
Landmark Regularization: Ranking Guided Super-Net Training in Neural

Architecture Search

Kaicheng Yu∗

CVLab, EPFL

kaicheng.yu.yt@gmail.com

René Ranftl

Intelligent Systems Lab, Intel

rene.ranftl@intel.com

Mathieu Salzmann

CVLab, EPFL

mathieu.salzmann@epfl.ch

Abstract

Weight sharing has become a de facto standard in neu-

ral architecture search because it enables the search to be

done on commodity hardware. However, recent works have

empirically shown a ranking disorder between the perfor-

mance of stand-alone architectures and that of the corre-

sponding shared-weight networks. This violates the main

assumption of weight-sharing NAS algorithms, thus limit-

ing their effectiveness. We tackle this issue by proposing

a regularization term that aims to maximize the correla-

tion between the performance rankings of the shared-weight

network and that of the standalone architectures using a

small set of landmark architectures. We incorporate our

regularization term into three different NAS algorithms and

show that it consistently improves performance across al-

gorithms, search-spaces, and tasks.

1. Introduction

Modern algorithms for neural architecture search (NAS)

can now find architectures that outperform the human-

designed ones for many computer vision tasks [21, 42, 7,

34]. A driving factor behind this progress was the intro-

duction of parameter sharing [27], which reduces the search

time from thousands of GPU hours to just a few and has thus

become the backbone of most state-of-the-art NAS frame-

works [3, 49, 5, 23]. At the heart of all these methods is a

shared network, a.k.a. super-net, that encompasses all ar-

chitectures within the search space.

To train the super-net, NAS algorithms essentially sam-

ple individual architectures from the super-net and train

them for one or a few steps. The sampling can be

done explicitly, with strategies such as reinforcement learn-

ing [27, 6], evolutionary algorithms [15, 39], or random

sampling [52, 18], or implicitly, by relying on a differen-

tiable parameterization of the architecture space [19, 22, 5,

∗This work was partially done during an internship at Intel, and sup-

ported in part by the Swiss National Science Foundation.

Search space

Super-net

Super-net

Landmark architectures
Stand-alone Rank

Regularize

> >

Evaluate
Sample

Update

Sam
ple

Super-net
Rank

Stand-alone
Rank

Poor correlation

Better correlation

Evaluate

Update

NAS
algorithm

NAS
algorithm

Figure 1: Traditional super-net training leads to poor correlation

between relative stand-alone performance and super-net perfor-

mance (top). We sample landmark architectures and use their rel-

ative performance to guide training towards an improved ranking

and show that this improves the search performance (bottom).

42, 53]. Whether explicit or implicit, the underlying as-

sumption of these methods is that the relative performance

of the individual architectures in the super-net is highly cor-

related with the performance of the same architectures when

they are trained in a stand-alone fashion. If this were the

case, one could then safely choose the best individual ar-

chitecture from the super-net after the search and use it

for evaluation. However, this assumption was disproved

in [52, 54], who showed a correlation close to zero be-

tween the two rankings on complex search spaces [47, 22].

The major reason behind this is fairly intuitive: To be opti-

mal, different individual architectures should have different

parameter values, which they cannot because the parame-

ters are shared. Super-net training will thus not produce

the same results as stand-alone training. More importantly,

there is no guarantee that even the relative ranking of the

architectures will be maintained. While for simple, linear

search spaces the ranking can be improved by using a care-

fully crafted sampling strategy [8, 9], addressing the rank-

ing disorder for more realistic, complex search spaces re-

mains an open problem [50].

In this paper, we propose to explicitly encourage archi-

13723

tectures represented by the super-net to have a similar rank-

ing to their counterparts trained in a stand-alone fashion. As

illustrated by Figure 1, we leverage a set of landmark archi-

tectures, that is, architectures with known stand-alone per-

formance, to define a regularization term that guides super-

net training towards this goal. We show that a small set of

landmark architectures suffices to significantly improve the

global ranking correlation, so that the overall search pro-

cedure, including the independent training of the landmark

architectures, remains tractable.

Our regularization term is general and does not make as-

sumptions about the specific sampling algorithm used for

super-net training. As such, it can easily be combined with

many popular weight-sharing NAS algorithms. We demon-

strate this by integrating it into three different algorithms

[15, 24, 11] that are representative of three different cat-

egories of weight-sharing NAS algorithms: i) Algorithms

that sample architectures from the super-net in an unbiased

manner throughout the super-net training [18, 52, 2, 15, 8];

ii) approaches that employ learning-based samplers, which

are updated during the training based on the performance

of the partially-trained super-net [27, 19, 24, 40, 55];

and iii) algorithms that rely on differentiable architecture

search [22, 6, 44, 25, 45].

Our extensive experiments on CIFAR-10 and ImageNet

show that landmark regularization significantly reduces

the ranking disorder that occurs in these algorithms and

that they are consequently able to consistently find better-

performing architectures. To further showcase the effec-

tiveness and generality of our approach, we study its use

in the context of architecture search for monocular depth

estimation. To the best of our knowledge, this is the first at-

tempt at performing NAS for this task. We, therefore, con-

struct a dedicated search space and show that a landmark-

regularized NAS algorithm can find novel architectures that

improve upon the state of the art in this field.

2. Related work

Different from manual designing convolutional neural

networks, which have been shown successful in many com-

puter vision tasks [16, 14, 41, 51], neural architecture

search (NAS) methods automate the design process and can

be categorized into conventional approaches, that obtain ar-

chitecture performance via stand-alone training [56, 57, 36,

40, 31, 32, 39], and weight sharing NAS, where the per-

formance is obtained from one or a few super-nets that en-

compass all architectures within the search space [27, 24, 6,

55, 26, 48]. Motivated by the success of early NAS works,

the literature has now branched into several research di-

rections, such as using multi-objective optimization to dis-

cover architectures under resource constraints for mobile

devices [37, 36, 42, 6, 15, 3], applying NAS to other com-

puter vision tasks than image recognition [21, 7, 20, 34],

and using knowledge distillation to eliminate the perfor-

mance gap between super-net and stand-alone training for

linear search spaces based on MobileNet [5, 49].

In contrast to the diversity of these research directions,

super-net training in weight-sharing NAS has remained vir-

tually unchanged since its first appearance in [18, 15, 2].

At its core, it consists of sampling one or few architec-

tures at each training step, and updating the parameters

encompassed by these architectures with a small batch

of data. This approach has been challenged in many

ways [4, 18, 52, 46], particular thanks to the introduction

of the NASBench series [28, 47, 12, 35, 54, 10] of NAS

benchmarks, which provide stand-alone performance of a

substantial number or architectures and thus facilitate the

analysis of the behavior of NAS algorithms. A critical is-

sue that has been identified recently is the inability of most

modern NAS algorithms to surpass simple random search

under a fair comparison. In [52], this was traced back to

to the low ranking correlation between stand-alone perfor-

mance and the corresponding super-net estimates. While

recent works [15, 8] have shown that the ranking corre-

lation is high on a MobileNet-based search space, where

one only searches for the convolutional operations and the

number of channels, others [50, 54] have revealed that the

correlation remains low on cell-based NASNet-like search

spaces [22, 24, 56], even when carefully tuning the design

of the super-net.

