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Abstract

Deploying deep convolutional neural networks on ultra-

low power systems is challenging due to the extremely lim-

ited resources. Especially, the memory becomes a bottle-

neck as the systems put a hard limit on the size of on-chip

memory. Because peak memory explosion in the lower lay-

ers is critical even in tiny models, the size of an input im-

age should be reduced with sacrifice in accuracy. To over-

come this drawback, we propose a novel Raster-Scanning

Network, named RaScaNet, inspired by raster-scanning in

image sensors. RaScaNet reads only a few rows of pixels

at a time using a convolutional neural network and then se-

quentially learns the representation of the whole image us-

ing a recurrent neural network. The proposed method oper-

ates on an ultra-low power system without input size reduc-

tion; it requires 15.9–24.3× smaller peak memory and 5.3–

12.9× smaller weight memory than the state-of-the-art tiny

models. Moreover, RaScaNet fully exploits on-chip SRAM

and cache memory of the system as the sum of the peak

memory and the weight memory does not exceed 60 KB,

improving the power efficiency of the system. In our ex-

periments, we demonstrate the binary classification perfor-

mance of RaScaNet on Visual Wake Words and Pascal VOC

datasets.

1. Introduction

With recent advances in deep learning, complex com-

puter vision applications run on edge devices, which re-

sults in various benefits, including improving privacy, re-

ducing power consumption, and personalizing predictions.

There has been emerging interest in expanding the scope

of machine learning to ultra-low power systems, called

TinyML [2]. The goal of TinyML is to perform various

always-on use-cases, typically in the mW range and below,

powered by general purpose microcontroller units (MCUs)

or application specific integrated circuits (ASICs) [1].
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Figure 1. Comparison between RaScaNet and existing tiny

models in terms of memory usage. RaScaNet not only fits

into SRAM but also takes advantage of cache memory.

Despite many successes of deep neural networks in com-

puter vision applications [13, 20, 38], it is still challeng-

ing to deploy a convolutional neural network (CNN) on an

MCU due to the on-chip memory restrictions and the prob-

lems related to power consumption and latency [12, 21].

Typical microcontrollers only have limited on-chip memory

of 100–320 KB (SRAM), and the peak memory of TinyML

models should not exceed the on-chip SRAM. Moreover,

it is highly recommended to maintain the sum of the peak

memory and the weight memory below the size of on-

chip SRAM. Otherwise, we have to fetch the partial model

weights layer by layer from the flash storage (256 KB–1

MB), which increases both read access time and cache miss

ratio.

While previous works [22, 30] focused only on reducing

the peak memory below the on-chip SRAM (320 KB), our

method reduces both peak and weight memory significantly

even below 60 KB (Fig. 1). Such ultra-low memory foot-

print is crucial for low-power platforms, as it reduces the

number of accesses to memory.

Considering the objective of running TinyML with the

limited on-chip memory and power, the conventional CNNs

fetching a full-frame image at once would be inappropriate.
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Figure 2. The pixels in image sensor are first digitized by

an analog-to-digital converter (ADC) in a raster-scan order.

Then, the converted pixel rows are stored in the buffer that

can hold only k rows for image signal processing (ISP) al-

gorithms. To process conventional CNNs, (a) the processed

rows are transmitted to the applications, which have to wait

until the whole image is received. On the other hand, (b)

RaScaNet can operate on sensor with minimum peak mem-

ory by exploiting the data stream of an image sensor.

Even a small model is not free from the peak memory explo-

sion due to the quadratic increase of memory requirements

with respect to image size.

To tackle this problem, we propose a novel architecture,

named RaScaNet, which processes non-overlapping sub-

images sequentially instead of processing full-frame images

as a whole. This aligns well with the modern image sensors

that read a small number of rows at a time sequentially. By

exploiting the data stream of an image sensor, RaScaNet can

operate on sensor with minimum peak memory (Fig. 2).

To be specific, the proposed algorithm scans an input im-

age from top to bottom using a CNN. Next, a series of the

features obtained from the CNN are sequentially fed into a

recurrent neural network (RNN) to learn the final represen-

tation of the image. In this model, the RNN learns semantic

representations based on the low-level information encoded

by the CNN.

