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Abstract

No-reference (NR) perceptual video quality assessment

(VQA) is a complex, unsolved, and important problem for

social and streaming media applications. Efficient and ac-

curate video quality predictors are needed to monitor and

guide the processing of billions of shared, often imper-

fect, user-generated content (UGC). Unfortunately, current

NR models are limited in their prediction capabilities on

real-world, “in-the-wild” UGC video data. To advance

progress on this problem, we created the largest (by far)

subjective video quality dataset, containing 38, 811 real-

world distorted videos and 116, 433 space-time localized

video patches (‘v-patches’), and 5.5M human perceptual

quality annotations. Using this, we created two unique

NR-VQA models: (a) a local-to-global region-based NR

VQA architecture (called PVQ) that learns to predict global

video quality and achieves state-of-the-art performance

on 3 UGC datasets, and (b) a first-of-a-kind space-time

video quality mapping engine (called PVQ Mapper) that

helps localize and visualize perceptual distortions in space

and time. The entire dataset and prediction models are

freely available at https://live.ece.utexas.edu/
research.php..

1. Introduction

User-generated content (UGC) and video streaming have

exploded on social media platforms such as Facebook, In-

stagram, YouTube, and TikTok, each supporting millions

and billions of users [63]. It has been estimated that each

day, about 4 billion video views occur on Facebook [60]

and 1 billion hours are viewed on YouTube [62]. Given

the tremendous prevalence of Internet videos, it would be

of great value to measure and control the quality of UGC

videos, both on capture devices and at social media sites

where they are uploaded, encoded, processed, and analyzed.

Full-reference (FR) video quality assessment (VQA)

models perceptually compare quality against pristine

videos, while no-reference (NR) models involve no such

∗†Equal contribution

Fig. 1: Modeling local to global perceptual quality: From each video, we ex-

tract three spatio-temporal video patches (Sec. 3.1), which along with their subjective

scores, are fed to the proposed video quality model. By integrating spatial (2D) and

spatio-temporal (3D) quality-sensitive features, our model learns spatial and temporal

distortions, and can robustly predict both global and local quality, a temporal quality

series, as well as space-time quality maps (Sec. 5.2). Best viewed in color.

comparison. Thus, NR video quality monitoring could

transform the processing and interpretation of videos on

smartphones, social media, telemedicine, surveillance, and

vision-guided robotics, in ways that FR models are un-

able to. Unfortunately, measuring video quality without a

pristine reference is very hard. Hence, though FR mod-

els are successfully deployed at the largest scales [78], NR

video quality prediction on UGC content remains largely

unsolved, for several reasons.

First, UGC video distortions arise from highly diverse

capture conditions, unsteady hands of content creators, im-

perfect camera devices, processing and editing artifacts,

frame rates, compression and transmission artifacts, and the

way they are perceived by viewers. Inter-mixing of distor-

tions is common, creating complex, composite distortions

that are harder to model in videos. Moreover, it is well-

known that the technical degree of distortion (e.g. amount

of blur, blocking, or noise) does not correlate well with

perceptual quality [75], because of neurophysiological pro-

cesses that induce masking [47]. Indeed, equal amounts of

distortions may very differently affect the quality of two dif-

ferent videos [52].

Second, most existing video quality resources are too

14019



small and unrepresentative of complex real-world distor-

tions [12, 56, 30, 72, 73, 68, 69]. While three publicly avail-

able databases of authentically distorted UGC videos are

available [23, 57, 74], they are far too small to train modern,

data-hungry deep neural networks. What is needed are very

large databases of videos corrupted by real-world distor-

tions, subjectively rated by large numbers of human view-

ers. However, conducting large-scale psychometric studies

is much harder and time-consuming (per video) than stan-

dard object/action classification tasks.

Finally, although a few NR algorithms achieve reason-

able performance on small databases [42, 6, 28, 4, 35, 65,

37, 10], most of them fail to account for the complex space-

time distortions common to UGC videos. UGC distortions

are often transient (e.g., frame drops, focus changes, and

transmission glitches) and yet may significantly impact the

overall perceived quality of a video [55]. Most existing

models are frame-based, or use sample frame differences,

and cannot capture diverse temporal impairments.

We have made recent progress towards addressing these

challenges, by learning to model the relationships that ex-

ist between local and global spatio-temporal distortions and

perceptual quality. We built a large-scale public UGC video

dataset of unprecedented size, comprising full videos and

three kinds of spatio-temporal video patches (Fig. 1), and

we conducted an online visual psychometric study to gather

large numbers of human subjective quality scores on them.