In this paper, we introduce a simple, differentiable regu-

larization term to improve the ranking correlation in weight-

sharing NAS algorithms. We show that the regularization

term can be used in a variety of weight-sharing NAS al-

gorithms, and that it leads to a consistent improvement in

terms of ranking correlation and final search performance.

Our regularization leverages the stand-alone perfor-

mance of a few architectures. While some contemporary

works also use ground-truth architecture performance, our

approach differs fundamentally from theirs. Specifically,

these methods aim to train a performance predictor, based

on an auto-encoder in [23] or on a graphical neural net-

work in [38], and are thus only applicable to weight-sharing

NAS strategies that exploit such a performance predictor.

By contrast, we add a regularizer to the super-net training

loss, which allows our method to be applied to most weight-

sharing NAS search strategies. Furthermore, our approach

requires an order of magnitude fewer architectures with as-

sociated stand-alone performance; in our experiments, we

use 30 instead of 300 in [23] and 1000 in [38].

3. Preliminaries

We first revisit the basics of super-net training and high-

light the ranking disorder problem.

Let Ω be a search space, defined as a set of N neural

network architectures ai, i ∈ [1, N]. stand-alone training

13724

Search Space
Landmark
Sampler

Landmark Architectures

Super-net

Super-net
Training

Landmark
regularization

<latexit sha1_base64="38ZBkK3ZbJnoFNN+Sq2+buBNNLA=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJVEFHssePHgoYKthTaEzXbTLt1swu5GqCG/xIsHRbz6U7z5b9y0OWjrwMIw8x5vdoKEM6Ud59uqrK1vbG5Vt2s7u3v7dfvgsKfiVBLaJTGPZT/AinImaFczzWk/kRRHAacPwfS68B8eqVQsFvd6llAvwmPBQkawNpJv14cR1hOCeXab+5nKfbvhNJ050CpxS9KAEh3f/hqOYpJGVGjCsVID10m0l2GpGeE0rw1TRRNMpnhMB4YKHFHlZfPgOTo1ygiFsTRPaDRXf29kOFJqFgVmsoiplr1C/M8bpDpseRkTSaqpIItDYcqRjlHRAhoxSYnmM0MwkcxkRWSCJSbadFUzJbjLX14lvfOme9l07i4a7VZZRxWO4QTOwIUraMMNdKALBFJ4hld4s56sF+vd+liMVqxy5wj+wPr8AVXIk38=</latexit>

Ls

Search Phase Evaluation Phase

Trained
Super-net

NAS
algorithm

Best Super-net
Architectures

Performance

1
2
3
4
5

Stand-alone
Training

t < T? 1
No

Output the best

Yes

Add these architectures as landmark, repeat the search

NAS
algorithm

<latexit sha1_base64="D4tAN8dXWsxlyGX3s0+7OruVIvU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIYpcVNy5cVLAPaIeSSTNtaCYZk0yhDP0ONy4UcevHuPNvzLSz0NYDgcM593JPThBzpo3rfjuFtfWNza3idmlnd2//oHx41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxreZ355QpZkUj2YaUz/CQ8FCRrCxkt+LsBkRzNP7/s2sX664VXcOtEq8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHA6K/USTWNMxnhIu5YKHFHtp/PQM3RmlQEKpbJPGDRXf2+kONJ6GgV2Mgupl71M/M/rJias+SkTcWKoIItDYcKRkShrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+S1kXVu6q6D5eVei2vowgncArn4ME11OEOGtAEAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AcTPkhA=</latexit>

LA

<latexit sha1_base64="TIe7Xa7tvyN2c5Cia/S86DnP6ic=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9k1GjmSePGIRpAENqRbCjR0u2v7loRs+B1ePGiMV3+MN/+NXdiDgpM0mcy8lzedIJbCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMlGiGW+ySEa6HVDDpVC8iQIlb8ea0zCQ/DEY32T+44RrIyL1gNOY+yEdKjEQjKKV/G5IccSoTO9nhPTKFbfqzkFWiZeTCuRo9Mpf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg5qfChUnyBVbHBokkmBEsgZIX2jOUE4toUwLm5WwEdWUoe2pZEvwlr+8SloXVe+q6t5dVuq1vI4inMApnIMH11CHW2hAExg8wTO8wpszcV6cd+djMVpw8p1j+APn8wc8lJG2</latexit>

R

Figure 2: Overview of our approach. Left: During the search phase, we first sample a set of landmark architectures and obtain their

stand-alone performance. We train the super-net with our regularization term such that the landmark ranking is preserved. Right: After

a round of training, we sample the best architectures given the current super-net performance and evaluate their stand-alone performance.

We add these architectures to the set of landmarks and repeat the process for a few iterations.

optimizes the parameters θaj
of architecture aj indepen-

dently from the other architectures by minimizing a loss

function L(x, θaj
), thus yielding the optimal parameters θ∗aj

for the given training data xtrain. Without weight shar-

ing, NAS then aims to train a search algorithm S to sam-

ple architectures S(Ω) = {ak} whose stand-alone per-

formance outperforms that of other architectures, that is,

L(x, θ∗ak
) < L(x, θ∗aj

), ∀aj /∈ S(Ω). In its simplest form,

i.e., random search, there is no search algorithm to train per

se, and one just samples a set of architectures, trains them

in a stand-alone fashion, and ranks them to choose the ones

with lowest loss.

With a proper search algorithm, however, NAS without

weight sharing requires training and evaluating an impracti-

cally large amount of stand-alone architectures [56, 57, 39,

36, 37] . To circumvent this, weight-sharing NAS strategies

construct a super-net θs that encompasses all architectures

in the search space. The relative performance of individual

architectures sampled from the super-net then acts as an es-

timate of their relative stand-alone performance. Training

is typically formulated as minimizing a joint loss over all

architectures that are represented by the super-net:

Ls(θ
s) =

N
∑

i=1

L(x, θsai
), (1)

where the optimization is made tractable by randomly sam-

pling terms from this sum for each update.

In contrast to stand-alone training, parameters overlap

between different architectures and in general we have that

θsai
∩ θsaj

6= ∅. Since the parameters shared by ai and

aj would typically not have the same optimal values in the

stand-alone training [4], the optimal solution of super-net

training is not the same as that of stand-alone training, and

neither is the ranking of the architectures.

4. Landmark regularization

We address the issue of low ranking correlation by in-

troducing a simple yet effective approach to regularize

super-net training with prior knowledge about the relative

performance of individual architectures. To this end, we

sample M << N architectures to form a set of land-

mark architectures, ΩL = {ai}
M
i=1, and obtain their stand-

alone performance Lvalid(xvalid, θ
∗
ai
) on validation data,

where θ∗ai
= argminL(xtrain, θai

). We shorten this to

LA(x, θ
∗
ai
) to simplify the notation. To ensure that the

trained super-net is predictive of the performance of the

stand-alone architectures, we aim to preserve the relative

performance of these landmark architectures in the super-

net. Formally, we want to enforce that

LA(x, θ
∗
ai
) ≤ LA(x, θ

∗
aj
) ⇒ L(x, θsai

) ≤ L(x, θsaj
), (2)

for all pairs of architectures i, j ∈ [1,M].
To achieve this, we propose a differentiable regulariza-

tion term that can readily be integrated into standard super-

net training procedures. We first sort the landmark architec-

tures in ascending order based on their ground-truth loss:

∀i, j ∈ [1,M], i < j ⇔ LA(x, θ
∗
ai
) ≤ LA(x, θ

∗
aj
), (3)

and use this ordering to define a regularization term

R(θs) =

M
∑

i=1

M
∑

j=i+1

max(0, L(x, θsai
)− L(x, θsaj

)) , (4)

which penalizes deviations from the ordering induced

by (2). Since all operations involved in the proposed regu-

larizer are differentiable, it is straight-forward to implement

in existing deep learning frameworks. Note that the sev-

eral alternative formulations of this loss are possible. We

discuss them in the supplementary material.