Our contributions are summarized as below:

1. We propose a novel deep neural network architecture

to fit in the ultra-low power systems, called RaScaNet,

which processes input images in a raster-scan manner.

2. RaScaNet achieves state-of-the-art Pareto efficiency in

accuracy vs. memory; it requires 15.9–24.3× smaller

peak memory and 5.3–12.9× smaller weight memory

than the state-of-the-art tiny models while still present-

ing competitive accuracy.

3. We design three components in RaScaNet—multi-

head CNN, attention mechanisms, and confidence

loss—for its effectiveness on practical computer vision

tasks. We also introduce an early termination scheme

for further acceleration.

2. Related Work

Recent studies on efficient deep learning can be catego-

rized into the following four groups. First, some approaches

incorporate efficient operations, such as depthwise sepa-

rable convolution [6], to reduce computational cost with-

out sacrificing accuracy. Xception [6], MobileNet [15, 16,

31], and EfficientNet [33] are well-known models that use

depthwise separable convolutions. Second, model com-

pression techniques, such as quantization [5, 18, 39] and

pruning [26, 27], are employed to reduce the model size.

Third, neural architecture search (NAS) techniques identify

optimized models [24, 25, 29] via automated learning pro-

cedure without hand-crafted heuristics. Several NAS ap-

proaches [3, 14, 32] aimed to learn stronger models through

the hardware feedback in the search loop. Last, there is

a stream of work for improving the computational cost by

using small image patches. GFNet [35] performs efficient

image classification by processing a sequence of relatively

small input patches, which are selected from the original

image dynamically. ViT [10] utilizes fewer computational

resources to train but achieves comparable performance to

convolutional networks using Transformer [34] with 16x16

image patches as an input.

Although the aforementioned techniques achieve signif-

icant advances in efficient deep learning, deploying deep

neural networks on an MCU is much more challenging, es-

pecially because of their extremely limited memory capac-

ity. To reduce the peak memory requirements of networks,

Saha et al. [30] proposed to use RNN pooling (RNNPool),

which reduces the size of the activation maps in the first

few layers by 4–8× using RNNs. This is based on the

observation that the peak memory usage depends mostly

on the layers in the early stages of CNNs. However, RN-

NPool still suffers from peak memory explosion when deal-

ing with high resolution images because it employs conven-

tional convolutions after the RNN pooling layer. Contrary

to RNNPool, our approach adopts an RNN for sequential

processing of CNN features by scanning an image from top

to bottom.

Lin et al. [22] have introduced a co-design frame-

work, referred to as MCUNet, based on a NAS method

for resource constrained systems (TinyNAS) along with

a lightweight inference engine (TinyEngine). MCUNet

achieves the state-of-the-art accuracy with smaller peak

memory than the model learned by ProxylessNAS [3] and

better efficiency than MobileNetV2. MCUNet has ad-

vanced the Pareto optimal frontier in terms of accuracy vs.
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Figure 3. Illustration of the RaScaNet architecture. Inspired by the raster-scanning ISP in image sensors, our approach

operates on T sub-images sequentially. RNN captures the visual context by scanning the image from top to bottom. A fully

connected layer takes the last hidden state of the RNN to compute logits for classification. In addition, attention is adopted

to enhance the quality of the features extracted from a CNN using the RNN hidden state as a query.

peak memory compared with the previous methods. How-

ever, it still suffers from the peak memory expansion in the

first few layers of the network. Conventional CNNs based

on full-frame inputs put inevitably hard limitation on their

input sizes, and MCUNet is not an exception.

All existing methods for peak memory reduction do not

optimize the model size because MCUs are provided with

extra 1–2 MB of flash storage to store network models.

However, minimizing the number of network parameters is

also important in TinyML because loading the full model

into on-chip SRAM reduces the read access time to the flash

storage and the number of cache misses significantly.

Most prior works, except MCUNet [22], use the tricks

proposed in MobileNetV2 [31] for calculating the peak

memory of inverted residual blocks. However, such a trick

is not desirable for MCUs because it increases cache misses

and consequently degrades runtime performance. With-

out the trick, the peak memory of MobileNetV2 (0.35×)

increases by approximately three times (from 250 KB to

750 KB) in the first inverted residual block. The proposed

method is also free from this limitation.

