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Figure 1: A visual comparison of MG and other matting methods including the commercial matting method in Photoshop.

The guidance input (see Sec. 5 for details.) is located at the bottom-left of each image. Note that BSHM [27] has an internal

segmentation prediction network thus does not take external mask. Best viewed zoomed in.

Abstract

We propose Mask Guided (MG) Matting, a robust mat-

ting framework that takes a general coarse mask as guid-

ance. MG Matting leverages a network (PRN) design which

encourages the matting model to provide self-guidance to

progressively refine the uncertain regions through the de-

coding process. A series of guidance mask perturbation op-

erations are also introduced in the training to further en-

hance its robustness to external guidance. We show that

PRN can generalize to unseen types of guidance masks

such as trimap and low-quality alpha matte, making it suit-

able for various application pipelines. In addition, we re-

visit the foreground color prediction problem for matting

and propose a surprisingly simple improvement to address

the dataset issue. Evaluation on real and synthetic bench-

marks shows that MG Matting achieves state-of-the-art per-

formance using various types of guidance inputs. Code

and models are available at https://github.com/

yucornetto/MGMatting.

1. Introduction

Image matting is a fundamental computer vision prob-

lem which aims to predict an alpha matte to precisely cut

∗Work done during an internship at Adobe.

out an image region. It has many applications in image and

video editing [39, 41, 21]. Most previous matting methods

require a well-annotated trimap as an auxiliary guidance in-

put [39], which explicitly defines the regions of foreground

and background as well as the unknown part for the mat-

ting methods to solve. Although such annotation makes

the problem more tractable, it can be quite burdensome for

users and limits the usefulness of these methods in many

non-interactive applications.

Recently, researchers start to study the matting problem

in a trimap-free setting. One direction is to get rid of any ex-

ternal guidance, and hope that the matting model can cap-

ture both semantics and details by end-to-end training on

large-scale datasets [45, 31]. Nevertheless, these methods

are faced with the generalization challenge due to the lack

of semantic guidance when tested on complex real-world

images. Another line of works investigate alternatives to

the trimap guidance, easing the requirement for human in-

put [27, 32, 19, 13]. For example, [19, 13] proposed tech-

niques for automatic trimap generation, while [32] takes

background images instead as extra inputs. However, these

methods often require a very specific type of guidance they

are trained with and thus become less appealing when the

guidance inputs may have varied characteristics or forms.

In this work, we introduce a Mask Guided (MG) Mat-

ting method which takes a general coarse mask as guidance.

MG Matting is very robust to the guidance input and can
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obtain high-quality matting results using various types of

mask guidance such as a trimap, a rough binary segmenta-

tion mask or a low-quality soft alpha matte. To achieve such

robustness to guidance input, we propose a Progressive Re-

finement Network (PRN) module, which learns to provide

self-guidance to progressively refine the uncertain matting

regions through the decoding process. To further enhance

the robustness of our method to external guidance, we also

develop a series of guidance mask perturbation operations

including random binarization, random morphological op-

erations, and also a stronger perturbation CutMask to simu-

late diverse guidance inputs during training.

In addition to alpha matting prediction, we also revisit

the foreground color prediction problem for matting. With-

out accurately recovering the foreground color in the trans-

parent region, the composited image will suffer from the

fringing issue. We note that the foreground color labels in

the widely-used dataset [41] are suboptimal for model train-

ing due to the labeling noise and limited diversity. As a

simple yet effective solution, we propose Random Alpha

Blending (RAB) to generate synthetic training data from

random alpha mattes and images. We show that such simple

method can improve the foreground color prediction accu-

racy without requiring additional manual annotations. As a

result, combining with the proposed PRN, MG Matting is

able to generate more visual plausible composition results.

Our contributions can be summarized as follows:

• We propose Mask Guided Matting, a general matting

framework working with guidance masks in various

qualities and even forms, and achieve a new state-of-

the-art performance evaluated on both synthetic and

real-world datasets.