This unique data collection allowed us to successfully learn

to exploit interactions between local and global video qual-

ity perception and to create algorithms that accurately pre-

dict video quality and space-time quality maps. We sum-

marize our contributions below:

• We built the largest video quality database in exis-

tence. We sampled hundreds of thousands of open-source

Internet UGC digital videos to match the feature distribu-

tions of social media UGC videos. Our final collection

includes 38, 811 real-world videos of diverse sizes, con-

tents, and distortions, 26 times larger than the most re-

cent UGC dataset [74]. We also extracted three types of

v-patches from each video, yielding 116, 433 space-time

video patches (“v-patches”) in total (Sec. 3.1).

• We conducted the largest subjective video quality

study to date. Our final dataset consists of a total of 5.5M

perceptual quality judgments on videos and v-patches

from almost 6, 300 subjects, more than 9 times larger than

any prior UGC video quality study (Sec. 3.2).

• We created a state-of-the-art deep blind video quality

predictor, using a deep neural architecture that computes

2D video features using PaQ2PiQ [76], in parallel with

3D features using ResNet3D [20]. The 2D and 3D fea-

tures feed a time series regressor [13] that learns to accu-

rately predict both global video quality, as well as local

space-time v-patch quality, by exploiting the relations be-

tween them. This new model, which we call Patch VQ

(PVQ) achieves top performance on the new database as

well as on smaller “in-the-wild” databases [57, 23], with-

out finetuning (Secs. 4.1 and 5.3).

• We also create another unique prediction model that

predicts first-of-a-kind space-time maps of video qual-

ity by learning global-to-local quality relationships. This

second model, called the PVQ Mapper, helps localize, vi-

sualize, and act on video distortions (Sec. 5.2).

2. Related Work

Video Quality Datasets: Several public legacy video qual-

ity datasets [12, 56, 30, 72, 73, 68, 69] have been developed

in the past decade. Each of these datasets comprises a small

number of unique source videos (typically 10-15), which

are manually distorted by one of a few synthetic impair-

ments (e.g., Gaussian blur, compression, and transmission

artifacts). Hence, these datasets are quite limited in terms of

content diversity and distortion complexity, and do not cap-

ture the complex characteristics of UGC videos. Early “in-

the-wild” datasets [46, 11] included fewer than 100 unique

contents, while more recent ones such as KoNViD-1k [23],

LIVE-VQC [57], and YouTube-UGC [74] contain relatively

more videos (500-1500 per dataset), yet insufficient to train

deep models. A more recent dataset, FlickrVid-150k [19]

claims to contain a large number of videos, yet, has the fol-

lowing notable drawbacks: (a) Only 5 quality ratings were

collected on each video which, given the complexity of the

task, are insufficient to compute reliable ground truth qual-

ity scores (at least 15-18 is recommended [25]). (b) the

database is not publicly available, hence limiting its use for

any experiments or to validate its statistical integrity. (c)

the videos are all drawn from Flickr, which is largely popu-

lated by professional and advanced amateur photographers,

hence is not representative of social media UGC content.

Shallow NR VQA models: Early NR VQA models were

distortion-specific [51, 14, 27, 26, 43, 8, 7] and focused

mostly on transmission/compression-related artifacts. More

recent and widely-used NR image quality prediction al-

gorithms have been applied to frame difference statistics

to create space-time video distortion models [42, 4, 38,

58, 49]. In all these models, handcrafted statistical fea-

tures are used to train shallow regression models to pre-

dict perceptual video quality, achieving high performance

on legacy datasets. Recently proposed models [35, 65, 49]

use dozens or hundreds of such perceptually relevant fea-

tures and achieve state-of-the-art performance on the lead-

ing UGC datasets, yet their predictive capability remains far

below human performance.

Deep NR VQA models: There is more progress in the

development of top-performing deep models for NR im-

age quality prediction [15, 33, 5, 32, 59, 76, 41, 44, 10],

but relatively fewer deep NR-VQA models exist. The au-
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Table 1: Summary of popular public-domain video quality datasets. Legacy datasets contain singular synthetic distortions, whereas “in-the-wild” databases contain videos

impaired by complex mixtures of diverse, real distortions.

