂ rts
ûrts
ĉrts
ôrts

fi

ffi

ffi

fl

“

»

—

—

–

Wf Vf

Wu Vu

Wc Vc

Wo Vo

fi

ffi

ffi

fl

„

xrts
hrt ´ 1s



“ WIrts.

(6)

Based on the above interpretation, the HT structure can

be imposed on this integrated layer. Specifically, we can

tensorize and decompose the entire RNN models to HT for-

mat and perform forward propagation as follows:

»

—

—

–

f̂ rts
ûrts
ĉrts
ôrts

fi

ffi

ffi

fl

“ Zrts “ HTLpW , Irtsq. (7)

After this HT-based computation, the outputs of the FDHT-

12089

LSTM can be calculated as follows:

f rts “σpf̂ rts ` bf q

urts “σpûrts ` buq

crts “f rts d crt ´ 1s ` urts d tanhpĉrts ` bcq

orts “σpôrts ` boq

hrts “orts d tanhpcrtsq,

(8)

where σ, tanh and d are the sigmoid function, hyperbolic

function and element-wise product, respectively.

HT-based Gradient Calculation. To ensure the valid

training on FDHT-RNN, the gradient calculation in the

backward propagation should also be accordingly reformu-

lated to HT-based format. In general, considering for HT-

structure linear layer W “ UD and BY
BUD

“ X , assum-

ing s is associated with a left node, as we denote that F psq
and Bpsq are the sets associated with the parent and sibling

nodes of the s-associated node in the binary tree, respec-

tively, and define µs “ minpsq, νs “ maxpsq, the partial

derivative of output tensor with respect to frames can be cal-

culated in the following recursive way until F psq is equal to

D:

BY

BUs

“GF psq ˆ3

1
UBpsq

ˆ
1,3,¨¨¨ ,2νBpsq´2µBpsq`4

1,¨¨¨ ,νBpsq´µBpsq`2,νF psq´µF psq`3,

¨¨¨ ,νF psq´µF psq`νBpsq´µBpsq`3

BY

BUF psq
.

(9)

Based on Equation (9), the gradients for leaf frames and

transfer tensors can be computed as follows:

BL

BUs

“
BY

BUs

ˆνs´µs`3,¨¨¨ ,d`1

1,¨¨¨ ,µs´1,νs`1,¨¨¨ ,d

BL

BY
, (10)

BL

BGs

“
Y

BUs

ˆ
2,¨¨¨ ,νs1

´µs1
`2

2,¨¨¨ ,νs1
´µs1

`2
Us1

ˆ
3,¨¨¨ ,νs2

´µs2
`3

2,¨¨¨ ,νs2
´µs2

`2
Us2 ˆ4,¨¨¨ ,d`3

1,¨¨¨ ,d

BL

BY
. (11)

In general, our proposed ”integrate-then-decompose”

strategy brings significant performance benefit for the com-

pact FDHT-RNN models. As illustrated in Figure 6, un-

like layer-wise compression that has significant accuracy

drop, our proposed full decomposition approach does not

bring any performance loss. Instead, it even outperforms the

input-to-hidden-only compression counterpart with much

fewer parameters. As will be shown in the next section,

evaluation on various datasets also show that our full de-

composed HT-format RNN models achieve the same or

even higher accuracy than the model that has only HT struc-

ture on the input-to-hidden layers. We hypothesize such

phenomenon may result from the special architecture of

FDHT-RNN: when the entire RNN is constructed in the

HT structure, the multi-dimensional low-rank correlations

across the entire model can be explored and captured in

a more precise and comprehensive way, thereby enabling

very compact RNN model without affecting accuracy per-

formance.

3. Experiments

In this section, we evaluate the performance of FDHT-

RNN on different datasets, and compare them with the

state-of-the-art with respect to compression ratio and test

accuracy. Considering LSTM is the current most commonly

used RNN variant in both academia and industry, our ex-

periments focus on FDHT-LSTM, and compare it with the

vanilla uncompressed LSTM and recent advances in com-

pressed RNN such as TT-LSTM [23], BT-LSTM [24] and

TR-LSTM [17]. Also, similar to prior works, we also train

and evaluate a model that only has HT structure in the input-

to-hidden layer, namely HT-LSTM, for ablation study.