• We introduce Progressive Refinement Network (PRN)

along with a guidance perturbation training pipeline as

a solution to learning a robust matting model.

• We study the problem of foreground color prediction

for matting and propose a simple improvement using

random alpha blending.

In addition, we collect and release a high-quality matting

benchmark dataset of real images to evaluate the real-world

performance of matting models.

2. Related Work

Trimap-based Image Matting. A majority of matting

methods requires a trimap as additional input, which di-

vides an image into foreground, background, and unknown

regions. Traditional methods are often sampling-based or

propagation-based. Sampling-based ones [11, 7, 15, 33,

38] estimate foreground/background color statistics through

sampling pixels in the definite foreground/background re-

gions to solve the alpha matte in the unknown region. The

propagation-based methods [6, 20, 21, 22, 35, 16], also

known as affinity-based methods, estimate alpha mattes

by propagating the alpha value from foreground and back-

ground pixels to the unknown area.

Recently, deep learning approaches have been proved

successful in many areas, including classification [17, 36,

25, 23], detection [14, 2, 3], and segmentation [5, 42]. It

also have achieved great success in image matting. [41] cre-

ated a matting dataset with annotated mattes composited to

various background images, and trained a deep network on

it. Later, [30] introduced a generative adversarial frame-

work to improve the results. [37] proposed to combine the

sampling-based method and deep learning. [29] introduced

a new index-guided upsampling and unpooling operations

to better keep details in the predictions. [18] proposed a

two-encoder two-decoder architectures to simultaneous es-

timate foreground and alpha. [24] further boost the perfor-

mance with a contextual attention module.

Trimap-free Image Matting. It is noticeable that there

are also some trials [1, 34] to get rid of the trimap to pre-

dict alpha matte. [45] proposed a framework consisting

of a segmentation network and a fusion network, where

the input is only a single RGB image. Later, [27] intro-

duced a trimap-free framework consisting of mask predic-

tion network, quality unification network, and matting re-

finement network for human portrait matting. The trimap-

free matting performance is further boosted with attention

module [31]. However, these trimap-free methods still have

some gap to trimap-based ones in terms of performance.

Another direction is to use an alternative guidance to trimap.

[32] introduced a framework taking background images

along with other potential priors (e.g., segmentation mask,

motion cue) as additional inputs. It shows great potential

and can obtain a comparable performance to state-of-the-

art trimap-based methods.

Foreground Color Decontamination. Many conven-

tional matting methods [11, 21] proposed to predict both

alpha matte and foreground color for extracting foreground

objects. However, it is only very recently [18] incorporated

the foreground prediction into the deep learning framework.

Later, [32] also predicts foreground color to reduces arti-

facts for a better composition result. Nevertheless, these

methods mainly add a foreground decoder and directly learn

from color label in [41], which only provides limited train-

ing samples and, more seriously, the color labels can be in-

accurate and noisy(see Fig. 3). [10] proposes to use [21] to

obtain a smoother color label.

Our method differs from algorithms mentioned above in

the following folds: 1) Our model works in a more general

setting where only an easy-to-obtain coarse mask, no mat-

ter user-defined or model-predicted, is needed as guidance.

It could handle different qualities and even various types of

guidance as input. Thus it could be used as either trimap-

based or trimap-free model depending on what guidance is

1155



PRM

PRM

Elementwise

Product

Elementwise

Sum

Progressive Refinement Module (PRM)

𝑔𝑙

𝛼𝑙

𝑓𝛼→𝑔𝛼𝑙−1
upsample

𝛼𝑙′
𝛼𝑙−1 1 − 𝑔𝑙

𝑔𝑙

Image Mask

Skip-

Connect

𝛼0 𝛼1
𝛼2

Figure 2: The proposed PRN. The network predicts alpha matte at multiple resolutions, while the one at lower-resolution

provides guidance about uncertain region to be refined in the next prediction.

available. Our model could also leverage a stronger guid-

ance to achieve even finer details. 2) Our methods could

also predict the foreground color. Unlike [18], where the

foreground prediction is directly learned from the color la-

bel, we note that the limited training data and inaccurate

human label result in undesired results especially in the

boundary regions. Instead, we propose to use Random Al-

pha Blending to avoid the bias in label, which not only in-

troduces more diverse training samples but also avoid the

inaccurate color label locating in boundary regions.