The landmark-regularized training loss is then given by

L(θs) = Ls(θ
s) + λR(θs) , (5)

13725

where λ > 0 is a hyper-parameter. To avoid leakage of

validation data into the super-net training, we follow [22,

24, 6] and split the training set into two parts. We use one

part to evaluate the super-net loss Ls and the other part to

evaluate the regularization R during training.

Computational cost. The complexity of evaluating the reg-

ularizer discussed above is O(M2). This factor can have

a significant impact on the training time, as the regularizer

has to be evaluated at every training iteration. To reduce this

computational burden while still encouraging the super-net

to encode a correct architecture ranking, we propose to ran-

domly sample m pairs of landmark architectures i, j at each

iteration and evaluate their ranking:

R(θs) =

m
∑

i,j

max(0,L(x, θsai
)− L(x, θsaj

)) . (6)

This reduces the time complexity from O(M2) to O(m).
We will show empirically that even evaluation with a sin-

gle pair introduces virtually no degradation of the resulting

architecture ranking.

Landmark selection. The choice of the landmark archi-

tectures has an impact on the effectiveness of our regular-

izer. In particular, we would like to use landmarks that

cover the complete search space. To promote this, we in-

troduce the diverse landmark sampling strategy described

by Algorithm 1. We start by randomly sampling a root ar-

chitecture from the search space. We then generate M − 1
diverse architectures by mutating the root architecture such

that the Hamming distance is larger than a threshold τ . For

example, in the DARTS search space [22], one architecture

is encoded as a sequence, where each element represents se-

lecting either a previous node or an operation. Mutating an

architecture is then achieved by randomly altering one ele-

ment, and the Hamming distance between two architectures

is computed as the number of unequal elements.

Regularization schedule. For all practical applications, the

number of landmark architectures will be several orders of

magnitude smaller than the total number of architectures in

the search space. The regularization term thus needs to have

high weight to be effective and have a noticeable effect on

the training. However, too much regularization can nega-

tively impact the training dynamics, especially in the early

stages. To alleviate this issue, we propose to enable regular-

ization after a warm-up phase and to gradually increase its

influence using a cosine schedule. Specifically, we set the

regularization weight at epoch t to

λt = 1t>tw ·
1

2

(

1 + cos
π(t− tw)

ttotal

)

λmax, (7)

where tw denotes the number of warm-up epochs, ttotal de-

notes the total number of epochs, and λmax denotes the final

value for the regularization parameter.

Algorithm 1: Landmark-regularized training.

Input : Search space Ω, NAS algorithm S, super-net and

stand-alone losses Ls, LA, distance threshold τ .

initialize super-net parameters θs

initialize an empty landmark set ΩL

while step t < T do
Obtain landmark architectures

a0 ← RandomSample(Ω, 1)
while |ΩL| < M × T do

at ← Mutate(a0)
if dHamming(at, a0) > τ then

add at to ΩL

end

end

foreach training step do
Train super-net L while sampling m pairs

{(ai, aj)} ← RandomSample (ΩL × ΩL,m)
L = Ls(θ

s) + λR(θs)
Train sampler S if necessary

end

Sample architectures to get stand-alone performance

∀aj ∈ Ωt ← S(Ω), obtain LA(x, θaj
)

ΩL ← ΩL ∪ Ωt

end

Output: Model at ← argmina∈Ωt LGT (x, θa)

Application to existing NAS methods. The proposed reg-

ularization term is independent of the search algorithm, and

thus widely applicable to many different weight-sharing

NAS algorithms. We discuss its use in three different

classes of NAS strategies, specific instances of which will

act as baselines in our experiments.

We categorize weight sharing NAS algorithms into three

broad categories according to their interaction with the

super-net: i) unbiased architecture sampling algorithms [18,

52, 2, 15, 8] that sample one or a few paths uniformly

at random, ii) learning based sampling that favors the

most promising architectures given the performance of the

current, partially trained super-net [27, 19, 24, 40, 55],

and iii) differentiable architecture search that parametrizes

the architecture sampling probability as part of the super-

net [22, 6, 44, 25, 45].

For the first two categories, our method can be directly

incorporated into the super-net training to improve its qual-

ity, and hence to improve the final search results. For al-

gorithms in the last category, the algorithm is usually com-

posed of two distinct phases that are executed alternatingly.

In the the first phase the parameters that define the archi-

tecture are fixed and only the weights are updated, whereas

in the second phase the weights are fixed and the architec-

ture parameters are updated. Our regularization term can di-

rectly be integrated into the first phase when using discrete

architectures in the forward pass as in works that employ

the Gumbel-Softmax [11, 42] or binary gates [6, 44]. When

13726

using continuous architecture specifications in the forward

pass [22, 45], we do not have a discrete sub-path to sample

and evaluate the regularization term, so additional care has

to be taken to incorporate it. We discuss various ways to do

this in supplementary material.

Multi-iteration pipeline. Figure 2 depicts the complete

training pipeline. We first sample landmark architectures

using our landmark selection strategy and obtain their

stand-alone performance. We then train the NAS algorithm

with landmark regularization. After a round of training, we

sample the top M architectures using the trained NAS algo-

rithm, obtain their stand-alone performances, and add these

architectures to the set of landmarks. We proceed training

of the super-net with the expanded set of landmarks and it-

erate this process.

In our experiments on different tasks and algorithms,

we observed a stable improvement after sampling 3 sets of

M = 10 architectures for a total of 30 landmarks, which is

computationally feasible. Additionally, our algorithm can

leverage previously trained models to improve the search by

simply adding them to the landmark set. Considering that

search spaces usually encompass billions of architectures,

the number of landmarks is negligible.

5. Experiments

To validate the landmark regularization we incorporate

it into three popular weight-sharing algorithms and evaluate

them on the task of image classification using the CIFAR-

10 [17] and ImageNet [33] datasets. We then discuss a new

search space for monocular depth estimation architectures

and show that our approach also applies to this new task.

Finally, we ablate the key components and hyperparameter

choices of our landmark regularization.

We used PyTorch for all our experiments and follow the

evaluation framework defined in [52] to ensure a fair com-

parison with the baseline methods. Following [28, 29], we

shorten the training time from 600 to 100 epochs on CIFAR-

10 and from 250 to 50 on ImageNet, which still yields a

good prediction quality. We release our code at https:

//github.com/kcyu2014/nas-landmarkreg.

