
Divergence Optimization for Noisy Universal Domain Adaptation

Qing Yu1,2 Atsushi Hashimoto2 Yoshitaka Ushiku2

1The University of Tokyo 2OMRON SINIC X Corporation

yu@hal.t.u-tokyo.ac.jp {atsushi.hashimoto,yoshitaka.ushiku}@sinicx.com

Abstract

Universal domain adaptation (UniDA) has been pro-

posed to transfer knowledge learned from a label-rich

source domain to a label-scarce target domain without any

constraints on the label sets. In practice, however, it is dif-

ficult to obtain a large amount of perfectly clean labeled

data in a source domain with limited resources. Existing

UniDA methods rely on source samples with correct anno-

tations, which greatly limits their application in the real

world. Hence, we consider a new realistic setting called

Noisy UniDA, in which classifiers are trained with noisy

labeled data from the source domain and unlabeled data

with an unknown class distribution from the target domain.

This paper introduces a two-head convolutional neural net-

work framework to solve all problems simultaneously. Our

network consists of one common feature generator and two

classifiers with different decision boundaries. By optimiz-

ing the divergence between the two classifiers’ outputs, we

can detect noisy source samples, find “unknown” classes in

the target domain, and align the distribution of the source

and target domains. In an extensive evaluation of different

domain adaptation settings, the proposed method outper-

formed existing methods by a large margin in most settings.

1. Introduction

Deep neural networks (DNNs) have achieved impressive

results with large-scale annotated training samples, but the

performance declines when the domain of the test data dif-

fers from the training data. To address this type of distribu-

tion shift between domains with no extra annotations, unsu-

pervised domain adaptation (UDA) has been proposed to

learn a discriminative classifier while there is a shift be-

tween training data in the source domain and test data in

the target domain [1, 8, 9, 11, 25, 27, 27, 29, 33, 36].

Most existing domain adaptation methods assume that

the source and target domains completely share the classes,

but we do not know the class distribution of samples in the

target domain in real-world UDA. Universal domain adap-

Figure 1: Problem setting of Noisy UniDA. Our proposed

setting assumes that some source samples have corrupted

labels, some classes of the source domain do not appear in

the target domain, and the classes of some target samples

are not shared by the source domain.

tation (UniDA) [41] is proposed to remove the constraints

on the label sets, where target samples may contain un-

known samples belonging to classes that do not appear in

the source domain and some source classes may not appear

in the target samples. However, UniDA is still an ideal sce-

nario, where existing UniDA methods require source sam-

ples with correct annotations to train the model. This re-

quirement limits the application of existing UniDA meth-

ods in real domain adaptation problems, where clean and

high-quality datasets are time consuming and expensive to

collect. Data can more easily be collected from a crowd-

sourcing platform or crawled from the Internet or social me-

dia, but such data are inevitably corrupted with noise (e.g.

YFCC100M [35], Clothing1M [40], and ImageNet [3]).

Hence, we consider a new realistic setting called “Noisy

Universal Domain Adaptation” (Noisy UniDA), as shown

in Fig. 1, which has the following properties:

• Labeled data of the source domain contains noisy la-

bels. 1

• Some classes of the source domain do not appear in

the target domain, and these classes are named source

1The labels of target samples are not considered because they are not

available in the setting of UDA.

12515



private classes.

• Some classes of the target domain are not shared by

the source domain, and these classes are named target

private classes.

Some existing methods [28, 17, 30, 7, 41] aim to solve

certain parts of Noisy UniDA. For example, [30] attempted

to train domain-adaptive models on noisy source data, [7]

worked on the partial problem that the source private classes

are absent from the target domain, [28] and [17] attempted

to solve the open-set problem of target private classes, and

[41] addressed the settings with the partial problem and the

open-set problem together. However, a method that can

solve all these problems at the same time does not exist.

Instead of solving each problem separately, we focus

on the divergence of DNNs to address all the problems of

Noisy UniDA. Inspired by Co-training for multi-view learn-

ing and semi-supervised learning [4, 31], when different

models having different parameters are trained on the same

data, they learn distinct views of each sample because they

have different abilities to learn. As a result, different mod-

els in each view would agree on the labels of most samples,

and it is unlikely for compatible classifiers trained on in-

dependent views to agree on a wrong label. We find this

property can be effective in Noisy UniDA, where the noisy

source samples have wrong labels, and target private sam-

ples can also be considered to have incorrect labels because

their true label is not contained in the label set. When these

data are input to different networks, the networks are more

likely to output different results because they have differ-

ent parameters. Therefore, we utilize a two-head network

architecture with two independent classifiers to detect all

these unwanted samples simultaneously.