3. MG Matting

The problem of image matting can be formulated as:

I = αF+ (1− α)B, α ∈ [0, 1], (1)

where I, F, B, and α refer to the image color, foreground

color, background color and alpha matte respectively. As

only I is observed, this is a very ill-posed problem. To solve

the matting problem, most methods require a trimap input,

which labels the foreground region (i.e. α = 1), the back-

ground region (i.e. α = 0) and the unknown part. In prac-

tice, the trimap input can contain various levels of noise and

errors, making the matting results inconsistent.

We relax the strong assumption of the trimap by propos-

ing a Mask Guided Matting method. The mask guidance,

such as a predicted segmentation mask or a rough manual

selection, only provides a coarse spatial prior of the fore-

ground region. Therefore, our MG Matting method needs

more high-level semantic understanding of the input mask,

so that it can detect the foreground/background region and

the soft transparent part robustly. Meanwhile, our model

has to capture image low-level patterns such as edge and

texture to produce fine details of the target matte. Coordi-

nating the high-level and the low-level feature learning is

the key to the design of our MG Matting method.

To this end, we introduce Progressive Refinement Net-

work (PRN), which provides a coarse-to-fine self-guidance

to progressively refine the uncertain regions during the de-

coding process. In the following, we present the details of

PRN, the training formulation and some data augmentation

techniques to enhance the robustness of our model.

3.1. Progressive Refinement Network

An overview of the PRN is shown in Fig. 2. The struc-

ture of our PRN follows the popular encoder-decoder net-

work with skip connections. Our network takes an image

and a coarse mask as input and outputs a matte. During

the decoding process, PRN has a side matting output at

each feature level. The side outputs with deep supervision

have been shown to improve the feature learning at differ-

ent scales [40]. However, unlike [40], we find that linearly

fusing the side outputs is not ideal for the matting prob-

lem (see Table 4 for details). This is because image region

closer to the object boundary requires lower-level features

to delineate the foreground, while identifying internal ob-

ject regions needs higher-level guidance.

To address this problem, we introduce a Progressive Re-

finement Module (PRM) at each feature level to selectively

fuse the matting outputs from the previous level and the cur-

rent level. Specifically, for the current level l we generate a

self-guidance mask gl from the matting output αl−1 of the

previous level using the following function:

fαl−1→gl(x, y) =

{

1 if 0 < αl−1(x, y) < 1,
0 otherwise.

(2)

The αl−1 is firstly upsampled to match the size of the raw

matting output α′

l of the current level and then produces
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resultant self-guidance mask gl. The self-guidance mask

defines the transparent region (i.e. 0 < α < 1) as unknown

and replaces the unknown region of αl−1 with the current

raw output α′

l to obtain an updated αl of current level:

αl = α′

lgl + αl−1(1− gl). (3)

In this way, confident regions predicted from the previ-

ous higher-level features are preserved and the current level

only needs to focus on refining the uncertain region.

In practise, we obtain alpha matte side outputs at three

feature levels of stride 8, 4, and 1 respectively (see Fig. 2)

and slightly dilate the self-guidance masks for a more robust

self-guidance. The initial base matte of 1/8 image size will

be progressively upsampled and refined, and the uncertain

regions will also shrink gradually through the decoding pro-

cess using the proposed PRM. The full network is trained

end-to-end to auto-balance the refinement focus at multi-

ple feature levels. Such self-guided refinement also makes

model less reliant on the external mask guidance, leading to

more robust matting performance.

Training scheme. For loss functions, we adopt the l1 re-

gression loss, composition loss [41], Laplacian loss [18] and

denote them as Ll1, Lcomp, Llap respectively. We represent

the ground truth alpha with α̂ and prediction alpha with α.