CIFAR10 [19] and ImageNet [8] datasets are frequently

used for benchmarking the mobile-friendly models. How-

ever, both datasets are inappropriate for representing the mi-

crocontroller use-cases because of their small image reso-

lution and an excessive number of classes [7]. Chowdh-

ery et al. [7] have presented a new dataset, referred to as

Visual Wake Words, which is parsed from COCO2014 [23]

for serving a binary classification problem: whether a per-

son is present in an image. The performances of several

existing mobile-friendly models [16, 31, 32] have been re-

ported to achieve 85%–90% accuracy under strict limitation

of peak memory to fit in 250 KB as well as the restriction

of multiply-accumulate operations (MACs) below 60M.

3. Method

The standard CNNs require more peak memory in the

lower layers, and memory requirements gradually decrease

as the feature passes to the upper layers. Peak memory at the

initial stage of inference depends heavily on the input size,

and feeding full-frame inputs to CNNs inevitably causes a

bottleneck in TinyML models. RaScaNet aims to overcome

this inherent limitation of CNNs by processing a group of

horizontal lines at a time using a combination of CNN and

RNN. A CNN extracts the features of each group sequen-

tially which are then encoded using an RNN to learn the

context from the entire image.

This section describes the architecture, loss function, and

early termination scheme of the proposed model. The over-

all architecture of RaScaNet is illustrated in Fig. 3. We first

present the CNN architecture for feature extraction from a

set of rows. Next, we explain how to process the features

using an RNN sequentially, from top to bottom, to learn the

vertical context of the input image. Then, we introduce at-

tention modules for boosting the discriminativeness of the

features. Finally, we discuss the loss function and early ter-

mination scheme employed in our model.

3.1. CNN for Raster­Scanning Images

Let an input image tensor X ∈ R
3×h×w be divided into

a set of multiple rows as {xt}
T
t=1, where xt ∈ R

3×k×w

denotes a group of rows and T = ⌈h
k
⌉ is the number of
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Figure 4. Detailed architecture of a CNN in RaScaNet (e.g.,

2-head). For each input split into 3×5×w, the network

computes two stream features with c channels. The height

dimension is reduced to 1 by convolutional layers without

padding. Two features are then concatenated in the channel

dimension and projected onto a latent space of the hidden

state in the RNN.

groups. We read a sub-image xt (t = 1, . . . , T ) using a

multi-head CNN, as illustrated in Fig. 4. Let the ith head of

the CNN be Pi,t ∈ R
c×1×n. Then, with a set of features

from M heads, {Pi,t|i = 1, . . . ,M}, we first concatenate

and then project the resulting feature onto a latent space of

the RNN hidden state to obtain Ft ∈ R
d×1×n, which is

given by

Ft = conv([P1,t : P2,t : · · · : PM,t]; Θ
f ), (1)

where : denotes the concatenation in a channel direc-

tion, and Θf ∈ R
(c×M)×d×1 is the projection convolution

weight.

The integration of a multi-head CNN facilitates learn-

ing more diverse representations than traditional single-

head counterparts. In addition, using multiple heads based

on shallow CNNs is advantageous for resource-constrained

real-time applications compared with a single deep network

because the parallelized implementation of multiple heads

would improve processing speed; such a benefit is more

prominent in on-sensor systems based on ASICs.

Our CNN architecture is based on the standard convolu-

tion operators instead of the depthwise separable convolu-

tions [6], which show better trade-off between accuracy and

computational cost. This is because 1) we are more inter-

ested in the main idea of RaScaNet rather than its architec-

tural variations, and 2) we focus on the benefits of shallow

(with four layers) CNNs. The use of the shallow model im-

proves latency and reduces the model size by 5.3–12.9×
compared with other tiny models.

3.2. Convolutional RNN

RaScaNet employs an RNN to capture the vertical scene

context using the raster-scanned features from the CNN.