The proposed two-head network consists of one common

feature generator and two separate label classifiers for clas-

sification. The two classifiers are updated by the same data

at the mini-batch level, but they are initialized differently to

obtain different classifiers. To detect noisy source samples

in each mini-batch, we calculate the divergence between the

two classifiers’ outputs on the source data, and only source

samples with small divergences are chosen to update the

network by supervised loss. Using the same principle, tar-

get samples with larger divergence are more likely to be tar-

get private samples, and we further separate the divergence

of the classifiers on common and target private samples to

reject target private samples. Consequently, we align the

distributions of the clean samples from the common classes

shared by both domains, where the methods that align the

entire distribution are influenced by incorrect source labels,

the source private classes and target private classes.

We evaluated our method on a diverse set of domain

adaptation settings. In many settings, our method outper-

forms existing methods by a large margin. We summarize

the contributions of this paper as follows:

Method Noisy labels Partial DA Open-set DA

DANN [10] ✗ ✗ ✗

TCL [30] ✓ ✗ ✗

ETN [7] ✗ ✓ ✗

STA [17] ✗ ✗ ✓

UAN [41] ✗ ✓ ✓

DANCE [24] ✗ ✓ ✓

Proposed ✓ ✓ ✓

Table 1: Summary of recent related methods. UniDA con-

sists of Partial DA and Open-set DA. Our proposed method

is the only method that covers all the settings.

• We propose a novel experimental setting and a novel

training methodology for noisy universal domain adap-

tation (Noisy UniDA).

• We propose a divergence optimization framework to

detect noisy source samples, find target private sam-

ples, and align the distributions of the source and tar-

get domains according to the divergence of two label

classifiers.

• We evaluate our method across several real-world do-

main adaptation tasks.

2. Related Work

Currently, there are several different approaches to UDA.

Table 1 summarizes the key methods.

One popular approach aims to match the distributions

of the middle features in a convolutional neural network

(CNN), and many such methods have been proposed [5, 10,

21, 32, 37, 27, 18]. A domain adversarial neural network

(DANN) [9, 10] and adversarial discriminative domain

adaptation [36] introduced an adversarial training frame-

work in which a domain discriminator is trained to distin-

guish two domains, while the feature extractor is trained

to confuse the domain discriminator. Maximum classifier

discrepancy (MCD) [27] uses task-specific decision bound-

aries to align the source and target distributions.

Although these methods have achieved significant im-

provements, they all assume that the annotations of the

source domain are clean, which is a limiting and expen-

sive requirement in many real-world applications. Further,

the source and target domains share the same classes, while

the true class distribution of the target domain should be

unknown. When these state-of-the-art domain adaptation

methods are trained in a real-world setting, they may suf-

fer from negative transfer owing to noisy source data and

the class distribution of the target data, which degrades the

generalization performance of the network.

The first problem of Noisy UniDA entails inaccurate

annotations. There are studies on learning discriminative
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models from the datasets containing noisy labels [22, 43,

34]. One strategy to reduce the effect of noise samples is

updating the network only with samples having a small loss

[14, 12, 42, 39]. Another approach uses robust loss func-

tions [19]. For example, Zhang et al. [45] proposed the

generalized cross-entropy loss, which is a generalization of

the mean absolute error and the categorical cross-entropy.

Other methods attempt to handle noisy source samples in

a domain adaptation task. Transferable curriculum learning

(TCL) [30] uses the small-loss trick in DANN [9] to prevent

the model from overfitting on noisy data.

The second problem of Noisy UniDA is when the classes

of target samples are a subset of source classes, which is

also referred to as partial domain adaptation. Studies in

[6, 44, 7] attempt to solve this task by finding the samples

in the source domain that are similar to the target samples

and place larger weights on these samples in the training

process.

The last problem is the target private class of the target

domain, that is, samples in the target domain that do not

belong to a class in the source domain. To handle open-set

recognition [2] in a domain adaptation task, open-set do-

main adaptation by back-propagation [28] trains a feature

generator to lead the probability for the unknown class of a

target sample to deviate from a predefined threshold. This

approach trains the feature extractor and classifier in an ad-

versarial training framework. A study of [17] used a coarse-

to-fine separation pipeline to detect the unknown class and

add one more class to the source classifier for the unknown

class in an adversarial learning framework. Universal do-

main adaptation was proposed in [41] and aims to handle

partial domain adaptation and open-set domain adaptation

at the sample time by importance weighting on both source

samples and target samples. Domain adaptative neighbor-

hood clustering via entropy optimization (DANCE) [24]

also works on UniDA by using neighborhood clustering and

entropy separation to achieve weak domain alignment.