The overall loss functions is the summation of them:

L(α̂, α) = Ll1(α̂, α) + Lcomp(α̂, α) + Llap(α̂, α). (4)

The loss is applied to each output head of the network. To

make the training more focused on the unknown region, We

further modulate the loss with gl. The final loss function

can be formulated as:

Lfinal =
∑

l

wlL(α̂l · gl, αl · gl), (5)

where wl is the loss weight assigning to the outputs of dif-

ferent levels. We use w0 : w1 : w2 = 1 : 2 : 3 in our

experiments. gl is generated from αl−1 by Eqn. 2, and g0 is

a mask filled with one so that the base level output can be

supervised over the whole image to provide more holistic

semantic guidance for the next level output.

For data augmentation, we follow the training protocol

proposed in [24], including random composite two fore-

ground object images, random resize images with random

interpolation methods, random affine transformation, color

jitters. We random crop 512 × 512 patches centered on an

unknown region for training. Each patch is composited to a

random background image from MS COCO dataset [26].

Guidance Perturbation. To ensure that our model can

adapt to guidance masks from different sources and with

different qualities, we propose a series of guidance pertur-

bation to generate guidance masks from ground-truth alpha

matte during training. Given a ground-truth alpha matte,

Figure 3: The color labels in the commonly used training

data from [41] are noisy and inaccurate especially near the

boundary part. Note that the hair near the ear falsely gets

pinker. Best viewed in color and zoomed in.

we first binarize it with a random threshold uniformly sam-

pled from 0 to 1. Then, the mask is dilated and/or eroded in

random order with random kernel sizes from 1 to 30.

Moreover, we provide a stronger guidance perturbation

named CutMask to further improve the model robustness.

Inspired by the successful natural image augmentation Cut-

Mix [43], we randomly select a patch size ranging from 1/4
to 1/2 image size. Then, two random patches of the guid-

ance are selected and the content of one patch will overwrite

another. This stronger perturbation provides additional lo-

calized guidance mask corruption, making the model more

robust to semantic noises in external guidance masks.

Besides perturbing external guidance masks, we note

that perturbing internal self-guidance mask is also very im-

portant to improve the robustness. Therefore, we randomly

dilate the self-guidance masks to incorporate more vari-

ance. Particularly, during training, the self-guidance mask

from output stride 8 is dilated by K1 random sampled from

[1, 30] and the one from output stride 4 is dilated by K2

from [1, 15]. For testing, we fix K1 = 15 and K2 = 7.

3.2. Foreground Color Estimation

As indicated in Eqn. 1, both alpha matte and foreground

color need to be solved for foreground object extraction.

Nevertheless, only a few matting methods learn to predict

the foreground color [18, 32] and all of them used the pop-

ular Composition-1k dataset [41] for training.

However, there are a couple of issues in the

Composition-1k dataset. First of all, this dataset only con-

tains 431 foreground images with matting and foreground

color ground truth, which is quite limited to train a fore-

ground color model. Moreover, the foreground color labels,

which were estimated using the color decontamination fea-

ture in Photoshop [41], are sometimes noisy and inaccu-

rate near the boundary regions (see Fig. 3). This can intro-

duce color spills and other artifacts into the images during

data augmentation process, making the learning less stable.

Besides, labels are only provided where the alpha value is

greater than zero, so existing methods can only apply su-
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Methods SAD
MSE

(10−3)
Grad Conn

Learning Based Matting [46] 113.9 48 91.6 122.2

Closed-Form Matting [21] 168.1 91 126.9 167.9

KNN Matting [6] 175.4 103 124.1 176.4

Deep Image Matting [41] 50.4 14 31.0 50.8

IndexNet Matting [29] 45.8 13 25.9 43.7

AdaMatting [4] 41.7 10.2 16.9 -

Context-Aware Matting [18] 35.8 8.2 17.3 33.2

GCA Matting [24] 35.3 9.1 16.9 32.5

OursTrimapFG 31.5 6.8 13.5 27.3

OursTrimap 32.1 7.0 14.0 27.9

Table 1: Results on Composition-1k test set. The subscripts

denote the corresponding guidance inputs, i.e. TrimapFG,

Trimap. The other evaluated methods all require a trimap

as input.

pervision to the foreground region [18], leading to unstable

behaviors in the undefined part.