We choose a variant of GRU [4] for the sequential mod-

eling, which adopts 1D convolutions rather than fully con-

nected layers. In the network, the weights for the update

and forget gates are shared across pixels to facilitate learn-

ing universal rules. The use of the convolutional RNN en-

ables RaScaNet to hold both temporal (vertical) and transla-

tional (horizontal) invariance, which are inherent properties

of RNN and CNN, respectively.

We are given the projected feature Ft ∈ R
d×1×n by

Eq. (1), and the hidden state of the preceding RNN cell,

Ht−1 = [h1
t−1,h

2
t−1, ...,h

n
t−1] ∈ R

d×1×n, where d is the

size of hidden state, and n is the width (in other words, the

number of pixels). At the current timestep, the update of the

hidden state in the convolutional RNN, Ht, is given by

Rt = σ(convr([Ft : Ht−1])), (2)

Ut = σ(convu([Ft : Ht−1])), (3)

H̄t = tanh(convn([Ft : Ht−1 ⊙Rt])), (4)

Ht = (1−Ut)⊙ H̄t +Ut ⊙Ht−1, (5)

where σ denotes a sigmoid function, ⊙ denotes the

Hadamart product, and Rt and Ut are the outputs of the

forget gate and the update gate in GRU, respectively.

3.3. Attention

RaScaNet incorporates spatial and channel attention, us-

ing the preceding RNN cell as a query for boosting the dis-

criminativeness of the CNN features. The integration of

both attention modules effectively improves accuracy with

marginal increase of memory usage and computational cost.

Spatial Attention The goal of the spatial attention mod-

ule is to extract spatially distinct feature representations

based on the similarity to the hidden state in the preceding

RNN cell, Ht−1. This approach assumes that the informa-

tive locations in the feature map at timestep t − 1 are also

likely to be so in the next scan-line because of the spatial

smoothness property. We apply the spatial attention to each

of multiple heads in the CNN.

Specifically, we first apply a 1D convolution to Pi,t and

obtain Ki,t ∈ R
d×1×n as follows:

Ki,t = conv(Pi,t; Θ
k
i ), (6)

where Θk
i ∈ R

c×d×1 is a convolution weight parameter.

Next, we compute the correlation between the spatial loca-

tions using a matrix multiplication and obtain the similarity

matrix Si,t ∈ R
n×n, which is given by

Si,t = H⊤

t−1Ki,t. (7)
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Then, we apply a softmax function to Si,t and obtain

the attention map Āi,t ∈ R
n×n. The representation en-

coded with the spatial attention, denoted by P̄i,t ∈ R
c×1×n,

is given by

Vi,t = conv(Pi,t; Θ
v
i ), (8)

P̄i,t = Pi,t +Vi,tĀi,t, (9)

where Θv
i ∈ R

c×c×1 and Vi,t ∈ R
c×1×n are the corre-

sponding convolution weight and the feature map given by

another 1D convolution to Pi,t, respectively.

Channel Attention The goal of the channel attention is to

capture various discriminative information from our multi-

head CNNs effectively during the top-down scanning pro-

cess. The RNN hidden state from the preceding scan-line is

used to guide which channel to focus on, in the current tth

scan-line. Instead of using the conventional channel atten-

tion mechanisms [17, 36], which employs the global pool-

ing for squeezing spatial information, we apply a 1D con-

volution to learn the convolutional channel attention.

Given a set of features encoded with spatial attention,

{P̄i,t|i = 1, . . . ,M}, we concatenate the feature tensors

in a channel direction and obtain Ct ∈ R
(c×M)×1×n.

Then, we further concatenate Ct and Ht−1, which con-

structs C̃t ∈ R
(c×M+d)×1×n. The channel attention weight

Ãt ∈ R
(c×M)×1×n is derived from C̃t by integrating typi-

cal squeeze-and-excitation convolutions, which is given by

Ct = [P̄1,t : P̄2,t : · · · : P̄M,t], (10)

C̃t = [Ct : Ht−1], (11)

Ãt = σ(conve(convs(C̃t))). (12)

By incorporating the channel attention weights via a 1D

shared convolution, we assign a different attention weight

on each spatial locations in Ãt. The final representation

with the channel attention, F̃t ∈ R
d×1×n, is given by a

Hadamard product of Ct and Ãt followed by its projection

onto the latent space of Ht−1 as mentioned in Eq. (1).