Baselines. We select single-path one-shot (SPOS) as a rep-

resentative unbiased architecture sampling algorithm. We

use SPOS to train the super-net, followed by an evolution-

ary search to select the best models based on the super-

net performance [15]. Among the learning-based architec-

ture sampling methods, we select neural architecture opti-

mization (NAO) [24], which trains an explicit auto-encoder-

based performance predictor. Finally, for differentiable ar-

chitecture search, we select the gradient-based search using

a differentiable architecture sampler (GDAS) [11], which

has been widely used in other works [44, 42, 6, 19]. See

the supplementary material for more details and hyper-

NASBench-101

Model S-KdT Mean Acc. Best Rank Best Acc. Cost

SPOS 0.267 ± 0.02 91.02 ± 0.52 38953 92.82 11.89

SPOS+Ours 0.347 ± 0.03 92.48 ± 0.51 27697 92.99 14.92

NAO 0.329 ± 0.11 90.56 ± 0.88 131969 91.60 15.46

NAO+Ours 0.457 ± 0.03 92.23 ± 1.32 9313 93.34 21.04

NASBench-201

Model S-KdT Mean Acc. Best Rank Best Acc. Cost

SPOS 0.771 ± 0.04 87.66 ± 4.95 3383 92.30 6.26

SPOS+Ours 0.802 ± 0.02 92.08 ± 0.37 2557 92.53 7.23

GDAS 0.691 ± 0.01 93.58 ± 0.12 463 93.48 14.42

GDAS+Ours 0.755 ± 0.01 93.98 ± 0.09 109 93.84 16.28

NAO 0.653 ± 0.05 91.75 ± 1.52 649 93.35 3.51

NAO+Ours 0.758 ± 0.05 92.84 ± 0.71 179 93.75 4.20

Table 1: Results on NASBench-101 and NASBench-201. We re-

port the S-KdT at the end of training, the mean stand-alone ac-

curacy of the searched architectures, the best rank, and the best

accuracy. Each method was run 3 times. We also report the search

cost in hours on Tesla-V100 (32Gb).

parameter settings of the baseline algorithms.

Hyperparameters. We sample M = 10 landmark archi-

tectures at each iteration, and perform T = 3 iterations.

We sample m = 1 pairs for each training step and set

λmax = 10 in all of our experiments unless otherwise spec-

ified. The Hamming distance threshold τ is set according to

the configuration of each search space. We train the base-

lines for the same total number of epochs, to ensure that

any performance improvement cannot be attributed to our

approach sampling more architectures.

Metrics. We follow [15, 50] and report the ranking cor-

relation in terms of the sparse Kendall-Tau (S-KdT). We

sample 200 architectures randomly to compute this metric

for the CIFAR-10 experiments, 90 for the ImageNet exper-

iments, and 20 for the monocular depth estimation exper-

iments. Note that we exclude the landmark architectures

from this set to avoid reporting overly optimistic numbers

for our approach. Furthermore, following [52, 12], we re-

port the mean and best stand-alone performance of the best

architectures found over three independent runs.

5.1. Image classification on CIFAR10

Since the inception of NAS, CIFAR-10 has acted as

one of the main datasets to benchmark NAS perfor-

mance [57, 27, 24, 15, 45, 48]. We utilize two search spaces,

NASBench-101 and NASBench-201, for which the stand-

alone performance of many architectures is known.

NASBench-101. NASBench-101 [47] is a cell search space

that contains 423,624 architectures with known stand-alone

accuracy on CIFAR-10. It is the largest tabular benchmark

search space to date. We use the implementation of [52]

to benchmark the performance of SPOS and NAO. We do

not report the results of GDAS on this search space, as the

13727

N
A

S
B

e
n
c
h
-2

0
1

D
A

R
T

S
 S

p
a
c
e

NAO GDAS SPOS

Figure 3: Evolution of the S-KdT of three NAS algorithms on two

search spaces. Landmark regularization significantly improves the

ranking correlation of the super-net in all cases.

matrix-based configuration used in NASBench-101 is not

amenable to differentiable approaches [47, 54]. We set the

Hamming distance threshold to τ = 5.

As shown in Table 1 (top), landmark regularization im-

proves the ranking correlation (S-KdT) from 0.267 to 0.347

for SPOS, and from 0.329 to 0.457 for NAO. This trans-

lates to a 1-2% improvement in terms of mean stand-alone

accuracy over three runs. The best architecture discovered

on this search space, thanks to our regularizer, ranks 9313-

th which corresponds to the top 2% of architectures. Note

that NAO without landmark regularization consistently got

trapped in local minima, leading to its best architecture be-

ing only in the top 30%.

NASBench-201. We report results on the NASBench-201

cell search space [12], where each cell is a fully connected

graph with 4 nodes. Each edge contains 5 searchable oper-

ations. This yields a total of 15,625 architectures. We set

τ = 5 and benchmark all three baseline algorithms on this

space. As shown in Table 1 (bottom), landmark regulariza-

tion consistently improves the ranking correlation (S-KdT)

across all three methods. We also observe an improvement

in mean accuracy of more than 4% with SPOS. The best

architecture is obtained by GDAS with landmark regular-

ization and ranks 109-th. This corresponds to the top 0.7%

architectures across the search space. In Figure 3 (top), we

plot the mean S-KdT as super-net training progresses. We

can see that the regularization improves the ranking corre-

lation by a significant margin, especially towards the end of

training. Note that we extend our experiments to CIFAR-

100 and ImageNet16-120 of NASBench-201 in supplemen-

tary material.

DARTS search space. The NASBench search spaces are

relatively small. To evaluate our approach in a more realis-

tic scenario, we make use of the DARTS search space [22,

44, 45, 25] which spans 3.3×1013 architectures and is com-

Model S-KdT Mean Acc. Params Best Acc. Cost

SPOS 0.058 ± 0.010 92.80 ± 0.03 5.082M 92.88 12.53

SPOS+Ours 0.206 ± 0.018 93.41 ± 0.43 2.181M 93.84 15.96

GDAS 0.176 ± 0.014 90.48 ± 2.95 3.418M 93.43 9.27

GDAS+Ours 0.209 ± 0.001 94.32 ± 0.28 2.540M 94.60 13.24

NAO 0.102 ± 0.018 92.93 ± 0.87 5.080M 93.03 19.72

NAO+Ours 0.231 ± 0.012 93.53 ± 0.43 2.184M 93.78 28.18

Table 2: Results on the DARTS search space on CIFAR-10. Our

best model (GDAS+Ours) surpasses the state-of-the-art model

of [45] (94.02% accuracy with 3.62M parameters) with 30% fewer

parameters.

Model S-KdT Mean Top-1 Params Best Top-1 (50/250) Cost

SPOS 0.210 ± 0.010 64.57 ± 3.30 4.579M 67.88 / 73.69 7.29

SPOS+Ours 0.267 ± 0.018 67.38 ± 0.92 4.766M 68.61 / 74.58 9.39

GDAS 0.247 ± 0.012 67.50 ± 0.26 5.076M 67.26 / 74.03 9.13

GDAS+Ours 0.272 ± 0.023 68.82 ± 0.24 5.073M 68.36 / 74.82 10.39

NAO 0.253 ± 0.006 67.70 ± 0.43 4.675M 68.21 / 73.71 8.39

NAO+Ours 0.279 ± 0.003 68.89 ± 0.58 4.488M 69.58 / 74.92 11.21

Table 3: Results on ImageNet. We report mean top-1 accuracy

over 3 runs after 50 epochs and best top-1 accuracy after 50 and

250 epochs, respectively.

monly used to evaluate real-world NAS performance. In

contrast to NASBench, for which we could query the exist-

ing stand-alone performances, here, we need to train the dis-

covered architecture from scratch. To compute the ranking

correlation, we rely on the 5,000 pre-trained models of [28]

from which we randomly sample 200 as before.