In this study, we have developed a method to address all

the mentioned problems of Noisy UniDA simultaneously.

Specifically, the proposed method is robust against the noise

levels of source sample annotations, the setting in which

the target domain has a subset of source classes, and target

private samples in the target domain.

3. Method

In this section, we present our proposed method for

Noisy UniDA. First, we define the problem statement in

Section 3.1. Second, we illustrate the overall concept of

the method in Section 3.2. Then, our loss function is ex-

plained in Section 3.3. Finally, we detail the actual training

procedure in Section 3.4.

3.1. Problem Statement

We assume that a source image-label pair {xs,ys} is

drawn from a set of labeled source images, {Xs, Ys}, while

an unlabeled target image xt is drawn from unlabeled im-

ages Xt. ys is the one-hot vector of the class label ys. We

used Cs and Ct to denote the label sets of the source and tar-

get domains, respectively , and C = Cs∩Ct to represent the

common label set shared by both domains. We also assume

that the respective true labels for the source and target im-

ages are Y GT
s and Y GT

t (yGT
s and yGT

t for single source and

target images, respectively), which implies that yGT
s ∈ Cs

and yGT
t ∈ Ct. For Noisy UniDA, we need to learn trans-

ferable features and train an accurate classifier across the

source and target domains under the following conditions:

• The source image labels Ys are corrupted with noise,

that is, ∃{xs, ys}, ys 6= yGT
s .

• Some classes of the source domain do not appear in the

target domain, that is, C ⊂ Cs. These source private

classes are denoted by Cs = Cs \ C.

• Target private samples exist in the target domain, that

is, C ⊂ Ct. These target private classes are denoted

by Ct = Ct \ C.

Because the training process is performed at the mini-

batch level, Ds = {(xi

s
,yi

s
)}Ni=1

is denoted as a mini-batch

with size N sampled from the source samples and Dt =
{(xi

t
)}Ni=1

is denoted as a mini-batch with size N sampled

from the target samples.

3.2. Overall Concept

To handle the problems of Noisy UniDA, we need to

train the network to classify source samples correctly under

the supervision of noisy labeled source samples and align

the distribution of the source samples and the target sam-

ples, dealing with source private samples and target private

samples simultaneously.

We focused on the divergence of DNNs, which is able to

address all the problems of Noisy UniDA. Intuitively, since

different classifiers can generate different decision bound-

aries and then have different abilities to learn, they learn

distinct views of each sample, and the way that they are in-

fluenced by the noisy labels should also be different. As a

result, different models are likely to agree on labels of most

examples, and they are unlikely to agree on the incorrect la-

bels of noisy training samples [4, 31], which leads to a large

divergence between the outputs of the networks. Therefore,

it is not only possible to detect source samples that have

wrong annotations, but it is also possible to identify target

private samples, which can be considered to have incorrect

annotations because their true label does not exist in the la-

bel set.

To achieve that, we proposed a divergence optimization

strategy utilizing a two-head CNN, as shown in Fig. 2. The
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two-head CNN consists of a feature generator network G,

which takes inputs xs or xt, and two classifier networks, F1

and F2, which take features from G and classify them into

|Cs| classes. The two classifiers are trained with the sames

data at mini-batch level but they are initialized with random

initial parameters. The classifier networks F1 and F2 output

a |Cs|-dimensional vector of logits; then, the class prob-

abilities can be calculated by applying the softmax func-

tion for the vector. The notations p
1
(y|x) and p

2
(y|x)

denote the |Cs|-dimensional softmax class probabilities for

input x obtained by F1 and F2, respectively. pk
1
(y|xi) and

pk
2
(y|xi) represents the probability that samples xi belong

to the class k predicted by each classifier.

To handle noisy labeled source samples, we calculated

the divergence between the two classifiers’ outputs for each

source sample in the mini-batch. Because the two classifiers

trained independently have different abilities to learn the

noisy label, they tend to output similar predictions on clean

samples and output different predictions on noisy samples.

In addition to the popular small-loss technique to filter out

noisy samples, we additionally selected samples with small

divergences to update the network in each mini-batch. Sim-

ilar to [39], we further minimized the divergence of correct

labeled source samples, which maximizes the agreement of

the two classifiers, to achieve better results.