F̃t = conv(Ct ⊙ Ãt; Θ
f ). (13)

3.4. Loss Function

RaScaNet maintains meaningful information, whereas

less critical features are forgotten via the RNN in the mid-

dle of the top-down scanning process. When the raster-

scanning reaches the bottom of the image, the last RNN

hidden state HT is employed to predict the class label as

follows:

ŷcls = φcls(P (HT )), (14)

where φcls is the last fully connected layers for binary clas-

sification and P (·) is the global pooling operator.

Figure 5. Visualization of the confidence pseudo-label yconf

of class “person” for negative (top) and positive (bottom)

images. The color bar at the right-hand side of each im-

age denotes the target class presence score (pseudo-label)

ranging from 0 (blue) to 1 (red).

Our loss function is composed of two terms: classifica-

tion loss and confidence loss. The classification loss, Lcls, is

given by the cross-entropy between a predicted score vector

and a one-hot ground-truth label. We introduce an addi-

tional classifier φconf to calculate the confidence loss Lconf
t

in each scan-line, where φconf is applied to the hidden state

of each RNN cell to predict whether the corresponding tth

scan-line contains the target or not. Note that φconf is used

only for training and not in the inference stage.

In practice, the confidence label for each scan-line is

easy to acquire if the detection bounding box annotation for

each target object is available. However, without such a

supervision, we provide an alternative approach: a pseudo-

label for each scan-line, denoted by yconf
t , based only on

image-level class label. To obtain the pseudo-label, we ap-

ply classifier φcls to Ht in the tth scan-line of a positive im-

age, whereas the pseudo-label is set to 0 for all scan-lines in

a negative image. Then, yconf
t is stated as

yconf
t (xt,Ht−1) =

{

φcls(P (Ht)), if ycls = 1

0, otherwise
(15)

where xt is the input for the tth scan-line and ycls is the

binary label of an input image X. We expect that φcls es-

timates more reliable pseudo-labels as training progresses.

Fig. 5 visualizes the estimated pseudo-label for six different

examples.

The total loss L is defined as follows:

L = Lcls + α

T
∑

t=1

Lconf
t , (16)

where α is a coefficient balancing two terms. Note that Lcls

is given by the cross-entropy loss between the ground-truth

label and the image-level prediction of the network while

Lconf
t is derived from the mean squared error between the
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Figure 6. Visualization of the class activation map (CAM) of class “person” for negative (top) and positive (bottom) images

in the VWW dataset. The activation of class “person” starts to be salient in the positive images when the uppermost parts of

target are raster-scanned. High intensity is maintained until the bottom of the images since the RNN tends to summarize all

the information in the past for classification at each scan-line.

pseudo-label and the predicted confidence score of the tth

scan-line.

3.5. Early Termination

In conventional CNNs, the whole image must be pro-

cessed for image-level classification. On the other hand,

RaScaNet can acquire the intermediate classification re-

sults in the middle of the scanning process before seeing

an entire image. Fig. 5(bottom) presents that the confi-

dence scores of positive images increase monotonically as

the scan progresses. To take advantage of the unique prop-

erty, RaScaNet can terminate the inference procedure if it

gains a sufficient confidence score, greater than or equal

to τ at an early stage as illustrated in Fig. 7(b). For im-

plementation, we apply the final classifier φcls to each hid-

den state Ht, which contains the information of the sub-

images scanned until the tth scan-line. The early termina-

tion scheme (RaScaNet-ET) reduces MACs by skipping the

(a) Scoreta < τ (b) Scoretb = τ (c) ScoreT > τ

Figure 7. Visualization of the early termination scenario

with three timesteps, ta < tb < T . (a) If RaScaNet is

not sure of target presence, the scan continues. (b) If RaS-

caNet is sufficiently confident about the presence, it stops

the process to (c) avoid the unnecessary computation.

remaining parts of the input image, which is specified in

Fig. 7(c).

4. Experiments

We evaluate RaScaNet on the Visual Wake Words

(VWW) [7] and Pascal VOC [11] datasets. To demonstrate

the effectiveness of our approach, we compare our method

with recent state-of-the-art tiny models [16, 22, 30, 31].