We report our results in Table 2. We observe a clear

improvement in terms of both S-KdT and mean accuracy

over three independent searches across all three algorithms.

Interestingly, the best model obtained using our ranking loss

can surpass the baseline models by almost 1% with only

around 50% of the parameters. The best model from GDAS

with our regularizer surpasses the state-of-the-art model on

this space [45] by 0.58% with 30% fewer parameters.

5.2. Image classification on ImageNet

To further evidence the effectiveness of our method, we

move to ImageNet classification. For evaluation, we pick

the best model of three independent runs predicted by each

NAS algorithm and train them from scratch on the entire

ImageNet training set for 50 epochs. We follow the setup

of [45] and use stochastic gradient descent with a linear

learning rate scheduler, which linearly increases from 0.1

to 0.5 in the first five epochs, and decreases to 0 over the

remaining 45 epochs. We use a weight decay of 3e-4 and

a label smoothing coefficient of 0.1 for all models. For this

dataset, we use the popular DARTS search space, which

provides 120 architectures trained for 50 epochs [28]. We

split these architectures into 90 to report the sparse Kendall-

Tau evaluation metric, and 30 for landmark sampling. We

13728

Feature 4

Feature 3

Feature 2

Feature 1

Encoder
Backbone

I

rn

rn

rn

rn

Fusion1

Fusion2

Fusion3

Fusion4

Decoder
Search Space

(a) Overview of MiDAS Net with searchable decoder (b) Decoder Fusion block as a search cell

conv 3x3

conv 1x1

Avg 3x3

(c) Operation choices

c

c/2
c/2

c/4
c/4

c/8
c/8

D

Edge Op

Y

Upsampling
Op

X1

In-channel

out-channel

X2

+

+

Cout
<latexit sha1_base64="VMctouCciyXhLazW4H9FEpiM1y0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHQi8cK9gPaUDbbbbt0k427E6GE/gkvHhTx6t/x5r9x0+agrQ8GHu/NMDMviKUw6Lrfzsbm1vbObmGvuH9weHRcOjltG5VoxltMSaW7ATVcioi3UKDk3VhzGgaSd4JpI/M7T1wboaIHnMXcD+k4EiPBKFqp2xikKsF5cVAquxV3AbJOvJyUIUdzUPrqDxVLQh4hk9SYnufG6KdUo2CSz4v9xPCYsikd856lEQ258dPFvXNyaZUhGSltK0KyUH9PpDQ0ZhYGtjOkODGrXib+5/USHNX8VERxgjxiy0WjRBJUJHueDIXmDOXMEsq0sLcSNqGaMrQRZSF4qy+vk3a14l1Xqvc35Xotj6MA53ABV+DBLdThDprQAgYSnuEV3pxH58V5dz6WrRtOPnMGf+B8/gDCPI/A</latexit>

Cin
<latexit sha1_base64="a5Ls+66vh2liWS9wMHTwQ8PlvlQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS4L3bisYB/QDiWTpm1oJjMkd4Qy9CPcuFDErd/jzr8x085CWw8EDufcS+45QSyFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY6JEM95mkYx0L6CGS6F4GwVK3os1p2EgeTeYNTO/+8S1EZF6xHnM/ZBOlBgLRtFK3eYwFWpRGpYrbtVdgmwSLycVyNEalr8Go4glIVfIJDWm77kx+inVKJjki9IgMTymbEYnvG+poiE3fro8d0GurDIi40jbp5As1d8bKQ2NmYeBnQwpTs26l4n/ef0Ex3XfBooT5IqtPhonkmBEsuxkJDRnKOeWUKaFvZWwKdWUoW0oK8Fbj7xJOrWqd1OtPdxWGvW8jiJcwCVcgwd30IB7aEEbGMzgGV7hzYmdF+fd+ViNFpx85xz+wPn8AdawjzU=</latexit>

Cin
<latexit sha1_base64="a5Ls+66vh2liWS9wMHTwQ8PlvlQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS4L3bisYB/QDiWTpm1oJjMkd4Qy9CPcuFDErd/jzr8x085CWw8EDufcS+45QSyFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY6JEM95mkYx0L6CGS6F4GwVK3os1p2EgeTeYNTO/+8S1EZF6xHnM/ZBOlBgLRtFK3eYwFWpRGpYrbtVdgmwSLycVyNEalr8Go4glIVfIJDWm77kx+inVKJjki9IgMTymbEYnvG+poiE3fro8d0GurDIi40jbp5As1d8bKQ2NmYeBnQwpTs26l4n/ef0Ex3XfBooT5IqtPhonkmBEsuxkJDRnKOeWUKaFvZWwKdWUoW0oK8Fbj7xJOrWqd1OtPdxWGvW8jiJcwCVcgwd30IB7aEEbGMzgGV7hzYmdF+fd+ViNFpx85xz+wPn8AdawjzU=</latexit>

Cout
<latexit sha1_base64="VMctouCciyXhLazW4H9FEpiM1y0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHQi8cK9gPaUDbbbbt0k427E6GE/gkvHhTx6t/x5r9x0+agrQ8GHu/NMDMviKUw6Lrfzsbm1vbObmGvuH9weHRcOjltG5VoxltMSaW7ATVcioi3UKDk3VhzGgaSd4JpI/M7T1wboaIHnMXcD+k4EiPBKFqp2xikKsF5cVAquxV3AbJOvJyUIUdzUPrqDxVLQh4hk9SYnufG6KdUo2CSz4v9xPCYsikd856lEQ258dPFvXNyaZUhGSltK0KyUH9PpDQ0ZhYGtjOkODGrXib+5/USHNX8VERxgjxiy0WjRBJUJHueDIXmDOXMEsq0sLcSNqGaMrQRZSF4qy+vk3a14l1Xqvc35Xotj6MA53ABV+DBLdThDprQAgYSnuEV3pxH58V5dz6WrRtOPnMGf+B8/gDCPI/A</latexit>

In-channel

Cin
<latexit sha1_base64="a5Ls+66vh2liWS9wMHTwQ8PlvlQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS4L3bisYB/QDiWTpm1oJjMkd4Qy9CPcuFDErd/jzr8x085CWw8EDufcS+45QSyFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY6JEM95mkYx0L6CGS6F4GwVK3os1p2EgeTeYNTO/+8S1EZF6xHnM/ZBOlBgLRtFK3eYwFWpRGpYrbtVdgmwSLycVyNEalr8Go4glIVfIJDWm77kx+inVKJjki9IgMTymbEYnvG+poiE3fro8d0GurDIi40jbp5As1d8bKQ2NmYeBnQwpTs26l4n/ef0Ex3XfBooT5IqtPhonkmBEsuxkJDRnKOeWUKaFvZWwKdWUoW0oK8Fbj7xJOrWqd1OtPdxWGvW8jiJcwCVcgwd30IB7aEEbGMzgGV7hzYmdF+fd+ViNFpx85xz+wPn8AdawjzU=</latexit>