Database
# Unique

contents

# Video

Duration (sec)

# Distor-

tions

# Video

contents

# V-Patch

contents
Distortion type

Subjective study

framework
# Annotators # Annotations

MCL-JCV (2016) [72] 30 5 51 1,560 0 Compression In-lab 150 78K

VideoSet (2017) [73] 220 5 51 45,760 0 Compression In-lab 800 -

UGC-VIDEO (2019) [39] 50 > 10 10 550 0 Compression In-lab 30 16.5K

CVD-2014 (2014) [46] 5 10-25 - 234 0 In-capture In-lab 210 -

LIVE-Qualcomm (2016) [11] 54 15 6 208 0 In-capture In-lab 39 8.1K

KoNViD-1k (2017) [23] 1,200 8 - 1,200 0 In-the-wild Crowdsourced 642 ≈ 205K

LIVE-VQC (2018) [57] 585 10 - 585 0 In-the-wild Crowdsourced 4,776 205K

YouTube-UGC (2019) [74] 1,500 20 - 1,500 4,500 In-the-wild Crowdsourced - ≈ 600K

Proposed database (LSVQ) 38, 811 5-12 - 38, 811 116, 433 In-the-wild Crowdsourced 6, 284 5, 545, 594

thors of [79] proposed a general-purpose NR VQA frame-

work based on weakly supervised learning and a resam-

pling strategy. The NR VSFA [37] model uses a CNN

to extract frame-wise features followed by a gated recur-

rent unit to capture temporal features. These, and other

attempts [70, 71, 79, 37] mostly perform well on legacy

datasets [56, 72, 69] and struggle on in-the-wild UGC

datasets [57, 74, 23]. MLSP-VQA [19] reports high per-

formance on [23], but their code is not available, and we

have been unable to reproduce their reported results.

3. Large-Scale Dataset and Human Study

Next, we present details of the newly constructed video

quality dataset and the subjective quality study we con-

ducted on it. The new database includes 38, 811 videos

and 116, 433 “v-patches” extracted from them, on which

we collected about 5.5M quality scores in total from around

6, 300 unique subjects. This new resource is significantly

larger and more diverse than any legacy (synthetic dis-

tortion) databases [56, 12, 72, 73] or in-the-wild crowd-

sourced datasets [23, 57, 74] (26 times larger than [74]).

We refer to the proposed dataset as the Large-Scale Social

Video Quality (LSVQ) Database.

3.1. Building the Dataset

3.1.1 UGC-Like Data Collection and Sampling

We selected two large public UGC video repositories to

source our data: the Internet Archive (IA) [61] and YFCC-

100M [64], and collected a total of 400, 000 videos from

them. Each video was randomly cropped to an average du-

ration 7 seconds1 using ffmpeg [2].

Sampling “UGC-like” videos: Our dataset distinguishes

itself from other in-the-wild video datasets in several ways.

First, unlike KoNViD-1k [23], we did not restrict the col-

lected videos to have fixed resolutions or aspect ratios, mak-

ing the proposed dataset much more representative of real-

world content. Second, we did not apply scaling or further

processing which could affect the quality of the content. Fi-

nally, to obtain “UGC-like” videos, we used a mixed integer

1Cropping to a fixed duration was not possible, since a video must begin

with a key frame to be decoded properly.

programming method [67] to match a set of UGC feature

histograms. Specifically, we computed the following 26
holistic spatial and temporal features on two video collec-

tions: (a) our aforementioned 400K video collection from

IA and YFCC-100M and (b) 19K public, randomly selected

videos from a social media website:

• Absolute Luminance L = R+G+B.

• Colorfulness using [21].

• RMS Luminance Contrast [48].

• Number of detected faces using [1].

• Spatial Gaussian Derivative Filters (3 scales, 2 orienta-

tions) from Leung-Malik filter bank [36].

• Temporal Gaussian Derivatives (3 scales) first averaged

along temporal dimension, followed by computing the

mean and standard deviation along the spatial dimension.

The first five (spatial) features were computed on each

frame, then the means and standard deviations of these fea-

tures across all frames were obtained as the final features.

As mentioned, we sampled and matched feature his-

tograms and in the end, arrived at about 39,000 videos,

with roughly equal amounts from IA and YFCC-100M. Fig.

2 shows 16 randomly selected video frames from LSVQ,

while Fig. 3 plots the diverse sizes, aspect ratios and dura-

tions of the final set of videos. It is evident that we obtained

a diverse UGC video dataset that is representative of con-

tent, resolution, aspect ratios, and distortions.

Fig. 2: Sample video frames from the new database, each resized to fit. The actual

videos are of highly diverse sizes and resolutions.
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Fig. 3: Left: Scatter plot of video width versus video height with marker size in-

dicating the number of videos having a given dimension in the new LSVQ database.

Right: Histogram of the durations (in seconds) of the videos.