Moreover, following the design constraints of tiny vision

models in the microcontroller use-case [7], we set a hard

limit of 60M MACs per inference.

Implementation Details Unlike in conventional image

classification tasks, we first split an image into groups

of five-line images, which are then fed to RaScaNet se-

quentially. We adopt a batch-normalization and a ReLU

layer after each convolutional layer in a multi-head CNN.

In all experiments, the images for training and validation

are resized to four difference scales, 210×240, 175×200,

140×160, and 105×120. We perform data augmentation

using color-jittering, random cropping, and random hori-

zontal flipping. Training is based on the AdamW [28] op-

timizer with warmup and a cosine learning rate scheduler.

Moreover, we quantize both weight and activation in our

network to INT8 [37, 39] while the classifier with size about

0.6KB uses floating point numbers.

4.1. Visual Wake Words

The VWW dataset focuses on the binary classification

task: whether a person is present in an image. It is con-

structed by re-labeling the images in the publicly available

COCO dataset [23]; each image assigned a label, 1 or 0,

where 1 corresponds to a person. Note that VWW has 115K
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Figure 8. Comparison between RaScaNet and other state-of-the-art tiny models on the VWW dataset. The peak memory is

plotted in a log-scale. RaScaNet requires 15.9–24.3× smaller peak memory (left) and 5.3–12.9× smaller weight memory

(middle) compared with the state-of-the-art tiny model with a competitive accuracy. RaScaNet has less MACs than Mo-

bileNetV2 and RNNPool but comparable to MCUNet (right), which is partly because RaScaNet employs plain convolutions

instead of depthwise separable convolutions. MACs of RaScaNet can be further reduced by adopting an early termination

scheme (RaScaNet-ET). The peak memory for RNNPool [30] is calculated using the trick from MobileNetV2 [31]. The peak

memory and weight memory of RaScaNet-ET is identical to RaScaNet.

training images, and 47% of them have the “person” label.

The validation set contains 8K images in total.

Comparison with other models We compare RaS-

caNet to other state-of-the-art tiny models in terms of mem-

ory usage and accuracy (Fig. 8). RaScaNet requires 15.9–

24.3× smaller peak memory with an accuracy compara-

ble to MCUNet. The peak memory of RaScaNet is 4.2×
smaller than RNNPool despite its higher accuracy by 1.9%
points. Moreover, RaScaNet achieves 5.3–12.9× smaller

model size compared with other methods. By reducing the

model size dramatically, below 50 KB, RaScaNet can be

fully loaded in the commercial on-chip SRAM.

Applying RaScaNet-ET, the early termination model in-

troduced in Sec. 3.5, the MACs reduce by 17.1% on average

for 210×240 images without accuracy drop compared with

the basic RaScaNet model. RaScaNet-ET achieves state-of-

the-art Pareto efficiency on accuracy vs. MACs.

Qualitative analysis The Fig. 6 illustrates the class acti-

vation maps (CAMs) of the RNN hidden state for some ex-

amples in the VWW dataset. The CAMs for class “person”

(CAMperson) are typically plane in negative images (Fig. 6

top). In contrast, the CAMperson in positive images iden-

tifies proper locations of the target objects (Fig. 6 bottom).

The CAMperson starts to be salient when the uppermost parts

of the target are raster-scanned and maintain the high val-

ues until the bottom of the images. This property is differ-

ent from the CAMs in the standard CNNs, where the high-

lighted areas focus only on the target. This is because RaS-

caNet carries the information of the target observed in the

previous and current steps all the way to the last scan-line,

where the final classification is performed. For negative im-

ages, some regions might be activated, however, they vanish

in following scan-lines because they do not acquire strong

belief to classify the inputs as positive.

4.2. Pascal VOC

The Pascal VOC [11] dataset is widely used for bench-

marks in various computer vision tasks. The dataset is com-

posed of 16K training images (2007-trainval, 2012-trainval)

and 5K validation images (2007-test). The original dataset

has 20 classes, but we relabeled it so that it only contain two

classes: 1 (“person”) or 0 (“not a person”). Following the

setting in the VWW dataset, the image containing a person

is labeled as 1 only when the bounding box for a person is

larger than 0.5% of the image area.