Selection of Tensor Parameters d and r. In our ex-

periments we set d, as the dimension number of the tensors

that the input, output and weight matrix are tensorized to,

as the same to the setting in [23] and [24]. Also similar to

prior works, we select r via empirical setting to make good

balance between compression ratio and model accuracy.

Training Strategy. Following the similar setting in prior

works, we adopt two types of training strategy: end-to-end

direct training and training with pre-trained CNN. In the

end-to-end direct training the input of LSTM is the raw

data, e.g. video clips; while training with pre-trained CNNs

means the back-end LSTM receives the compact features

extracted by a front-end pre-trained CNN.

3.1. End­to­End Direct Training (RNN­only Model)

Hyperparameter Setting. We train the models us-

ing ADAM optimizer with L2 regularization of coefficient

0.001. Also, dropout rate is set as 0.25 and batch size is 16.

UCF11 Dataset. The UCF11 dataset [14] consists of 11-

class human action (e.g. biking, diving, basketball) videos

with totally 1,600 video clips. Each class is assembled by

25 video groups, where each group contains at least 4 action

clips with resolution as 320 ˆ 240.

At data pre-processing stage we choose the same set-

tings used in the related work [24] [17] for fair compari-

son. Specifically, the resolution of video clips is first scaled

down to 160 ˆ 120, and then 6 frames from each clip are

randomly sampled to form the sequential input.

For the baseline vanilla uncompressed LSTM model, it

contains 4 input-to-hidden layers and 4 hidden-to-hidden

layers, where the size of its input vector is 160ˆ 120ˆ 3 “
57, 600, and the number of hidden states in each layer is

256. For our proposed FDHT-LSTM, in order to factorize

the size of concatenated vector I , we pad the input vec-

tor to size 16 ˆ 16 ˆ 16 ˆ 15 ´ 256 “ 61184 by zeros.

The concatenated vector is reshaped to a tensor of shape

16 ˆ 16 ˆ 16 ˆ 15, and the hidden state is reshaped to a

12090

Model
Number of Parameters Top-1

Input-Hidden Overall Acc. (%)

LSTM 58.98M 59.24M 69.7

TT-LSTM 3,360
265.50K

79.6
(223ˆ)

BT-LSTM 3,387
265.53K

85.3
(223ˆ)

TR-LSTM 1,725
263.87K

86.9
(225ˆ)

HT-LSTM
1,245

263.39K
87.2

(Ours) (225ˆ)

FDHT-LSTM
-

8,808
87.5

(Ours) (6,726ˆ)

Table 2: Performance of different RNN compression works

on UCF11 dataset using end-to-end direct training.

tensor of shape 4 ˆ 4 ˆ 4 ˆ 4. All leaf and non-leaf ranks

are set as 14 and 12, respectively.

Table 2 summarizes the performance of our FDHT-

LSTM on UCF11 dataset and compare it with the related

works. It is seen that compared with vanilla LSTM using

59 million parameters, FDHT-LSTM only needs 8,808 pa-

rameters with 17.8% accuracy increase. Compared with the

recent advances on compressing RNNs using other tensor

decomposition methods, including TT-LSTM, BT-LSTM

and TR-LSTM, our proposed FDHT-LSTM requires at least

6,501ˆ fewer parameters with at least 0.6% accuracy in-

crease.

Youtube Celebrities Face Dataset. Youtube dataset [9]

contains 1,910 video clips from 47 subjects. Also, the res-

olutions of the frames vary for different video clips. Be-

ing consistent with prior works, for data pre-processing the

resolution of the input data to FDHT-LSTM is re-scaled as

160ˆ 120. Also, 6 frames in each video clips are randomly

sampled to form the input sequence.