Upsampling
Op

bilinear

Bicubic

Conv 2d Trans

PixelShuffle

(d) Search space configuration

V1 V2

Sync Non-Sync

Search

Fix bilinear

Search

Search

Fusion1 Fusion3

Fusion4Fusion2

Search for a same config

Fusion i

Fusion block
is differenent

Zero

Identity

Edge Op

Figure 4: Monocular depth estimation search space. (a) We modify MiDaS [30] to construct the search space. We keep the backbone

unchanged and search for fusion blocks in the decoder branches. (b) To define a fusion block, we model the input from the backbone and

from the preceding fusion block as two nodes. We add two feature nodes, which sum up all previous inputs. The nodes are connected by

edges, which represent the searchable operations. The final output node Y takes the output of the last feature node and applies a potentially

searchable upsampling operation. (c) Each edge, except the output edge, represents an Edge Op (blue) that contains five operations to

choose from, while an upsampling edge (purple) contains four. (d) We propose four sub-space configurations: ‘V1’ indicates that we only

search edge operations and fix the upsampling operator to bilinear upsampling. ‘V2’ includes a search over the upsampling operators.

‘Sync’ indicates that all fusion blocks share the same configuration, while ‘Non-sync’ allows them to differ.

train the super-net with only 15% of the training dataset as

in [45]. As the test data is not public, we report the top-1

validation accuracy as a metric for stand-alone training.

Results. Table 3 shows that landmark regularization consis-

tently improves the three baselines. Overall, the best model

is found by NAO with landmark regularization and achieves

74.92% top-1 accuracy, which outperforms the best base-

line model by more than 1%. This further evidences the

effectiveness of our regularization and its robustness across

datasets.

5.3. Monocular depth estimation

To showcase the generality of our approach, we apply

our landmark-regularized NAS to the task of monocular

depth estimation. Monocular depth estimation aims to pre-

dict pixel-wise depth from a single RGB image. Differ-

ent paradigms have emerged on how to train single-image

depth predictors, ranging from fully supervised training

[1, 43, 30], to self-supervised approaches [13]. We follow

the supervised paradigm and use the loss function proposed

by Ranftl et al. [30] to search for an architecture on the

ReDWeb [43] dataset.

Search space. Figure 4 gives a detailed overview of the

structure of our search space. Figure 4 (a) shows the struc-

ture of a traditional monocular depth estimation network. It

is composed of a backbone network that acts as a feature

extractor, typically pre-trained on ImageNet, followed by

decoder fusion blocks that aggregate multi-scale informa-

tion into a final prediction. Since using a pre-trained high-

capacity network has been shown to be of high importance

for final performance [1, 30], its architecture is fixed. We

thus propose to search for the fusion blocks that define the

Search space Method
Sync Non-sync

s-KdT Best Val. loss S-KdT Best Val. loss

V1

|Ω| = 3, 125 |Ω| = 9.5× 1013

SPOS 0.751 ± 0.003 0.0960 ± 0.001 0.732 ± 0.008 0.0973 ± 0.002

SPOS+Ours 0.781 ± 0.002 0.0958 ± 0.001 0.867 ± 0.044 0.0974 ± 0.001

V2

|Ω| = 12, 500 |Ω| = 2.4× 1016

SPOS 0.401 ± 0.010 0.0957 ± 0.001 0.611 ± 0.004 0.0973 ± 0.001

SPOS+Ours 0.555 ± 0.026 0.0936 ± 0.000 0.681 ± 0.002 0.0964 ± 0.001

Table 4: Results on the RedWeb validation set. The performance

achieved by [30] is 0.0942 (lower is better).

decoder.

As depicted in Figure 4 (b), each fusion block is a search

cell and takes the output of its preceding fusion block and

the features from the backbone network as input. As the

first fusion block does not have a predecessor, we simply

duplicate the features from the encoder. Figure 4 (c) shows

the possible searchable operations, whereas (d) illustrates

four possible configurations of our search space. We report

the total number of architectures |Ω| for each search space

in Table 4. While the search space is relatively simple, it is

large enough to exhibit the problem of ranking disorder.

Results. We use the single-path one-shot algorithm to

benchmark the influence of our regularization term on this

task. We run T = 2 iterations, and sample 10 architectures

in the first iteration. After the first round of training, we pick

the three top models, obtain their stand-alone performance,

and add them to the set of landmarks before we perform

training for a second iteration. In addition to S-KdT, we re-

port the scale- and shift-invariant loss [30] on the validation

set as the performance metric.

Our results in Table 4 indicate that our method consis-

tently yields an improvement in terms of S-KdT for all

four configurations of the search space. Our best model

13729

Constant Cos.
<latexit sha1_base64="HlMt3bKt07w0uHYgnXk5DKhK3h8=">AAAB8XicbVBNTwIxFHzFL8Qv1KOXRmLiiewajRxJvHjERMAIG9ItXWjotpu2KyEb/oUXDxrj1X/jzX9jgT0oOEmTycyb9L0JE8GN9bxvVFhb39jcKm6Xdnb39g/Kh0cto1JNWZMqofRDSAwTXLKm5Vawh0QzEoeCtcPRzcxvPzFtuJL3dpKwICYDySNOiXXSY7evxpJorca9csWrenPgVeLnpAI5Gr3ylwvTNGbSUkGM6fheYoOMaMupYNNSNzUsIXREBqzjqCQxM0E233iKz5zSx5HS7kmL5+rvREZiYyZx6CZjYodm2ZuJ/3md1Ea1IOMySS2TdPFRlApsFZ6dj/tcM2rFxBFCNXe7YjokmlDrSiq5Evzlk1dJ66LqX1W9u8tKvZbXUYQTOIVz8OEa6nALDWgCBQnP8ApvyKAX9I4+FqMFlGeO4Q/Q5w/9XJEX</latexit>

Step
<latexit sha1_base64="HlMt3bKt07w0uHYgnXk5DKhK3h8=">AAAB8XicbVBNTwIxFHzFL8Qv1KOXRmLiiewajRxJvHjERMAIG9ItXWjotpu2KyEb/oUXDxrj1X/jzX9jgT0oOEmTycyb9L0JE8GN9bxvVFhb39jcKm6Xdnb39g/Kh0cto1JNWZMqofRDSAwTXLKm5Vawh0QzEoeCtcPRzcxvPzFtuJL3dpKwICYDySNOiXXSY7evxpJorca9csWrenPgVeLnpAI5Gr3ylwvTNGbSUkGM6fheYoOMaMupYNNSNzUsIXREBqzjqCQxM0E233iKz5zSx5HS7kmL5+rvREZiYyZx6CZjYodm2ZuJ/3md1Ea1IOMySS2TdPFRlApsFZ6dj/tcM2rFxBFCNXe7YjokmlDrSiq5Evzlk1dJ66LqX1W9u8tKvZbXUYQTOIVz8OEa6nALDWgCBQnP8ApvyKAX9I4+FqMFlGeO4Q/Q5w/9XJEX</latexit>