3.1.2 Cropping Video-Patches

To closely study and model the relationship between global

and local spatio-temporal qualities, we randomly cropped

three different kinds of video patches or “v-patches” from

each video: a spatial v-patch (sv-patch), a temporal

v-patch (tv-patch), and a spatio-temporal v-patch (stv-

patch). All three patches are videos obtained by cropping

an original video in space, time, or both space and time,

respectively (Fig. 4). All v-patches have the same spatial

aspect ratios as their source videos. Each sv-patch has the

same temporal duration as their source videos, but cropped

to 40% of spatial dimensions (16% of area). Each tv-

patch has the same spatial size as its source, but clipped

to 40% of temporal duration. Finally, each stv-patch was

cropped to 40% along all three dimensions. Every v-patch

is entirely contained within its source, but the volumetric

overlap of each sv-patch and tv-patch with the same-source

stv-patch did not exceed 25% (suppl. material).

Fig. 4: Three kinds of video patches (v-patches) cropped from random space-time

volumes from each video in the dataset. All v-patches are videos.

3.2. Subjective Quality Study

Amazon Mechanical Turk (AMT) was used to collect

human opinions on the videos and v-patches as in other

studies [57, 74, 76, 16, 40]. We launched two separate

AMT tasks - one for videos and the other for the three video

patches. A total of 6, 284 subjects were allowed to partici-

pate on both tasks. On average, we collected 35 ratings on

each video and v-patch. Subjects could participate in our

study through desktops, laptops, or mobile devices.

3.2.1 AMT Study Design

The human intelligence task (HIT) pipeline is shown in Fig.

5. Each task began with general instructions, followed by

a related quiz to check subjects’ comprehension of the in-

structions, which they had to pass to proceed further. Dur-

ing training, each subject rated 5 videos to become famil-

Fig. 5: Study workflow for both video and v-patch sessions.

iar with the interface and the task. Then, they entered the

testing phase, in which they rated 90 videos. Each video

was played only once, following which the subject rated

the video quality on a scale of 0-100 by sliding a cursor

along the rating bar (suppl. material). Subjects could report

a video as inappropriate (violent or pornographic), static or

incorrectly oriented. We ensured that each video was down-

loaded before playback to avoid rebuffering and stalling.

In the end, each subject answered several survey questions

about the study conditions and their demographics.

3.2.2 Subject Rejection

Next, we summarize the several checks we employed at var-

ious stages of the AMT task to identify and eliminate un-

reliable subjects [57, 16] and participants with inadequate

processing or network resources.

During Instructions: If a participant’s browser window

resolution, version, zoom, and the time taken to load videos

did not meet our requirements (suppl. material), they were

not allowed to proceed.

During Training: Although we ensured that each video

was entirely downloaded prior to viewing, we also checked

for any potential device-related video stalls. If the delay

on any training video exceeded 2 seconds, or the total delay

over the five training videos exceeded 5 seconds, the subject

was not allowed to proceed (without prejudice). They were

also stopped if a negative delay was detected (e.g., using

plugins to speed up the video).

During Task: At the middle of each subject’s task, we

checked for instability of the internet connection, and if

more than 50% of the videos viewed until then had suffered

from hardware stalls, the subject was disqualified. We also

checked whether the subject had been giving similar quality

scores to all videos, or was nudging the slider only slightly,

both indicative of insincere ratings.

Post task: In the test phase, of the 90 videos, 4, chosen at

random, were repeated (seen twice at separate points), while

another 4 were “golden” videos from KoNViD-1k [23], for

which subjective ratings were available. After each task, we

rejected a subject if their scores on the same repeated videos

or on the gold standard videos were not similar enough.

Through all these careful checks, a total of 1,046 subjects

were rejected over all sessions.

3.2.3 Data Cleaning

Following the subject rejection, we conducted extensive

data cleaning: (1) We excluded all scores provided by the

subjects who were blocked, or for whom > 50% of the
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Fig. 6: Scatter plots of patch-video MOS correlations Video MOS vs sv-

patch (left), tv-patch (middle) and stv-patch (right) MOS cropped from the same

video.

videos stalled during a session. (2) We removed ratings

given by people who did not wear their prescribed lenses

during the study (1.13%), as uncorrected vision could af-

fect perceived quality. (3) We applied ITU-R BT.500-14

[25] (Annex 1, Sec 2.3) standard rejection to screen the re-

maining subjects. This resulted in 301 subjects being re-

jected (about 2.6%). (4) To detect (and reject) outliers, we

first calculated the kurtosis coefficient [3] of each score dis-

tribution, to determine normality. We then applied the Z-

score method in [24] if the distribution deemed Gaussian-

like, and the Tukey IQR method [66] otherwise (suppl. ma-

terial). The total number of ratings collected after cleaning

was around 5.5M (1.4M on videos and 4.1M on v-patches).