To address these issues, we propose a simple yet effec-

tive method, named Random Alpha Blending (RAB), to

generate synthetic training data by blending a foreground

image and a background image using a randomly selected

alpha matte. Although the composited images may not be

semantically meaningful, they can provide accurate and un-

biased foreground color labels in the transparent region.

The random alpha blending can also significantly make

training data more diverse and improve the generalization

of the foreground color prediction. Besides, we also note

that RAB makes it possible to apply loss supervision over

all image, leading to a much smoother prediction which is

desired for robust compositing. (See Fig. 4)

For foreground estimation, we train a separate model us-

ing a basic encoder-decoder network, which takes an image

and an alpha matte as input. The loss function is the summa-

tion of l1 regression loss, compositing loss, and Laplacian

loss. We note that although training a single model for both

matte and foreground color prediction is possible, empiri-

cally this will degrade the matting performance [18], and

the random alpha blending will destroy the semantic cue

for the matting model. In addition, decoupling foreground

color prediction from matting makes the color model trans-

ferable to the use cases where the matte is already given.

4. Experiments on Synthetic Datasets

In this section, we report the evaluation results of our

method under the traditional synthetic data setting, where

the test images are generated using foreground images with

ground truth mattes and random background images.

Evaluation Metrics. We follow previous methods to

evaluate the results by Sum of Absolute Differences (SAD),

Mean Squared Error (MSE), Gradient (Grad) and Connec-

Methods SAD
MSE

(10−3)
Grad Conn

Learning Based Matting∗ [46] 105.04 21 94.16 110.41

Closed-Form Matting∗ [21] 105.73 23 91.76 114.55

KNN Matting∗ [6] 116.68 25 103.15 121.45

Deep Image Matting∗ [41] 47.56 9 43.29 55.90

HAttMatting∗ [31] 48.98 9 41.57 49.93

Deep Image Matting [41] 48.73 11.2 42.60 49.55

+ Ours 36.58 7.2 27.37 35.08

IndexNet Matting [29] 46.95 9.4 40.56 46.80

+ Ours 35.82 5.8 25.75 34.23

Context-Aware Matting [18] 36.32 7.1 29.49 35.43

+ Ours 35.04 5.4 24.55 33.35

GCA Matting [24] 39.64 8.2 32.16 38.77

+ Ours 35.93 5.7 25.94 34.35

Table 2: Matting refinement results on Distinction-646 test

set. Results with ∗ are from methods trained on Distinction-

646 train set as reported in [31] for reference. Other results

are only trained on composition-1k.

tivity (Conn) errors using the official evaluation code [41].

Network Architectures. We adopt ResNet34-UNet pro-

posed in [24] with an Atrous Spatial Pyramid Pooling

(ASPP) [5] as the backbone for both PRN and color pre-

diction. The first convolution layer is adjusted to take a 4-

channel input consisting of a RGB image along with an ex-

ternal guidance input. Moreover, an alpha prediction head

(Conv-BN-ReLU-Conv) is attached to the features at output

stride 4 and 8 respectively to obtain side outputs.