#Cos.
<latexit sha1_base64="MM4LMO7LVH7x+PfpcesD4yz9K0U=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYo4BLx4jmAckS5idzCZDZmfWeShhyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+mfntR6o0k+LeTFIaJngoWMwINk7q9GyKlZJP/XLFr/pzoFUS5KQCORr98ldvIIlNqDCEY627gZ+aMMPKMMLptNSzmqaYjPGQdh0VOKE6zOb3TtGZUwYolsqVMGiu/p7IcKL1JIlcZ4LNSC97M/E/r2tNXAszJlJrqCCLRbHlyEg0ex4NmKLE8IkjmCjmbkVkhBUmxkVUciEEyy+vktZFNbiq+neXlXotj6MIJ3AK5xDANdThFhrQBAIcnuEV3rwH78V79z4WrQUvnzmGP/A+fwBsuJAw</latexit>

↑ Step
<latexit sha1_base64="MM4LMO7LVH7x+PfpcesD4yz9K0U=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYo4BLx4jmAckS5idzCZDZmfWeShhyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+mfntR6o0k+LeTFIaJngoWMwINk7q9GyKlZJP/XLFr/pzoFUS5KQCORr98ldvIIlNqDCEY627gZ+aMMPKMMLptNSzmqaYjPGQdh0VOKE6zOb3TtGZUwYolsqVMGiu/p7IcKL1JIlcZ4LNSC97M/E/r2tNXAszJlJrqCCLRbHlyEg0ex4NmKLE8IkjmCjmbkVkhBUmxkVUciEEyy+vktZFNbiq+neXlXotj6MIJ3AK5xDANdThFhrQBAIcnuEV3rwH78V79z4WrQUvnzmGP/A+fwBsuJAw</latexit>

↑

Epoch

<latexit sha1_base64="2X/Ju+LVTppB8E/06IyKSPc/ACM=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBVU1E0WXBjcsK9gFtCJPJpB06mYSZiVhCceOvuHGhiFu/wp1/47SNoK0HBg7nnMude4KUM6Ud58taWFxaXlktrZXXNza3tu2d3aZKMklogyQ8ke0AK8qZoA3NNKftVFIcB5y2gsHV2G/dUalYIm71MKVejHuCRYxgbSTf3u9yEw6xr9EJ+uF5jO9Hvl1xqs4EaJ64BalAgbpvf3bDhGQxFZpwrFTHdVLt5VhqRjgdlbuZoikmA9yjHUMFjqny8skJI3RklBBFiTRPaDRRf0/kOFZqGAcmGWPdV7PeWPzP62Q6uvRyJtJMU0Gmi6KMI52gcR8oZJISzYeGYCKZ+SsifSwx0aa1sinBnT15njRPq+551bk5q9Scoo4SHMAhHIMLF1CDa6hDAwg8wBO8wKv1aD1bb9b7NLpgFTN78AfWxze0tZbw</latexit> λ
t
/λ

m
a
x

<latexit sha1_base64="AhuA2NNlxT+kDEP/ML8C5pf0mDA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQUPRa8eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBtMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK/51xatflateHkcBTuEMLsCHG6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDcEYzq</latexit>

t

Schedule λmax

Const Cos ↓ Cos ↑ Step ↓ Step ↑ 1 10 100

S-KdT 0.753 0.712 0.803 0.709 0.785 0.789 0.803 0.793

Mean Acc. 91.13 91.38 92.08 91.02 91.31 91.89 92.08 91.97

Table 5: Influence of the regularization parameter λ. Left: Dif-

ferent schedules (c.f . top plots) to modify the strength of regular-

ization throughout training. Right: Influence of λmax with the

increasing cosine schedule.

SPOS SPOS+Ours

Iteration T=1 T=3 T=10 T=1 T=3 T=10

S-KdT 0.763 0.771 0.758 0.760 0.802 0.811

Mean Acc. 91.13 91.48 91.78 91.29 92.08 92.17

Table 6: Influence of the number of iterations T on NASBench-

201.

m Pair(s) 0 1 2 10 20 50 100

S-KdT 0.771 0.803 0.801 0.805 0.812 0.807 0.791

Mean Acc. 87.66 92.08 92.12 92.13 92.10 92.11 92.00

Table 7: Influence of the stochastic approximation of Eq. 4. We

randomly sample m pairs from 30 landmarks during each training

step .

improves upon the state-of-the-art handcrafted architecture

of [30] in terms of the final performance.

5.4. Ablation studies

We finally provide an analysis of different aspects of

our approach. We first evaluate the influence of the hyper-

parameter λ and different regularization schedules. We fur-

ther study the robustness of our method to the landmark

sampling distance τ and the number of iterations T . We

conduct the ablations under the experimental setting de-

scribed in Section 5.1 and use SPOS as baseline.

Loss coefficient λ and scheduler. In Table 5, we ablate

five different coefficient schedulers: constant regularization

throughout training, two schedulers that gradually decrease

the regularization, and two schedulers that gradually in-

crease regularization (c.f . Table 5 (top)). For the constant

and decreasing schedulers, we gradually increase the loss

from 0 to λmax linearly in the first 10 epochs to avoid an

abrupt change of the loss. As shown in Table 5, the cosine

increasing scheduler, with λmax = 10, yields the best re-

sults. We used this strategy in all our experiments.

Iterations. We investigate the impact of the number of iter-

ations T in Table 6. We first pre-train the super-net for 250

epochs and then continue training for another 150 epochs

per iteration T both with and without landmark regulariza-

Sampling distance

Figure 5: Comparison of different sampling distances τ . The

black, dashed line indicates the baseline performance.

tion. Table 6 indicates that our method improves the re-

sults when increasing the number of iterations, while the

performance of the baseline does not increase. We selected

T = 3 for our experiments as it strikes a balance between

efficiency and accuracy.

Sampling in loss computation. In Table 7, we show that

sampling a single pair of architectures per iteration to com-

pute the regularization term is sufficient. Using more pairs

does not improve the ranking correlation. We hypothesize

this to be due to the fact that, overall, super-net training

undergoes thousands of steps, thus providing a good cover-

age of all possible combinations of landmark architectures

when the landmark set is small.

Influence of the sampling distance. We finally evaluate

the importance of the distance threshold τ in our landmark

sampler. We first pre-train the super-net with SPOS on

NASBench-201 for 150 epochs, then train for 50 epochs

with landmark regularization, where we sample landmarks

with varying distances τ . We repeated this experiment 3

times and report the average S-KdT as well as the mean ac-

curacy of the discovered architectures. Figure 5 shows that

the performance degrades if τ is chosen too small. Perfor-

mance gradually improves as τ increases. This highlights

the importance of a diverse set of landmarks. Note that

our sampling strategy does not require knowledge about the

stand-alone performance and thus is applicable to new NAS

search spaces.

6. Conclusion

We have presented a simple yet effective approach to

leverage a few landmark architectures to guide the super-

net training of weight-sharing NAS algorithms towards a

better correlation with stand-alone performance. Our strat-

egy is applicable to most NAS algorithms and our exper-

iments have shown that it consistently improves both the

ranking correlation between the super-net and stand-alone

performance as well as the final performance across three

different search algorithms and three different tasks. Ad-

ditionally, our approach can leverage the information from

previously trained stand-alone models to improve NAS per-

formance. In the future, we will focus on developing a more

advanced landmark sampling strategy.