3.2.4 Data Analysis

Inter-subject consistency: On the cleaned data, we con-

ducted an inter-subject consistency test [76, 57]. Specifi-

cally, we randomly divided the subjects into two equal and

disjoint sets and computed the Spearman Rank Correlation

Coefficient (SRCC) [31] between the two sets of MOS over

50 such random splits. We achieved an average SRCC of

0.86 on full videos, and 0.71, 0.71 and 0.67 for sv-patches,

tv-patches, and stv-patches, respectively. This indicates a

high degree of agreement between the human subjects, im-

plying a successful screening process (suppl. material).

Intra-subject consistency: We computed the Linear Cor-

relation Coefficient (LCC) [50] between subjective MOS

against the original scores on the “golden” videos, obtaining

a median PCC of 0.96 on full videos, and 0.946, 0.95, and

0.937 for sv-patches, tv-patches, and stv-patches, respec-

tively. These high correlations further validate the efficacy

of our data collection process.

Relationship between patch and video quality: Fig 6

shows scatter plots of the video MOS against each type of v-

patch MOS. The calculated SRCC between the video MOS

and the sv-patch, tv-patch and stv-patch MOS was 0.69,

0.77, and 0.67 respectively, indicating strong relationships

between global and local quality, even though the v-patches

are relatively small volumes of the original video data.

MOS Distributions: Fig. 7 plots the MOS distribution of

the videos in the new dataset as compared to other popular

“in-the-wild” video quality databases [23, 57, 74]. The new

dataset has a narrower distribution than the others, which

again, matches actual social media data. Such a narrow

distribution makes it more challenging to create predictive

models that can parse finely differing levels of quality.

Fig. 7: Ground Truth MOS histograms of four “in-the-wild” databases. Starting

from left, proposed LSVQ dataset, KoNViD-1k [23], LIVE-VQC [57], and YouTube-

UGC [74].

4. Modeling a Blind Video Quality Predictor

Taking advantage of the unique potential of the new

dataset (Sec. 3), we created a deep video quality predic-

tion model, which we refer to as Patch-VQ (PVQ), and a

spatio-temporal quality mapper called PVQ-Mapper, both

of which we describe next.

4.1. Overview

Contrary to the way most deep image networks are

trained, we did not crop, subsample, or otherwise process

the input videos. Any such operation would introduce addi-

tional spatial and/or temporal artifacts, which can greatly af-

fect video quality. Processing input videos of diverse aspect

ratios, resolutions, and durations, however, makes training

an end-to-end deep network impractical. To address this

challenge, PVQ extracts spatial and temporal features on

unprocessed original videos, and uses them to learn the lo-

cal to global spatio-temporal quality relationships. As illus-

trated in Fig 8, PVQ involves three sequential steps: feature

extraction, feature pooling, and quality regression. First, we

extract features from both the 2D and 3D network streams,

thereby capturing the spatial and temporal information from

the whole video. Three kinds of v-patch features are also

extracted from the output of both networks, using spatial

and temporal pooling layers to capture local quality infor-

mation. Finally, the pooled features from the video and the

v-patches are processed by a time series network that ef-

fectively captures perceptual quality changes over time and

predicts a single quality score per video. We provide more

details of each step below.

4.2. Feature Extraction

To capture the spatial aspects of both perceptual video

quality and frame content, we extracted per frame (2D) spa-

tial features using the PaQ-2-PiQ backbone pre-trained on

the LIVE-FB Dataset [76]. To capture temporal distortions,

such as flicker, stutter, and focus changes, we extracted

spatio-temporal (3D) features using a 3D ResNet-18 [20]

backbone, pre-trained on the Kinetics dataset [29].

4.3. Feature Pooling

Spatial and temporal pooling is applied in stages to ex-

tract features from the specified spatio-temporal regions of
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Fig. 8: Illustrating the proposed PVQ model which involves 3 sequential steps:

feature extraction, spatio-temporal pooling, and temporal regression (Sec. 4.1).

interest (v-patches), allowing us to model local-to-global

space-time quality relationships.

Spatial Pooling: The extracted 2D and 3D features are in-

dependently passed through a spatial RoIPool (region-of-

interest pooling) layer [17, 18], with regions specified by

the 3D v-patch coordinates. RoIPool helps compute a fea-

ture map with a fixed spatial extent of 2 × 2. The RoIPool

layer generates 4 feature vectors of size 2048 per frame and

video clip, for all three v-patches and the full video.