In this experiment we build a FDHT-LSTM with the sim-

ilar setting with the one used in UCF11 dataset. A slight

difference is here all non-leaf ranks are set as 11. Table 3

shows the performance comparison with TT-LSTM [23] on

this dataset. From this table it is seen that FDHT-LSTM

achieves 7,117ˆ compression ratio over the original un-

compressed LSTM with much higher accuracy. Compared

with TT-LSTM, FDHT-LSTM has 6,894ˆ fewer parame-

ters with 12.7% higher accuracy.

Besides, on the same Youtube dataset we also compare

FDHT-LSTM with several other reported works without us-

ing tensor decomposition method. As shown in Table 4,

among those works the state-of-the-art model is [12], which

has the highest reported accuracy (84.6%). Compared with

that model, FDHT-LSTM achieves 3.6% higher test accu-

Model
Number of Parameters Top-1

Input-Hidden Overall Acc. (%)

LSTM 58.98M 59.24M 33.2

TT-LSTM 3,392
265.54K

75.5
(223ˆ)

HT-LSTM
810

262.95K
88.1

(Ours) (225ˆ)

FDHT-LSTM
-

8,324
88.2

(Ours) (7,117ˆ)

Table 3: Performance of different RNN compression work

on Youtube celebrities face dataset using end-to-end direct

training. Notice that no prior works report performance

of BT-LSTM and TR-LSTM on this dataset.

Model
Number of

Parameters

Top-1

Acc. (%)

DML-PV 220K 82.8

VGGFACE + RRNN ě42M 84.6

VGG16-GCR 138M 82.9

HT-LSTM (Ours) 263K 88.1

FDHT-LSTM (Ours) 8,324 88.2

Table 4: Comparison between HT-LSTM using end-to-end

direct training and other models without using tensor de-

composition on Youtube celebrities face dataset, such as

DML-PV[2], VGGFACE + RRNN [12] and VGG16-GCR

[13].

racy with using much fewer parameters.

3.2. Training with Pre­trained CNNs (CNN+RNN)

Another set of our experiments is based on training strat-

egy using pre-trained CNNs as the front-end feature extrac-

tor. As indicated in [4], using the front-end CNN can re-

duce the required input vector size of RNN and significantly

improve the overall performance of the entire CNN+RNN

model.

Hyperparameter Setting. In this part of experiments

dropout rate is set as 0.5. The L2 regularization with coeffi-

cient 0.0001 is used, and the entire FDHT-LSTM model is

trained using ADAM optimizer with batch size 16.

UCF11 Dataset. Consistent with [17], Inception-V3

[20] is selected as the the front-end CNN, whose output is a

flattened size-2,048 feature vector. For the baseline vanilla

uncompressed LSTM model, the size of hidden state is set

as 2048. For our proposed FDHT-LSTM, the concatenated

vector is of size 2048 ` 2048 “ 4096, and is reshaped to a

tensor of size 8 ˆ 8 ˆ 8 ˆ 8. Similarly, the output vector is

reshaped to a tensor of size 4 ˆ 8 ˆ 8 ˆ 8. In addition, all

leaf ranks are set as 9, and all non-leaf ranks are set as 6.

12091

Model
Number of

Parameters

Top-1

Acc. (%)

Soft Attention 311M 85.0

Deep Fusion 179M 94.6

CNN + LSTM 55M 92.3

CNN + TR-LSTM 39M 93.8

CNN + HT-LSTM (Ours) 22M 98.1

CNN + FDHT-LSTM (Ours) 22M 98.4

Table 5: Comparison between FDHT-LSTM using front-

end pre-trained CNN and other related works on UCF11

dataset, such as Soft Attention [18], Deep Fusion [6] and

CNN + LSTM/TR-LSTM [17]. Notice that no prior

works report performance of CNN + TT-LSTM and

CNN + BT-LSTM on this dataset.