Training stage. To fairly compare with previous deep im-

age matting methods, we train our MG Matting model us-

ing the Composition-1k datasest [41] which contains 431

foreground objects and the corresponding ground-truth al-

pha mattes for training. The network is initialized with

ImageNet [8] pre-trained weight. We use crop size 512,

batch size of 40 in total on 4 GPUs, Adam optimizer with

β1 = 0.5 and β2 = 0.999. The learning rate is initialized

to 1 × 10−3. The training lasts for 100, 000 iterations with

warm-up at the first 5, 000 iterations and cosine learning

rate decay [28, 12]. We also apply a curriculum learning

manner to help the PRN training. Particularly, for the first

5, 000 iterations, the predictions of output stride 4 and 1

will be guided by guidance mask generated from ground-

truth alpha, and for the next 10, 000 iterations, the guidance

will be evenly and randomly generated from self-prediction

and ground-truth alpha. Afterwards, each alpha prediction

should fully rely on its self-guidance. The foreground color

prediction is trained under the exactly same settings ex-

cept that the generated training samples are composited by

random foreground and alpha matte. It is noticeable that

with RAB, we can add foreground color supervision on the

whole image instead of only foreground regions, which pro-

duces more smooth and stable results (see Fig. 4).

Testing on Composition-1k. The test set consists of 50

unique objects which are composited with 20 background
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Methods SAD
MSE

(10−3)

Global Matting [15] 220.39 36.29

Closed-Form Matting [21] 254.15 40.89

KNN Matting [6] 281.92 36.29

Context-Aware Matting [18] 61.72 3.24

Ours 49.80 2.48

Table 3: The foreground result (α · F ) on the Composition-

1k dataset.

Methods

Whole Image Unknown Area

SAD
MSE

(10−3)
SAD

MSE

(10−3)

Baseline 43.7 4.5 39.8 11.2

Baseline + Deep Supervision 37.8 3.7 36.3 9.5

Baseline + Fusion Conv 38.1 3.2 36.9 8.8

PRN w/o CutMask 33.9 2.9 32.8 7.5

PRN 32.3 2.5 32.1 7.0

Table 4: Ablation studies on Composition-1k dataset. Base-

lines: a ResNet34-UNet with ASPP; Deep supervision:

adding side outputs and deep supervisions; Fusion Conv:

use convolutions to combine different outputs.

images chosen from Pascal VOC [9], thus providing 1000

test samples in total. We note that since these synthetic

datasets use PASCAL VOC images as background which

may contain other salient objects, saliency/segmentation

models may not be applicable to obtain a reasonable coarse

mask. To best fairly compare MG Matting with other

trimap-based methods, we test our model under two set-

tings: 1) TrimapFG: We adopt the confident foreground re-

gions in a trimap as a coarse guidance mask for our network;

2) Trimap: We normalize trimap to [0, 1] with the unknown

pixels being 0.5 and use this soft mask as guidance. We

follow the the evaluation setting in Composition-1k which

only computes the evaluation on the unknown region.

We summarize the alpha results and foreground color re-

sults in Table 1 and Table 3 respectively. We note that al-

though our model is not trained with trimap, it still shows

great robustness and transferability on these unseen types

of guidance. Our model surpasses previous state-of-the-

art models by a large margin. It also performs consistently

considering the gap between trimap and trimapFG. We also

note that our foreground color prediction not only reduces

the errors significantly, but also produces much smoother

results (see Fig. 4), which is desired in complex real-world

scenarios where alpha matte can be noisy.

Testing on Distinction-646. Distinction-646 [31] is a re-

cent synthetic matting benchmark dataset, which improves

the diversity of Composition-1k. It contains 1000 test sam-

ples obtained in a similar manner as Composition-1k. How-

ever, this dataset is released without official trimaps or other

Figure 4: A visual comparison of foreground color decon-

tamination. Each column from left to right: Input image

and ground truth α · F , Foreground color prediction and

α · F of [18], predictions of our model with random alpha

blending. Note that the background color is mixed into the

prediction of [18], while our model can estimate a more

smooth foreground color map and be more robust.

types of guidance, making it difficult to compare with pre-

viously reported results. Therefore, we use this benchmark

mainly as a testbed to show how our method can refine a

matte produced by another method.

We test a few state-of-the-art trimap-based baselines

trained on Composition-1k. We firstly generate trimaps

from ground-truth alpha mattes by thresholding and un-

known region is dilated by kernel size 20. Then, we use

these trimap-based methods to generate the matting results.