Temporal Pooling: The RoIPool layer is followed by an

SoIPool (segment-of-interest pooling) layer [9] that helps

compute a feature map with a fixed temporal extent. Specif-

ically, an SoIPool layer with a fixed temporal extent of 16
is applied on both 2D and 3D features of each v-patch and

the full video. The SoIPool layer yields 4 feature vectors of

size 16× 2048 per all three v-patches and the full video.

4.4. Temporal Regression

The resulting space-time quality features are fed to In-

ceptionTime [13], a state-of-the-art deep model for Time

Series Classification (TSC). InceptionTime consists of a se-

ries of inception modules (with intermittent residual con-

nections) followed by a global average pooling and a fully

connected layer. The inception modules learn changes in

the quality features over time, which is crucial to accurately

predict global video quality. Although RNNs have been

used to model temporal video quality [37, 77], we have

found that InceptionTime [13] is much faster and easier to

train compared to RNN, does not suffer from vanishing gra-

dients, and gives better performance.

5. Experiments

Train and test splits: The entire dataset of videos, v-

patches, and human annotations was divided into a training

and two test sets. We first selected those videos having both

of their spatial dimensions greater than 720, and reserved it

for use as a secondary testing set (about 9% of the LSVQ

Table 2: Performance on full-size videos in the LSVQ dataset. Higher

values indicate better performance. Picture based model is italicized.

Test Test-1080p

Model SRCC LCC SRCC LCC

BRISQUE [45] 0.579 0.576 0.497 0.531

TLVQM [35] 0.772 0.774 0.589 0.616

VIDEVAL [65] 0.794 0.783 0.545 0.554

VSFA [37] 0.801 0.796 0.675 0.704

PVQ (w/o v-patch) 0.814 0.816 0.686 0.708

PVQ (w/ v-patch) 0.827 0.828 0.711 0.739

dataset: 3.5K videos and 10.5K v-patches). About 93.2%

of the videos in the reserved set have resolutions 1080p or

higher, hence we will refer to it as “Test-1080p”. On the

remaining videos, we applied a typical 80-20 split, yielding

about 28.1K videos (and 84.3K v-patches) for training, and

7.1K videos (and 21.3K v-patches) for testing.

Input processing and training: Each video was divided

into 40 clips of 16 continuous frames. For feature extrac-

tion, we used a batch size of 8 for 3D ResNet-18 and 128 for

PaQ-2-PiQ. For spatial and temporal pooling, we provide

sets of spatio-temporal coordinates (x1, x2, y1, y2, t1, t2) of

each v-patch. When training InceptionTime, we used a

batch size of 128 and L1 loss to predict the output quality

scores (details in suppl. material).

Baselines and metrics: The model comparisons were done

on both videos and v-patches. We compared with a popu-

lar image model BRISQUE [45], by extracting frame-level

features and training an SVR and two other shallow NR

VQA models, TLVQM [35] and VIDEVAL [65], that per-

form very well on existing UGC video databases. We also

trained the VSFA [37], which extracts frame-level ResNet-

50 [22] features followed by a GRU layer to predict video

quality. To study the efficacy of our local-to-global model,

we trained two versions of our PVQ model, one with, and

the other without the spatio-temporal v-patches. All mod-

els were trained and evaluated on the same train/test splits.

Following the common practice in the field of video quality

assessment, we report the performance using the correlation

metrics SRCC and LCC.

5.1. Predicting global video quality

The quality prediction performance of the compared

models on the new LSVQ dataset is summarized in Table

2. As is evident, the shallow learner using traditional fea-

tures (BRISQUE [45]) did not perform well on our dataset.

TLVQM [35], VSFA [37], and VIDEVAL [65] performed

better, indicating that they are capable of learning com-

plex distortions. While both PVQ models (with and without

patches) outperformed other models, including the v-patch

data resulted in a performance boost on both test sets. Par-

ticularly on higher resolution test videos (Test-1080p), the

proposed PVQ model (trained with v-patches) outperforms

the strongest baseline by 3.6% on SRCC.
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Table 3: Results on the three v-patches in the LSVQ dataset. Picture based

model is italicized.

sv-patch tv-patch stv-patch

Model SRCC LCC SRCC LCC SRCC LCC

BRISQUE [45] 0.469 0.417 0.465 0.485 0.476 0.462

TLVQM [35] 0.575 0.543 0.523 0.536 0.561 0.563

VIDEVAL [65] 0.596 0.570 0.633 0.634 0.662 0.636

VSFA [37] 0.654 0.609 0.688 0.681 0.685 0.670

PVQ (w/o v-patch) 0.723 0.717 0.696 0.701 0.651 0.643

PVQ (w/ v-patch) 0.737 0.720 0.701 0.700 0.711 0.707

Table 4: Ablation studies conducted on the Test split of the LSVQ dataset.