To address the problems of source private samples and

target private samples, we propose a divergence separation

loss for the target samples. Since target private samples can

also be considered as noisy samples with incorrect labels,

they will have larger divergences than target common sam-

ples. Therefore, by separating the divergences of the target

samples, we can filter out some target private samples to

achieve stable performance. Inspired by existing methods

[15, 16, 26, 27] that utilize multiple classifiers with differ-

ent parameters to achieve domain adaptation, we further use

the two classifiers as a discriminator to detect target samples

far from the support of the source domain. Then, we train

the generator to minimize the divergence, thereby avoiding

the generation of target features outside the support of the

source.

However, in contrast to existing methods [15, 16, 26, 27]

that align the entire distribution of the target domain with

the distribution of the source domain, we select target sam-

ples having small divergences to update the feature genera-

tor to align the distribution partially. By selecting samples

with relatively small divergences to achieve partial align-

ment, we cannot only filter out target private classes to ad-

dress the existence of the target private classes, but we can

also focus on the samples exposed to the category bound-

aries to address the absence of the source private classes.

We also show the behavior of our method through a vi-

sualization of a toy problem in the supplementary.

3.3. Symmetric KullbackLeibler (KL) Divergence
and Joint Divergence

In Section 3.2, we mentioned that the divergence be-

tween the two classifiers can be used to detect source sam-

ples with clean annotations and target samples in target pri-

vate classes. The divergence we used is based on the sym-

metric KL divergence, which is defined by the following

equation:

LSKLD(Ds) =
1

N

N
∑

i=1

DKL(p1
||p

2
)+

1

N

N
∑

i=1

DKL(p2
||p

1
),

(1)

where

DKL(p1
||p

2
) =

|Cs|
∑

k=1

pk
1
(y|xi

s
) log

pk
1
(y|xi

s
)

pk
2
(y|xi

s
)
, (2)

DKL(p2
||p

1
) =

|Cs|
∑

k=1

pk
2
(y|xi

s
) log

pk
2
(y|xi

s
)

pk
1
(y|xi

s
)
. (3)

For source classes, we directly used LSKLD to measure the

agreement of the classifiers to detect the samples with clean

annotations and minimized LSKLD on these clean samples.

For target classes, when we attempted to use the diver-

gence to detect the samples from the target private classes,

we considered that DKL(p1
||p

2
) can be rewritten as fol-

lows:

DKL(p1
||p

2
) =

|Cs|
∑

k=1

pk
1
(y|xi

t
) log pk

1
(y|xi

t
)

−

|Cs|
∑

k=1

pk
1
(y|xi

t
) log pk

2
(y|xi

t
)

= −H(p
1
(y|xt)) +H(p

1
(y|xt),p2

(y|xt)),

(4)

where H(p
1
(y|xt)) is the entropy of p

1
(y|xt) and

H(p
1
(y|xt),p2

(y|xt)) is the cross-entropy for p
1
(y|xt)

and p
2
(y|xt).

Thus, LSKLD can be rewritten as

LSKLD(Dt) =
1

N

N
∑

i=1

Lcrs(Dt)−
1

N

N
∑

i=1

Lent(Dt)

Lcrs(Dt) = H(p
1
(y|xt),p2

(y|xt))

+H(p
2
(y|xt),p1

(y|xt))

Lent(Dt) = H(p
1
(y|xt)) +H(p

2
(y|xt)),

(5)

where the first term shows the divergence of the two clas-

sifiers’ outputs and the second term shows the entropy of

each classifier output.
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Step A-1: Initialization with lower 𝓛𝒔 samples 𝑫𝒔′

Source samples
𝐺 𝐹1𝐹2

Mini-batch

Step A-2: Update the whole with samples that 𝓛𝒕 > 𝟎

Step B: Update classifiers by maximizing cross-entropy 

Step C: Update generator by minimizing cross-entropy

Selected
source samples
for training

Classifiers for ▲
where ℒ𝑒𝑛𝑡 = 𝛿

𝐺 𝐹1𝐹2

𝐺 𝐹1𝐹2

Target samples

𝐺 𝐹1𝐹2

Selected
target samples
for update

Area whereሚℒ𝐽𝐷 = 0

Updated
classifiers

𝐷𝑠′ is also used
to keep low ℒ𝑠

Generator 𝐺 is fixed

Classifiers 𝐹1,2 are fixed

Selected
target samples
for update

𝒙𝒔

𝒙𝒕

𝒙𝒔 𝒙𝒕

𝒙𝒕

,

Figure 2: Training steps in the proposed method. There are

four classes in the source domain and the target domain.

Two of them are common to both domains. The white sam-

ples are not used for training, while the filled ones are used.