Finally, we use these predicted alpha mattes as the guidance

to our MG Matting method, and produce refined mattes.

As shown in Table 2, using the MG Matting as a re-

finement method consistently improves the results of other

state-of-the-art methods. We also show the results reported

by [31] in Table 2 for reference.

Ablation Studies. To validate the design of PRN and

the introduced guidance perturbation, we conduct ablations

studies as summarized in Table 4. Trimap is used as guid-

ance masks in these experiments. However, we do not as-

sume that the guidance type is known, so we purposefully

do not use it to post-process the prediction by replacing the

known foreground and background region. Instead, we re-

port the two scores calculated over the whole image and

the unknown region respectively for a more comprehensive

evaluation of the robustness of our method.

We report ablations of different variants in Table 4. Base-
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Image w/ guidance LFM [45] GCA [24] CA [18] PhotoShop MG (Ours) GT

Image w/ guidance LFM [45] GCA [24] CA [18] PhotoShop MG (Ours) GT

Image w/ guidance LFM [45] GCA [24] CA [18] PhotoShop MG (Ours) GT

Figure 5: The visual comparison results among different methods on our portrait test set. We visualize representative exam-

ples with both high-quality studio-level portraits and selfies with strong noises. MG Mating performs well on different quality

images and can maintain details. We note that our results, though only trained on composition-1k, are not only superior to

previous state-of-the-art but also produces comparable or better results than commercial methods in PhotoShop.

Methods

Whole Image Details

SAD
MSE

(10−3)
SAD

MSE

(10−3)

Deep Image Matting [41] 28.5 11.7 19.1 74.6

GCA Matting [24] 29.2 12.7 19.7 82.3

IndexNet Matting [29] 28.5 11.5 18.8 72.7

Context-Aware Matting [18] 27.4 10.7 18.2 66.2

Late Fusion Matting [45] 78.6 39.8 24.2 88.3

Ours 26.8 9.3 17.4 55.1

Table 5: Results on Real-world Portrait test set.

line refers to a pure backbone without any add-ons. Adding

side outputs and deep supervision to baseline improves the

performance on both whole image or unknown area. We

also try to use two convolution layers to fuse different out-

puts. However, linearly fusing the side outputs may not lead

to better results. In contrast, the proposed PRN can better

coordinate the semantic refinement and low-level detail re-

finement at different levels, thus obtaining a consistent im-

provement. We also show that the CutMask perturbation

can further improve both the performance and robustness.

We also validate the effectiveness of RAB. We calcu-

late the MSE and SAD of foreground color (F) over fore-

ground regions (i.e. α > 0). The baseline achieves MSE =
0.00623 and SAD = 82.30, while with RAB, the perfor-

mance is boosted to MSE = 0.00321 and SAD = 62.01.

5. Experiments on Real-world Portrait Dataset

We note that although the synthetic datasets are well-

established benchmarks and provide sufficient data to train

a good model, it remains an open question whether models

trained on them are robust enough and can produce com-

parable results in real images. For example, [18] found

that some easy data augmentations such as re-JPEGing and

gaussian blur can avoid some shortcomings of the synthetic

dataset and significantly improve the model’s performance

on real-world images, though at a cost of higher errors on

the synthetic benchmark. This begs the question: can the

results on synthetic matting dataset reflect the performance

on real images?

Evaluation on real-world images is thus very crucial.

However, due to the lack of high-quality matting bench-

mark datasets of real images, most previous models mainly

compare their matting results visually or through user study.

To better evaluate the matting methods in a real-world sce-

nario, we collect a real-world image matting dataset con-

sisting of 637 diverse and high-resolution images with mat-

ting annotation made by experts. The images in our dataset

have various image quality and subjects of diverse poses.

Moreover, since the dataset mainly contains solid objects

where the main body can be easy to predicted, we also la-

beled detail masks covering the hair region and other soft

tissues, which tells where the most important details of the
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Figure 6: Our model is robust given different quality guid-

ance masks and produces consistent alpha estimation.

image are located. By calculating errors in these regions,

we can further compare the ability to capture object details

for different models. We will release this dataset for better

benchmarking matting methods on real images.