Higher values indicate better performance.

Model SRCC LCC # parameters

PVQ2D (w/ v-patch) 0.774 0.774 16.3 M

PVQ3D (w/ v-patch) 0.805 0.805 38.3 M

PVQ (w/ sv-patch) 0.815 0.815 54.2 M

PVQ (w/ tv-patch) 0.817 0.818 54.2 M

PVQ (w/ stv-patch) 0.824 0.826 54.2 M

PVQMobile (w/ v-patch) 0.774 0.779 10.9 M

Performance on each v-patch: Table 3 sheds light on the

capability of the compared models in predicting local qual-

ity. The two PVQ models delivered the best performance on

all three types of v-patches, with the PVQ model trained on

v-patches outperforming all baselines. From Tables 2 and 3,

we may conclude that PVQ effectively captures global and

different forms of local spatio-temporal video quality.

Contribution of 2D and 3D streams: We also studied the

contribution of the 2D and 3D features towards the perfor-

mance of PVQ by training separate models on 2D (PVQ2D)

and 3D (PVQ3D) features alone (Table 4). As can be ob-

served, PVQ3D achieves higher performance than PVQ2D

on both test sets. This further asserts that 3D features are

more capable of capturing complex spatio-temporal distor-

tions, and thus more favorable for VQA.

Contribution of each v-patch: To study the relative con-

tributions of the three types of v-patches in PVQ, we trained

three separate models utilizing each patch separately (Table

4). Among the three, we observe that the highest perfor-

mance is achieved when trained on stv-patches. Though

stv-patches have relatively the least volume (Fig. 4), they

contain the most localized information on video quality dis-

tortions, which could explain its better performance.

Mobile-friendly version: We also implemented an effi-

cient version of PVQ for mobile and embedded vision appli-

cations (PVQMobile), using the 2D and 3D versions of Mo-

bileNetV2 [54, 34] for the two branches, and by reducing

the RoIPool output size to 1 × 1. Though there is a 6%

decrease in performance as compared to PVQ (w/ v-patch),

our mobile model requires only 1/5 as many parameters

(Table 4) compared to PVQ (w/ v-patch) and 1/2 as many

parameters compared to VSFA [37] (24M parameters).

Failure cases: The video in Fig 9 (a) was rated with a high

score (MOS = 75.7) by human subjects, but was underrated

by PVQ (predicted MOS = 47.4). We believe that an aes-

Fig. 9: Failure cases: Frames from video examples where predictions

differed the most from the human quality judgements.

thetic “bokeh” blur effect was interpreted as high-quality

content by subjects but such high levels of blur caused the

model to predict low quality. The video in Fig 9 (b) was

overrated by PVQ (predicted MOS = 54.7), considerably

higher than the subject rating (MOS = 21). The video is of

a computer-generated game and does not appear very dis-

torted. Yet, the subjects may have expected higher resolu-

tion content for modern video games. These cases illustrate

the challenges of creating models that closely align with hu-

man perception, while also highlighting the content diver-

sity in the proposed dataset.

5.2. Predicting perceptual quality maps

We adapted the PVQ model (Sec. 4) to compute spa-

tial and temporal quality maps on videos. Because of its

flexible network architecture, PVQ is capable of predicting

quality on any number (and sizes) of local spatio-temporal

patches of an input video. We exploited this to create a tem-

poral quality series and a first-of- its-kind video quality map

predictor, dubbed PVQ Mapper.

Temporal quality series: A video is uniformly divided into

16 small temporal clips of 16 (continuous) frames each2 and

a single quality score per clip is computed, thus capturing a

temporal series of perceptual qualities across a video.

Space-time quality maps: For space-time quality maps,

we further divide each frame of each temporal clip defined

above into a grid of 16× 16 non-overlapping spatial blocks

of the same aspect ratio as the frame and compute a local

space-time video clip quality. Bi-linear interpolation was

applied to spatially re-scale the spatio-temporal quality pre-

dictions to match the input dimensions.

Fig. 10 depicts the temporal quality series and magma

color space-time quality maps that were α-blended (α =
0.8) with original frames picked from the center of each

clip. The series shows the video quality evolving over time.

As may be observed, PVQ Mapper was able to accurately

capture local quality loss, distinguishing blurred and under-

exposed areas from high-quality regions, and high-quality

stationary backgrounds from fast-moving, streaky objects.

Do v-patches matter for quality maps? Fig. 11 shows

spatial quality maps on two sample videos generated by

2By changing the number of frames in each clip, the quality predictions

can be made less or more dense.
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Fig. 10: Space-time quality maps: Space-time quality maps generated on

a video using the PVQ Mapper (Sec. 5.2), and sampled in time for display.