In Section 3.2, we mentioned that target private sam-

ples are likely to have larger divergence than target com-

mon samples. If we directly use the symmetric KL diver-

gence to measure the divergence, the class probabilities of

target private samples should have “small” entropy owing

to the second term in Eq. (5) having a minus symbol. How-

ever, because the target private samples do not belong to

any source classes, the prediction confidence of these sam-

ples should be low, indicating that their class probabilities

should have “large” entropy.

Thus, we modified the symmetric KL divergence to

“Joint Divergence” as follows to detect target private sam-

ples:

LJD(Dt) =
1

N

N
∑

i=1

Lcrs(Dt) +
1

N

N
∑

i=1

Lent(Dt), (6)

where a larger divergence indicates a larger disagreement

between the two classifiers and a lower confidence of each

prediction. We further minimize Eq. (6) for the detected

target common samples and maximize it for the detected

target private samples. The next section details the training

procedure.

3.4. Training Procedure

From previous discussions in Section 3.2 and Sec-

tion 3.3, we propose a training procedure consisting of the

following three steps, as shown in Fig. 2. The three steps

are repeated at the mini-batch level in our method.

Step A-1 First, we trained the entire network containing

both classifiers and generator to learn discriminative fea-

tures and classify the source samples correctly under the

supervision of labeled source samples. Because small loss

samples are likely to have correct labels [12, 39], we trained

our classifier using only small-loss instances in each mini-

batch data to make the network resistant to noisy labels.

For the loss function, cross-entropy loss is commonly used,

which is denoted as follows:

Lsup(Ds) =−
1

N

N
∑

i=1

|Cs|
∑

k=1

yis log p
k
1
(y|xi

s
)

−
1

N

N
∑

i=1

|Cs|
∑

k=1

yis log p
k
2
(y|xi

s
).

(7)

As mentioned in Section 3.3, we also added the agree-

ment of the two classifiers to the loss for selecting clean

samples. Therefore, the loss on source samples is expressed

as follows:

Ls(Ds) = Lsup(Ds) + λLSKLD(Ds), (8)

where λ is a hyperparameter and λ is set to 0.1 in all the ex-

periments. To filter out noisy samples, we used the joint loss

Eq. (8) to select small loss samples because a noisy sample

is more likely to have larger cross-entropy loss and larger

divergence. Specifically, we conducted small-loss selection

as follows:

D′
s = argminD′:|D′|≥α|Ds|Ls(Ds). (9)

This equation indicates that we only use α% samples in a

mini-batch to the network. The objectives are as follows:

min
G,F1,F2

Ls(D
′
s). (10)

Step A-2 In addition to the supervised training on source

samples, we attempt to detect target private samples using

LJD from Eq. (6). To increase LJD for target private sam-

ples and decrease it for common samples, we introduce a

threshold δ and a margin m to separate the LJD on target

samples, using the following equations:

Lt(Dt) = L̃JD(Dt) =
1

N

N
∑

i=1

L̃crs(Dt) +
1

N

N
∑

i=1

L̃ent(Dt)

L̃crs(Dt) =

{

−|Lcrs(xt)− δ| if |Lcrs(xt)− δ| > m

0 otherwise

L̃ent(Dt) =

{

−|Lent(xt)− δ| if |Lent(xt)− δ| > m

0 otherwise
.

(11)
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Only when the divergence or the entropy of the two clas-

sifiers is larger or smaller enough, we further increased or

decreased them to separate private or common target sam-

ples. The objectives are as follows:

min
G,F1,F2

Lt(Dt). (12)

Moreover, D′
t is denoted as the detected target com-

mon samples with small divergences, which is {xi

t
: xi

t
∈

Dt,Lcrs(x
i

t
) < δ −m}.

Step B Then, to align the distribution of the source and

target domains, we trained the classifiers as a discriminator

for a fixed generator to increase the divergence to make the

network detect target samples that do not have the support

of source samples (Step B in Fig. 2). In this step, we also

use source samples to reshape the support. The objective is

as follows:

min
F1,F2

Ls(D
′
s)−

1

N

N
∑

i=1

Lcrs(Dt). (13)

Step C Finally, we trained the generator to minimize the

divergence for fixed classifiers (Step C in Fig. 2) to partially

align the distributions of the target and source domains us-

ing the detected target common samples D′
t. The final ob-

jective is as follows:

min
G

1

N

N
∑

i=1

Lcrs(D
′
t). (14)

This step is repeated n times to achieve better alignment,

and we set n = 4 in all the experiments.