Implementation Details. We use the Composition-1k

training set to train the model. Considering the semantic

gap between the two datasets, we remove the transparent

objects from the training data using the data list of [32]. Fol-

lowing [18], we also apply re-JEPGing, gaussian blur, and

gaussian noises to the input image to make the model better

adapt to real-world noises which are rarely seen in the syn-

thetic dataset. Since these augmentations can change the

color of the composited training image, thus the original

color label may not be applicable. Therefore, we remove

the composition loss from the supervision. Other training

settings remain the same as in Sec. 4.

For trimap-based baselines, we follow [32] to generate

trimaps from segmentation [44] automatically by labeling

each pixel with foreground class probability > 0.95 as fore-

ground, < 0.05 as background, and the rest as unknown,

the unknown region is further dilated by k = 20 to ensure

it will not miss the long hairs. For our model, we threshold

the segmentation at prob = 0.5 to a binary mask.

Results. We compare the results with state-of-the-art

trimap-based methods DIM [41], GCA [24], IndexNet [29],

Context-Aware Matting [18], and trimap-free method Late

Fusion Matting [45] which is trained on Composition-1k

training set and an additional portrait dataset. The results of

baselines are obtained through either the open-source infer-

ence demos or the provided pre-trained weights.

We summarize the results in Table 5 under two settings:

Whole Image, where the errors are calculated across the

whole image, which can measure the overall quality; De-

tails, where the errors are calculated only in manual-labeled

regions containing hair details or other soft areas.

Compared to other methods, our model achieves a su-

perior performance, especially regarding to the detail part,

which illustrates its ability to capture the boundary details.

We also note that the trimap-free method LFM performs

badly, which could be caused by the fact that their portrait

training data is not diverse enough and thus limits the the

generalizability of their model (see Fig. 5 for examples).

We compare our results with another trimap-free method

BSHM [27]. We contacted the authors and obtained the

test results on a 100 images subset of our portrait dataset.

Since [27] can only deal with low-resolution images, we

downsample images to longer-side 720, and the metrics are

also computed on this scale. [27] achieves MSE 0.0155 and

SAD 10.66 for whole image and MSE 0.0910 and SAD

7.60 for detail regions, while our MG Matting obtains a

superior performance with MSE 0.0095 and SAD 8.01 for

whole image and MSE 0.0637 and SAD 5.94 for details.

Robustness to Guidance. To verify how robust our model

is to the external guidance mask, we conduct an experi-

ments to feed the network with perturbed external guidance

mask. Particularly, we erode/dilate the mask with kernel

size 10, 20, 30 respectively. We note that the model predict

consistently given differently perturbed external guidance.

The SAD error increases from 26.8 to 27.1, 27.2, 27.4 with

mask eroded by 10, 20, and 30 respectively. For dilation,

the SAD error goes to 27.0, 27.4, 28.1 with kernel 10, 20,

30 respectively. A visual example is provided in Fig. 6.

6. Conclusion

In this paper, we present Mask Guided (MG) Matting,

a general framework to resolve the natural image matting

problem. Unlike previous methods, our method is not tai-

lored to some specific guidance mask. Instead, it can han-

dle versatile guidance masks such as a trimap, a rough seg-

mentation mask, or a low-quality alpha matte. The key of

the robustness of our model lies in the Progressive Refine-

ment Network, which provides self-guidance and progres-

sively refine the uncertain regions during the decoding pro-

cess. Further, we also propose a simple yet effective method

called Random Rendering to resolve the limitation of ex-

isting dataset and learn a better foreground color estima-

tion model, which is important yet rarely studied before.

Moreover, we release a new real-world matting dataset with

high-quality label to better quantitatively evaluate matting

models in a real-world scenario, which we hope could shed

some light on the direction towards a real-life matting.
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