Four video frames are shown at top, with spatial quality maps (blended

with the original frames using magma color) immediately under, while the

bottom plots show the evolving quality of the video. Best viewed in color.

PVQ Mapper, trained with and without using v-patches. In

Fig. 11 (a), the object in the foreground is focus blurred,

whereas in Fig. 11 (b), the dog is motion blurred and the

desk is underexposed. These local quality distortions are

not captured with PVQ Mapper (w/o v-patch) as indicated

in the middle row, but are distinctly evident in the output of

PVQ Mapper (w/ v-patch) as indicated in the bottom row.

This indicates that PVQ Mapper that uses v-patches is able

to better learn from both global and local video quality fea-

tures and human judgments of them, and hence predict more

accurate quality maps.

Fig. 11: Improvement in quality maps when PVQ-Mapper is trained

with patches illustrating that learning from both local space-time and

global video quality yields more accurate predictions. Best viewed in color.

5.3. Cross­database comparisons

To emphasize the validity and generalizability of the

PVQ model, we also tested it on the two popular, yet much

smaller “in-the-wild” video databases: KoNViD-1k [23]

and LIVE-VQC [57] (Table 1). We compared the perfor-

mance of PVQ against other popular models when each

model was separately trained and tested on both datasets.

As shown in Table 5, PVQ competes very well with other

models on KoNViD-1k, while improves the SRCC on

LIVE-VQC by 2.8% compared to the strongest baseline. To

further study the generalizability of PVQ, we also compared

Table 5: Cross-database comparison 1: Performance when all models are

separately trained and tested on KoNViD-1k [23] and LIVE-VQC [57].

KoNViD-1k [23] LIVE-VQC [57]

Model SRCC LCC SRCC LCC

BRISQUE [45] 0.657 0.658 0.592 0.638

NRVQA-NSTSS [49] 0.642 0.653 - -

V-BLIINDS [53] 0.710 0.704 0.694 0.718

VSFA [37] 0.773 0.775 0.773 0.795

TLVQM [35] 0.773 0.769 0.799 0.803

VIDEVAL [65] 0.783 0.780 0.752 0.751

RIRNet [10] 0.775 0.7812 - -

PVQ (w/o v-patch) (Sec. 4) 0.791 0.786 0.827 0.837

Table 6: Cross-database comparison 2: Performance when all models are

separately trained on the new LSVQ database, then evaluated on KoNViD-

1k [23] and LIVE-VQC [57] without fine-tuning.

KoNViD-1k [23] LIVE-VQC [57]

Model SRCC LCC SRCC LCC

BRISQUE [45] 0.646 0.647 0.524 0.536

TLVQM [35] 0.732 0.724 0.670 0.691

VIDEVAL [65] 0.751 0.741 0.630 0.640

VSFA [37] 0.784 0.794 0.734 0.772

PVQ (w/o v-patch) (Sec. 4) 0.782 0.781 0.747 0.776

PVQ (w/ v-patch) (Sec. 4) 0.791 0.795 0.770 0.807

the performance of all models when trained on the pro-

posed dataset (LSVQ) but tested on the two aforementioned

datasets. From Table 6, it may be seen that PVQ transferred

very well to both datasets. Specifically, our model outper-

forms the strongest baseline by 0.7% and 3.6% boost in

SRCC on KoNViD-1k and LIVE-VQC respectively. This

degree of database independence, both highlights the rep-

resentativeness of the new LSVQ dataset and the general

efficacy of the proposed PVQ model.

6. Concluding Remarks

Predicting perceptual video quality is a long-standing

problem in vision science, and more recently, deep learn-

ing. In recent years, it has dramatically increased in im-

portance along with tremendous advances in video capture,

sharing, and streaming. Accurate and efficient video qual-

ity prediction demands the tools of large-scale data collec-

tion, visual psychometrics, and deep learning. To progress

towards that goal, we built a new video quality database,

which is substantially larger and diverse than previous ones.

The database contains patch-level annotations that enable

us (and others) to make global-to-local and local-to-global

quality inferences, culminating in the accurate and gener-

alizable PVQ model. We also created a space-time video

quality mapping model, called PVQ Mapper, which uti-

lizes learned patch quality attributes to accurately infer lo-

cal space-time video quality, and is able to generate accu-

rate spatio-temporal quality maps. We believe that the new

LSVQ dataset, the PVQ model, and PVQ Mapper, can sig-

nificantly advance progress on the UGC VQA problem, and

enable quality-based monitoring, ingestion, and control of

billions of videos streamed on social media platforms.
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