3.5. Inference

At inference time, to distinguish between common sam-

ples and target private samples, we considered the cross en-

tropy Lcrs between the two classifiers’ outputs. When the

divergence is above a detection threshold δ, we assigned the

sample as a target private sample, denoted by

Lcrs(x) > δ. (15)

4. Experiment

4.1. Experimental Setup

Datasets. Following previous studies [41], we used three

datasets in the experiments. Office [23], which has 3 do-

mains (Amazon, DSLR, Webcam) and 31 classes, was used

as the first dataset. The second dataset is OfficeHome [38]

containing 4 domains (i.e., Art, Clipart, Product, and Real)

and 65 classes. The last dataset is VisDA [20] containing

two domains (i.e., synthetic and real) and 12 classes. To

construct the setting of Noisy UniDA, we split the class of

each dataset as in [41]. |C|/|Cs|/|Ct| = 10/10/11 for Of-

fice, 10/5/50 for OfficeHome, and 6/3/3 for VisDA. We

also used a noise transition matrix Q to corrupt the source

datasets manually [12, 14] to simulate noisy source sam-

ples. We implemented two variations of Q for (1) pair

flipping and (2) symmetry flipping [12]. The noise rate ρ
was chosen from {0.2, 0.45}. Intuitively, if ρ = 0.45, al-

most half of the noisy source data was annotated with in-

correct labels that cannot be learned without additional as-

sumptions. In contrast, ρ = 0.2 implied that only 20%
of labels were corrupted, which is a low-level noise situ-

ation. Note that pair flipping is much harder than sym-

metry flipping [12]. For each adaptation task, there were

four types of noisy source data: Pair-20% (P20), Pair-45%
(P45), Symmetry-20% (S20), and Symmetry-45% (S45).

Compared Methods. We compared the proposed

method with (1) CNN: source only ResNet-50 (SO) [13],

(2) label noise-tolerant domain adaptation method: TCL

[30], (3) partial domain adaptation method: example trans-

fer network (ETN) [44], (4) open-set domain adaptation

method: separate to adapt (STA) [17], and (5) univer-

sal domain adaptation methods: universal adaptation net-

work (UAN) [41], DANCE [24]. Because these meth-

ods achieved state-of-the-art performance in their respec-

tive settings, it is valuable to show their performance in

the Noisy UniDA setting. We also tried to incorporate the

“select” operation in Eq. (9) and Eq. (10) into the super-

vised source loss of DANCE to create a stronger baseline as

DANCEsel.

Evaluation Protocols. The same evaluation metrics as

previous works are used, where the accuracy is averaged

over |C| + 1 classes and all the samples belonging to the

target private classes are regarded as one unified unknown

class. For example, when Office is used as the dataset, an

average of 11 classes is reported. For methods that do not

detect target private samples originally, we used confidence

thresholding to reject target private samples.

Implementation Details. In this experiment, we used

the same CNN architecture and hyperparameters as in [24].

We implemented our network based on ResNet-50 [13]. We

used the modules of ResNet until the average-pooling layer

just before the last fully-connected layer as the generator

and one full-connected layer as the classifier. We defined the

threshold δ = log |Cs| because 2× log |Cs| is the maximum

value of H(p1) +H(p2), and the margin m = 1 in all the

experiments. The detailed analysis of sensitivity to hyper-

parameters is discussed in the supplementary.

4.2. Experimental Results

Table 2 summarizes the results, which compare the pro-

posed method with other state-of-the-art methods. Because

the pair flipping noise is more difficult than the symmetry

flipping noise, the accuracy under the setting of pair flip-
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Method
Office OfficeHome VisDA

P20 P45 S20 S45 P20 P45 S20 S45 P20 P45 S20 S45

SO 77.23 50.88 78.09 53.15 63.33 39.46 64.09 44.99 44.57 38.41 26.51 15.39

TCL 80.82 50.48 82.97 74.86 62.31 40.24 63.41 49.69 62.96 43.31 61.26 52.96

ETN 84.46 53.23 85.40 83.53 67.93 44.55 68.99 56.05 58.99 44.36 62.17 55.83

STA 83.12 54.74 83.19 68.27 64.31 44.22 65.53 49.04 41.62 41.50 52.17 42.32

UAN 72.39 45.64 77.59 64.85 70.90 41.31 73.79 59.67 53.93 42.60 53.25 47.70

DANCE 84.88 55.40 83.00 56.02 77.32 47.51 77.54 66.96 57.38 41.45 24.30 14.94

DANCEsel 86.07 56.32 91.24 79.82 76.49 48.45 78.71 64.17 63.93 43.91 62.97 52.32

Ours 91.22 62.49 91.40 87.92 76.10 51.93 77.46 71.97 67.27 48.25 70.53 57.82

Table 2: Average target-domain accuracy (%) of each dataset under dif-

ferent noise types. We report the average accuracy over all tasks for each

dataset. Bold values represent the highest accuracy in each row.