13730

References

[1] Ibraheem Alhashim and Peter Wonka. High quality monoc-

ular depth estimation via transfer learning. arXiv e-prints,

abs/1812.11941, 2018. 7

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In ICML, pages 549–558, 2018.

2, 4

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V. Le. Can weight

sharing outperform random architecture search? an investi-

gation with tunas. In CVPR, 2020. 1, 2

[4] Yassine Benyahia, Kaicheng Yu, Kamil Bennani-Smires,

Martin Jaggi, Anthony C. Davison, Mathieu Salzmann, and

Claudiu Musat. Overcoming multi-model forgetting. ICML,

2019. 2, 3

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize it

for efficient deployment. In ICLR, 2020. 1, 2

[6] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

Neural Architecture Search on Target Task and Hardware. In

ICLR, 2019. 1, 2, 4, 5

[7] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,

Chunhong Pan, and Jian Sun. DetNAS: Neural Architecture

Search on Object Detection. NeurIPS, 2019. 1, 2

[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li.

FairNAS: Rethinking Evaluation Fairness of Weight Sharing

Neural Architecture Search. arXiv:, 2019. 1, 2, 4

[9] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.

Fair DARTS: Eliminating unfair advantages in differentiable

architecture search. ECCV, 2020. 1

[10] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan

Gabrys. Nats-bench: Benchmarking nas algorithms for ar-

chitecture topology and size. IEEE Transactions on Pattern

Analysis and Machine Intelligence, page 1–1, 2021. 2

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. In CVPR, 2019. 2, 4, 5

[12] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the

scope of reproducible neural architecture search. In ICLR,

2020. 2, 5, 6

[13] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, 2019. 7

[14] Shuxuan Guo, Jose M. Alvarez, and Mathieu Salzmann.

Expandnets: Linear over-parameterization to train compact

convolutional networks. In NeurIPS, volume 33, 2020. 2

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot

Neural Architecture Search with Uniform Sampling. ECCV,

2019. 1, 2, 4, 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, June

2016. 2

[17] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-

10 (canadian institute for advanced research). 2009. 5

[18] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. UAI, 2019. 1, 2,

4

[19] Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie

Yan, and Wanli Ouyang. Improving one-shot NAS by sup-

pressing the posterior fading. CVPR, 2020. 1, 2, 4, 5

[20] Yanxi Li, Zhaohui Yang, Yunhe Wang, and Chang Xu.

Adapting neural architectures between domains. CVPR,

2020. 2

[21] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-DeepLab:

Hierarchical Neural Architecture Search for Semantic Image

Segmentation. CVPR, 2019. 1, 2

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. ICLR, 2019. 1, 2, 4, 5, 6

[23] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen,

and Tie-Yan Liu. Semi-Supervised Neural Architecture

Search. NeurIPS, 2020. 1, 2

[24] Renqian Luo, Fei Tian, Tao Qin, En-Hong Chen, and Tie-

Yan Liu. Neural architecture optimization. In NeurIPS,

2018. 2, 4, 5

[25] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong

Jin, and Lihi Zelnik. Xnas: Neural architecture search with

expert advice. In NeurIPS, 2019. 2, 4, 6

[26] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and

Jianlong Fu. Cream of the crop: Distilling prioritized paths

for one-shot neural architecture search. CVPR, 2020. 2

[27] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. ICML, 2018. 1, 2, 4, 5

[28] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,

and Piotr Dollár. On Network Design Spaces for Visual

Recognition. In ICCV, 2019. 2, 5, 6

[29] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. CVPR, 2020. 5

[30] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (TPAMI), 2020. 7, 8

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. AAAI, 2019. 2

[32] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-

ena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey

Kurakin. Large-scale evolution of image classifiers. ICML,

2017. 2

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 5

[34] Michael S. Ryoo, AJ Piergiovanni, Mingxing Tan, and

Anelia Angelova. Assemblenet: Searching for multi-stream

neural connectivity in video architectures. In ICLR, 2020. 1,

2

13731

[35] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,

Margret Keuper, and Frank Hutter. Nas-bench-301 and the

case for surrogate benchmarks for neural architecture search.

arXiv preprint arXiv:2008.09777, 2020. 2

[36] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. CVPR, 2018. 2, 3

[37] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking

model scaling for convolutional neural networks. ICML,

2019. 2, 3

[38] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin

Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu.

A Semi-Supervised Assessor of Neural Architectures. In

CVPR, 2020. 2

[39] Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and

Yuandong Tian. Neural architecture search by learning ac-

tion space for monte carlo tree search. AAAI, 2020. 1, 2,

3

[40] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and

Rodrigo Fonseca. AlphaX: eXploring Neural Architectures

with Deep Neural Networks and Monte Carlo Tree Search.

AAAI, 2020. 2, 4

[41] Wei Wang, Kaicheng Yu, Joachim Hugonot, Pascal Fua, and

Mathieu Salzmann. Recurrent u-net for resource-constrained

segmentation. In ICCV, October 2019. 2

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. FBNet: Hardware-Aware Effi-

cient ConvNet Design via Differentiable Neural Architecture

Search. CVPR, 2019. 1, 2, 4, 5

[43] Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, Yang Xiao,

Ruibo Li, and Zhenbo Luo. Monocular relative depth per-

ception with web stereo data supervision. In CVPR, 2018.

7

[44] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

SNAS: Stochastic neural architecture search. ICLR, 2019.

2, 4, 5, 6

[45] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Partial chan-

nel connections for memory-efficient architecture search. In

ICLR, 2020. 2, 4, 5, 6, 7

[46] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci.

NAS evaluation is frustratingly hard. In ICLR, 2020. 2

[47] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen,

Kevin Murphy, and Frank Hutter. NAS-Bench-101: Towards

reproducible neural architecture search. ICLR, 2019. 1, 2, 5,

6

[48] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen

Qian, and Changshui Zhang. GreedyNAS: Towards fast one-

shot NAS with greedy supernet. CVPR, 2020. 2, 5

[49] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,

Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-

aodan Song, Ruoming Pang, and Quoc Le. BigNAS: Scaling

Up Neural Architecture Search with Big Single-Stage Mod-

els. ECCV, 2020. 1, 2

[50] Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann. How to

Train Your Super-Net: An Analysis of Training Heuristics in

Weight-Sharing NAS. arXiv, 2020. 1, 2, 5

[51] Kaicheng Yu and Mathieu Salzmann. Statistically-motivated

second-order pooling. In ECCV, September 2018. 2

[52] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neu-

ral architecture search. In ICLR, 2020. 1, 2, 4, 5

[53] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding

and robustifying differentiable architecture search. In ICLR,

2020. 1

[54] Arber Zela, Julien Siems, and Frank Hutter. NAS-Bench-

1Shot1: Benchmarking and dissecting one-shot neural archi-

tecture search. In ICLR, 2020. 1, 2, 6

[55] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fon-

seca, and Tian Guo. Few-shot neural architecture search.

arXiv, 2020. 2, 4

[56] Barret Zoph and Quoc V. Le. Neural Architecture Search

with Reinforcement Learning. ICLR, 2017. 2, 3

[57] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 2, 3, 5

13732