RaScaNet and RaScaNet-ET significantly advance the

Pareto optimal frontiers in all the three experiments com-

pared with other tiny models (Fig. 9). RaScaNet requires

95.6× and 7.1× smaller peak and weight memory com-

pared with MobileNetV2, respectively.

4.3. Ablation Study

Number of heads in CNN Adding CNN heads improves

the accuracy at the cost of the model size and MACs. In

this experiment, we aim to compare accuracy with similar

number of parameters and MACs while changing number of

heads. Hence, we reduce the channel size of CNN when in-

creasing the head number. Table 1 summarizes the effect of

multi-head CNN on accuracy. By using a 2-head CNN, we

achieve 91.6% accuracy, which is 0.9% points higher than
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Figure 9. Comparison between RaScaNet and other tiny models on the Pascal VOC dataset. The peak memory is plotted in

a log-scale. RaScaNet and RaScaNet-ET advance the Pareto optimal frontiers of accuracy vs. three evaluation criteria, i.e.,

peak memory, weight memory, and MACs. RNNPool [30] is reproduced using the code from [9]. The peak memory and

weight memory of RaScaNet and RaScaNet-ET are same.

1-head counterpart. Increasing the number of heads to 3,

while maintaining MACs below 60M leads to the saturation

in accuracy.

Table 1. Impact of multi-head CNN of RaScaNet on the

VWW dataset.

Method MAC Parameters Accuracy

1-head CNN 56.2M 47.0KB 90.7%

2-head CNN 56.7M 47.6KB 91.6%

3-head CNN 57.5M 48.4KB 91.5%

Effect of confidence loss The loss function of RaS-

caNet consists of two terms: Lcls is derived from the en-

tire image context, and Lconf is based on raster-scanned

sub-images. Owing to the pseudo-label estimation per sub-

image given by Eq. (15), the proposed method gains 0.8%

points in accuracy compared with the network trained with-

out Lconf as presented in Table 2. When the pseudo-label is

given by a trivial way, where all raster-scanned sub-images

have the same confidence labels with the image-level label,

i.e., yconf
t = ycls, there is no performance gain by the use

of the trivial pseudo-labels because it induces many false-

positive confidence labels.

Table 2. Impact of confidence loss, Lconf, given by the esti-

mated pseudo-labels yconf on the VWW dataset.

Method Accuracy

Lcls 90.8%

Lcls + Lconf (trivial) 90.8%

Lcls + Lconf (proposed) 91.6%

Attention modules RaScaNet incorporates two attention

modules, which adopt the preceding RNN hidden state as a

query. Table 3 shows the impact of attention modules; when

the attention is applied, our model improves accuracy by

0.7% points. Although the integration of the attention mod-

ules increases MACs and model size by 11.1% points and

24.8% points, respectively, our network is still 5.3–12.9×
smaller than other tiny models.

Table 3. Impact of attention module on the VWW dataset.

Method MAC Parameters Accuracy

w/o attention 50.8M 37.8KB 90.9%

w/ attention 56.7M 47.6KB 91.6%

5. Conclusion

We propose a novel tiny architecture, referred to as RaS-

caNet, which raster-scans input images for running a deep

neural network on ultra-low power systems. RaScaNet ex-

tracts features from the raster-scanned sub-images using a

CNN and captures vertical context by applying an RNN se-

quentially from top to bottom. The proposed method incor-

porates multi-head CNN, attention mechanism, and confi-

dence loss to improve accuracy. Also, we introduce early

termination scheme to reduce MACs by preventing redun-

dant computation.

RaScaNet achieves the state-of-the-art Pareto efficiency

in accuracy vs. memory. It requires 15.9–24.3× less peak

memory and 5.3–12.9× smaller weight memory than the

state-of-the-art tiny models while maintaining the compet-

itive accuracy. Furthermore, RaScaNet can operate on the

current image sensor architecture, which has a common im-

age signal processing algorithms running on the buffer that

can hold only k rows of an image. We expect that the pro-

posed raster-scan-based architecture extends to various on-

sensor AI tasks, bringing deep learning closer to image sen-

sors.
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