Figure 3: Probability density function of the di-

vergence of common and target private samples

(estimated by Gaussian kernel with Scott’s rule ).

Noise Type: P45

Method
Office OfficeHome

A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

SO 47.12 56.50 59.13 50.67 56.00 35.89 50.88 33.11 41.16 57.84 30.01 37.50 41.86 39.30 26.03 50.57 40.81 28.51 46.80 39.46

TCL 50.29 54.97 52.85 49.58 50.77 44.41 50.48 29.40 42.62 51.52 31.73 39.60 42.79 50.39 28.20 53.34 34.65 30.27 48.34 40.24

ETN 52.01 52.94 49.47 52.79 60.33 51.82 53.23 36.36 54.08 65.48 35.36 38.74 49.39 47.04 27.04 57.09 41.50 33.35 49.15 44.55

STA 61.18 53.42 54.19 55.93 63.05 40.69 54.74 32.21 42.02 60.62 38.38 42.37 53.13 50.29 30.48 58.99 42.47 28.60 51.03 44.22

UAN 44.93 57.68 44.00 41.09 40.50 45.64 45.64 31.53 44.44 46.64 40.16 44.04 47.48 41.42 34.38 54.81 38.61 30.06 42.15 41.31

DANCE 46.80 56.82 53.85 56.17 69.98 48.80 55.40 36.10 39.69 63.12 39.62 41.60 46.84 57.04 32.28 68.55 50.26 39.82 55.20 47.51

DANCEsel 60.35 60.32 63.55 48.79 54.42 50.48 56.32 34.32 41.95 64.19 47.25 42.24 61.73 46.32 40.92 60.40 53.30 33.86 54.87 48.45

Ours 58.93 72.49 56.06 58.71 65.86 62.90 62.49 37.12 57.73 54.17 52.39 47.26 55.22 57.93 43.97 64.17 50.36 41.29 61.61 51.93

Noise Type: S45

Method
Office OfficeHome

A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

SO 37.16 53.17 76.00 50.49 41.97 60.14 53.15 30.36 46.40 59.20 48.84 46.50 57.94 41.20 29.09 56.49 40.56 30.39 52.90 44.99

TCL 77.62 64.50 82.96 81.86 66.35 75.84 74.86 30.08 44.22 46.66 49.31 54.73 57.03 52.26 40.72 69.14 48.61 40.41 63.16 49.69

ETN 83.11 80.64 88.64 87.35 77.18 84.27 83.53 39.96 62.37 77.07 61.08 53.51 70.17 47.70 39.42 68.93 49.77 37.32 65.33 56.05

STA 60.94 70.22 88.80 71.6 44.26 73.79 68.27 37.65 50.75 57.14 51.35 53.64 67.39 39.92 32.09 64.29 47.19 32.63 54.49 49.04

UAN 62.59 72.88 75.82 56.97 61.94 58.90 64.85 42.67 59.04 57.20 57.29 64.93 70.56 64.45 49.09 72.53 55.98 47.26 75.08 59.67

DANCE 21.72 69.45 85.76 27.68 51.04 80.47 56.02 38.29 74.72 87.24 75.01 81.27 80.20 55.57 44.05 78.08 61.59 47.70 79.83 66.96

DANCEsel 82.45 69.16 92.08 86.53 75.51 73.22 79.82 40.33 58.27 73.80 61.15 67.76 78.36 70.63 54.23 78.53 63.22 48.21 75.56 64.17

Ours 87.63 76.87 98.32 89.43 84.49 90.78 87.92 46.30 69.52 87.79 70.34 70.55 81.77 74.72 54.15 88.23 78.04 61.22 80.98 71.97

Table 3: Results on noisy universal domain adaptation of each task for Office and OfficeHome. Bold values represent the

highest accuracy in each row.

ping noise is lower. However, Table 2 clearly shows that

our approach outperformed the existing methods in all the

noise settings, as they could not handle all the difficulties of

Noisy UniDA. ETN shows satisfactory results in the Office

dataset, and TCL achieves high performance in the VisDA

dataset, but our proposed method outperformed them with

a considerable margin. In the difficult OfficeHome dataset,

DANCE achieves high performance when the noise rate is

low (e.g., P20 and S20). However, our method’s perfor-

mance is competitive with DANCE. When the noise rate in-

creases (e.g., P45 and S45), the proposed method performs

better. Adding the “select” operation to DANCE achieves

some improvements in many settings comparing with the

original DANCE, but our method still achieves better per-

formance than DANCEsel in most settings.