Table 5 summarizes the test accuracy of different mod-

els over UCF11 dataset. It is seen that with pre-trained

CNN model as front-end feature extractor, FDHT-LSTM

achieves 98.4% accuracy, which is 3.8% higher than the

best reported accuracy from the state of the art. Compared

with the TR-LSTM using the same front-end CNN, FDHT-

LSTM achieves 4.6% accuracy increase. Meanwhile, as

shown in Table 7, for such CNN + RNN model, TR-LSTM

only brings 1.9ˆ fewer parameters, while FDHT achieves

2.5ˆ parameter reduction.

HMDB51 Dataset. HMDB51 dataset [11] contains

6,849 video clips that belong to 51 action categories, where

each of them consists of more than 101 clips. Again, for the

experiment on this dataset we use Inception-V3 as the pre-

trained CNN model, whose extracted feature is flattened to

a length-2,048 vector. Reshaped from concatenated vector,

the tensor has size of 8 ˆ 8 ˆ 8 ˆ 8. We also reshape the

output vector to a tensor of size 4 ˆ 8 ˆ 8 ˆ 8. Meanwhile,

all leaf ranks are set as 14, and all non-leaf ranks are set as

12.

Table 6 summarizes the performance of CNN-aided

FDHT-LSTM and other related works on this dataset. It

is seen that FDHT-LSTM achieves 64.2% accuracy, which

obtains 0.4% increase than the recent TR-LSTM. Note that

two-stream I3D is a 3D-CNN model which is more ad-

vanced, while our model only uses 2D pre-trained CNN.

With fewer parameters, our approach can still achieve the

comparable performance. As shown in Table 7, for such

CNN+RNN model, TR-LSTM only brings 1.4ˆ fewer pa-

rameters, while FDHT-LSTM achieves 2.5ˆ parameter re-

duction.

4. Conclusion

In this paper, we propose a new and extremely com-

pact RNN model with fully decomposed and Hierarchical

Tucker structure. Our experiments on different datasets

Model
Number of

Parameters

Top-1

Acc. (%)

TDD + FV 117M 63.2

VGG + Two-Stream Fusion 181M 62.1

Two-Stream I3D 25M 66.4

CNN + LSTM 55M 62.9

CNN + TR-LSTM 39M 63.8

CNN + HT-LSTM (Ours) 22M 64.2

CNN + FDHT-LSTM (Ours) 22M 64.2

Table 6: Comparison among HT-LSTM using front-end

pre-trained CNN and other related works on HMDB51

dataset, such as TDD + FV [22], VGG + Two-Stream Fu-

sion [5], Two-Stream I3D [1] and CNN + LSTM/TR-LSTM

[17]. Notice that no prior works report performance of

CNN + TT-LSTM and CNN + BT-LSTM on this dataset.

Model

(with CNN)

Number of Parameters

CNN
RNN

Total
Input-Hidden Overall

LSTM

21.77M

16.78M 33.55M 55.32M

TR-LSTM 671.2K
17.45M 39.22M

(1.9ˆ) (1.4ˆ)

FDHT-LSTM
-

3,132 21.77M

(UCF11) (10,713ˆ) (2.5ˆ)

FDHT-LSTM
-

8,416 21.78M

(HMDB51) (3,987ˆ) (2.5ˆ)

Table 7: Comparison of detailed model size among our

FDHT-LSTM, TR-LSTM and vanilla LSTM with pre-

trained CNN. The same models of CNN + LSTM and

CNN + TR-LSTM are used for both UCF11 and HMDB51

datasets.

show that, our proposed FDHT-LSTM models significantly

outperform the state-of-the-art compressed RNN models in

terms of both compression ratio and test accuracy. To the

best of our knowledge, FDHT-LSTM is the first RNN model

that achieves very high accuracy with only few thousand pa-

rameters on different video recognition datasets.

Acknowledgements

This work was partially supported by National Science

Foundation under Grant CCF-1854742 and SHF-7995357.