Table 3 shows the results of each task in each dataset

when the noise type is P45 and S45. In most tasks,

our method achieves the highest performance, showing its

power to detect clean source samples, align the distribution

partially, and discriminate the target private classes.

We also plot the probability density function (calculated

by kernel density estimation) of the divergence Lcrs of

common and target private classes in the target domain in

Fig. 3, proving that the divergence between the two classi-

fiers separates the common classes C and the target private

classes Ct well.

4.3. Analysis

Varying Size of Cs and Ct. To investigate the perfor-

mance of our method under different Noisy UniDA settings,

we fixed Cs ∪ Ct and C in the task A→D with noise type

P20 in the Office dataset and changed the sizes of Ct (Cs is
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(a) Accuracy w.r.t. Ct. (b) Accuracy w.r.t. pairflip noise level. (c) Accuracy w.r.t. symmetric noise level.

Figure 4: Analysis of the performance in task A→D under different Noisy UniDA settings.

also changed by Cs = Cs ∪Ct \C \Ct). Fig. 4a shows the

comparison of our method and other methods on different

sizes of Ct. When |Ct| = 0, which is the partial domain

adaptation setting with Ct ⊂ Cs, the performance of our

method is comparable to that of ETN, which is a partial do-

main adaptation method. When |Ct| = 21, which is the

open-set domain adaptation setting with Cs ⊂ Ct, the per-

formance of our method is comparable to that of DANCE.

In the middle of 0 and 21, where Cs and Ct are partially

shared, our method outperforms other methods with a large

margin. It is also interesting to find that the general UniDA

methods, UAN and DANCE, perform poorly when |Ct| = 0
(partial DA) owing to the noisy source samples.

Varying Noise Level. We further explored the effect of

label noise on performance. We changed the noise level

of the pairflip and symmetric noise from 0 to 0.45 on task

A→D in the Office dataset. Fig. 4b and Fig. 4c show the re-

sults and our method achieve high performance in all the

settings. It is noticeable that our method is comparable

to the state-of-the-art UniDA method (DANCE) when the

noise level is 0, which implies that all labels of source sam-

ples are clean. Considering the pairflip noise, the damage of

the label noise to the performance is large, especially when

the noise level is high, but our method still performs better.

Considering symmetric noise, although the performance of

other methods decreases when the noise level increases, our

method is robust to label noise.

Ablation Study. We further demonstrated the effective-

ness of our method by evaluating its variants on the Office

dataset with P20 noise. (1) Ours w/o select is the variant

without using the small-loss selection by Eq. (9). (2) Ours

w/o div is the variant without using the divergence compo-

nent in the classification of source samples in Eq. (8). (3)

Ours w/o crs is the variant without using the cross-entropy

L̃crs between the classifiers of target samples in Eq. (11).

(4) Ours w/o ent is the variant without using the entropy

L̃ent of each classifier of target samples in Eq. (11). (5)

Method Office 6 Tasks

D2W A2D W2A Avg

Ours w/o select 94.85 88.46 85.91 86.02

Ours w/o div 96.27 88.18 87.08 90.14

Ours w/o crs 96.06 86.88 89.63 90.30

Ours w/o ent 96.30 87.60 86.30 90.45

Ours w/o sep 94.78 84.89 86.71 88.53

Ours w/o mini-max 96.05 88.71 81.03 87.31

Ours w/ KL 96.19 86.49 87.77 89.75

Ours 96.65 89.42 90.90 91.22

Table 4: Ablation study tasks on the Office dataset.

Ours w/o sep is the variant without separating the diver-

gence between the classifiers as Eq. (11). (6) Ours w/o

mini-max is the variant without mini-max training of the

generator and classifiers in Eq. (13) and Eq. (14) to achieve

domain alignment. (7) Ours w/ KL is the variant using gen-

eral symmetric KL-divergence in Eq. (11). As shown in

Table 4, our method outperforms other variants in all the

settings.

5. Conclusion

In this paper, we proposed divergence optimization for

noisy UniDA. This method uses two classifiers to find clean

source samples, reject target private classes, and find impor-

tant target samples that contribute most to the model’s adap-

tation. We evaluated it on a diverse set of benchmarks, and

the proposed method significantly outperformed the current

state-of-the-art methods on different setups across various

source and target domain pairs.
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