12092

References

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017. 8

[2] Gong Cheng, Peicheng Zhou, and Junwei Han. Duplex met-

ric learning for image set classification. IEEE Transactions

on Image Processing, 27(1):281–292, 2017. 7

[3] Nadav Cohen, Or Sharir, and Amnon Shashua. On the ex-

pressive power of deep learning: A tensor analysis. In Con-

ference on Learning Theory, pages 698–728, 2016. 3

[4] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2625–2634, 2015. 1, 7

[5] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisser-

man. Convolutional two-stream network fusion for video

action recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1933–

1941, 2016. 8

[6] Harshala Gammulle, Simon Denman, Sridha Sridharan, and

Clinton Fookes. Two stream lstm: A deep fusion framework

for human action recognition. In IEEE Winter Conference

on Applications of Computer Vision, pages 177–186. IEEE,

2017. 8

[7] Wolfgang Hackbusch and Stefan Kühn. A new scheme for

the tensor representation. Journal of Fourier Analysis and

Applications, 15(5):706–722, 2009. 2

[8] Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets.

Expressive power of recurrent neural networks. arXiv

preprint arXiv:1711.00811, 2017. 3

[9] Minyoung Kim, Sanjiv Kumar, Vladimir Pavlovic, and

Henry Rowley. Face tracking and recognition with visual

constraints in real-world videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2008. 7

[10] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim

Choi, Lu Yang, and Dongjun Shin. Compression of deep

convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015. 3

[11] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

database for human motion recognition. In International

Conference on Computer Vision, pages 2556–2563. IEEE,

2011. 8

[12] Yang Li, Wenming Zheng, Zhen Cui, and Tong Zhang. Face

recognition based on recurrent regression neural network.

Neurocomputing, 297:50–58, 2018. 7

[13] Bo Liu, Liping Jing, Jia Li, Jian Yu, Alex Gittens, and

Michael W Mahoney. Group collaborative representation for

image set classification. International Journal of Computer

Vision, 127(2):181–206, 2019. 7

[14] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing real-

istic actions from videos “in the wild”. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1996–2003. IEEE, 2009. 1, 6

[15] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan

Černockỳ, and Sanjeev Khudanpur. Extensions of recurrent

neural network language model. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages

5528–5531. IEEE, 2011. 1

[16] Cohen Nadav, Sharir Or, Levine Yoav, Tamari Ronen, Yakira

David, and Shashua Amnon. Analysis and design of con-

volutional networks via hierarchical tensor decompositions.

arXiv preprint arXiv:1705.02302, 2018. 3

[17] Yu Pan, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun

Bai, and Zenglin Xu. Compressing recurrent neural networks

with tensor ring for action recognition. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages

4683–4690, 2019. 4, 6, 7, 8

[18] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Ac-

tion recognition using visual attention. In Neural Informa-

tion Processing Systems: Time Series Workshop, 2015. 8

[19] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Gen-

erating text with recurrent neural networks. In International

Conference on Machine Learning, pages 1017–1024, 2011.

1

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2818–2826, 2016. 7

[21] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Ten-

sor decomposition for compressing recurrent neural network.

In 2018 International Joint Conference on Neural Networks

(IJCNN), pages 1–8. IEEE, 2018. 3

[22] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recogni-

tion with trajectory-pooled deep-convolutional descriptors.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4305–4314, 2015. 8

[23] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-

train recurrent neural networks for video classification. In In-

ternational Conference on Machine Learning, pages 3891–

3900. JMLR. org, 2017. 1, 2, 4, 6, 7

[24] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian

Zhe, Xinqi Chu, and Zenglin Xu. Learning compact recur-

rent neural networks with block-term tensor decomposition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9378–9387, 2018. 2, 4, 6

[25] Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei

Xu. Video paragraph captioning using hierarchical recurrent

neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4584–

4593, 2016. 1

[26] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong

Yue. Long-term forecasting using higher order tensor rnns.

arXiv preprint arXiv:1711.00073, 2017. 2

[27] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In Proceedings of the IEEE Conference on

12093

Computer Vision and Pattern Recognition, pages 4694–

4702, 2015. 1

12094

