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Abstract

With the development of deep learning, neural networks

tend to be deeper and larger to achieve good performance.

Trained models are more compute-intensive and memory-

intensive, which lead to the big challenges on memory band-

width, storage, latency, and throughput. In this paper, we

propose the neural network compression method named

minimally invasive surgery. Different from traditional mod-

el compression and knowledge distillation methods, the pro-

posed method refers to the minimally invasive surgery prin-

ciple. It learns the principal features from a pair of dense

and compressed models in a contrastive manner. It also op-

timizes the neural networks to meet the specific hardware

acceleration requirements. Through qualitative, quantita-

tive, and ablation experiments, the proposed method shows

a compelling performance, acceleration, and generaliza-

tion in various tasks.

1. Introduction

Deep learning technologies promote performance in var-

ious applications like computer vision, natural language

processing, autonomous driving, recommendation system,

etc. The promising performance is achieved by deeper and

larger neural networks. For example, the classical architec-

tures in convolutional neural networks like VGG-19 [41],

ResNeXt-101 [49], SENet-154 [17] has 143.67, 83.46, and

115.09 million parameters, respectively. Google’s neu-

ral machine translation model [48] has about 210 million

parameters. The popular language understanding model

BERT [8] has about 340 million parameters. The deep

learning recommendation model (DLRM) [29] has about

540 million parameters.

Neural networks with a huge amount of parameters have

some shortcomings [56]. First of all, the large neural net-

work is very compute-intensive. In the network evalua-

tion process, inference costs a lot of time even the net-

work is running on dedicated acceleration hardware like G-

PU [31] [32] or TPU [40]. We can enlarge the batch size to

help improve the throughput of large neural networks. But

the latency is still a problem. In fact, whenever we inter-

act with phones or computers, we are very sensitive to the

latency of the interaction. We don’t like to wait for an appli-

cation to launch or for the web-page to load search results.

Moreover, we are especially sensitive in realtime interac-

tions such as speech recognition and autonomous driving

systems. Secondly, the large neural network is memory-

intensive on mobile devices as well as in the server envi-

ronment. Storage and loading the large neural network to

compute inference results consume a large amount of ener-

gy. Due to the limitations on application sizes, download

time and launch speed, transfer and storage of large models

is especially a challenge in the mobile environment.

Compressing the large neural network to a smaller ver-

sion can bring benefits to more efficient computation, mem-

ory, and energy consumptions. But at the meanwhile,

how to keep the accuracy of the original neural network

during compression needs to be investigated. A com-

mon method of neural model compression is network prun-

ing [12]: setting the weights with small magnitude values

of a pre-trained network to zero and fine-tuning the remain-

ing weights to try to recover accuracy. For the aggressive

network pruning tasks, knowledge distillation [15] is often

used as the auxiliary method to improve the accuracy of the

pruned network. A complementary method of neural mod-

el compression is quantization. Changing fundamental data

types adds the ability to accelerate the arithmetic operations,

both in training [28] and inference processes [20].

In this work, we explore a neural network compression

method based on the knowledge extracted from a pair of

dense and compressed models. We named this method as

Minimally Invasive Surgery(MIS) because it is inspired by

the principle and process of the real minimally invasive

surgery. We apply the MIS technique to several networks

and tasks to show generality in supervised and unsupervised

learning. Our main contributions include:

• We prove that MIS has better performance than knowl-

edge distillation and network compression methods.

• We provide the theoretical demonstration of MIS from

information entropy and Bayes perspectives.

• We show that MIS technique can apply to various net-
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works and tasks. It can work even without ground truth

label info in an unsupervised learning style.

• MIS provides end-to-end compression for neural net-

works to meet the hardware acceleration requirements.

2. Related work

2.1. Knowledge distillation

Knowledge Distillation (KD) was first proposed by Bu-

cilu et al. [5] and generalized by Hinton et al. [15]. It has

become one of the most effective and standard techniques in

model compression. KD starts from a large model, named

teacher (T), with appealing performance, and then employs

a lower-capacity one, named student (S), to learn knowl-

edge from T. In this way, S is supposed to mimic and pro-

duce similar results as T but with faster speed and less mem-

ory consumption. Take the classification task as an exam-

ple, instead of just learning from the one-hot representation

of the ground-truth label where only the target class is con-

sidered in cross-entropy, the student model also learns from

the soft labels to represent all probabilities over the whole

classes from the teacher model. Hinton et al. [15] proved

that the knowledge embedded in soft labels is essential to

teach the student more efficiently.

To improve the effectiveness of KD, many methods fo-

cused on designing different types of knowledge for the s-

tudent model. Romero et al. [38] introduced intermediate-

level hints from the teacher hidden layers to guide the stu-

dent. Zagoruyko et al. [51] introduced the attention mech-

anism in KD. They proved the attention-based feature map

has better performance in transferring knowledge to the s-

tudent than the logits. Ahn et al. [2] improved KD by max-

imizing the mutual information between the teacher and the

student models. In [21], the student learned from several

intermediate representative layers in the teacher. They used

the teacher’s intermediate representations as input to the s-

tudent model during training to overcome the lack of useful

intermediate representations at the beginning of training.

Despite the various progress on KD, this method is stil-

l far from perfect. There are two common troubles when

applying KD. First, when the capacity difference between

the teacher and the student is very large, the effectiveness

of KD will decrease. Especially when the student model is

compressed with a very high sparse ratio or to a very shal-

low structure. This is because the inherent discrepancy be-

tween the model capacities of the student and the teacher

will lead to a much weaker representation ability for the

student [9]. Second, it is hard to find a general learning s-

trategy and hyper-parameters in KD [50]. This is because

the student has an inherent slower learning speed than the

teacher. So this discrepancy between the models prevents

the student from fully acquiring knowledge as the teacher

in the same training schedule.

2.2. Contrastive learning

In contrast to learning high-level representations from la-

beled data, Contrastive Learning (CL) means to learn less

specialized representations in latent space [30]. By intro-

ducing latent classes and hypothesizing that semantically

similar points are sampled from the same latent class, CL

can leverage unlabeled as well as labeled data. Oord et

al. [34] introduced a probabilistic contrastive loss to capture

information that is maximally useful to predict future sam-

ples in latent space. They proved CL is especially useful to

the unsupervised tasks in a wide variety of domains: audio,

images, natural language, etc. Arora et al. [3] provided a

theoretical analysis of CL which can make provable guar-

antees on the learning performance.

To solve the aforementioned problems in KD, some

works began to borrow the idea from CL for further im-

provement. Tian et al. [43] changed the typical objective

that minimizes the divergence between the probabilistic out-

puts of the teacher and student networks into a contrastive-

based objective. The new objective maximized a lower-

bound to the mutual information between the teacher and s-

tudent representations and provided a better performance on

several model compression and knowledge transfer tasks.

Gao et al. [9] introduced an assistant in the traditional

teacher-student framework in KD to learn the residual error

between the teacher and student representations in latent s-

pace. They used the lightweight structure for the assistant to

ensure the total computational cost has no obvious increase.

2.3. Acceleration of compressed model

The ultimate goal of model compression is to generate

the model pattern to save storage, computation, and energy

cost. Sparsity has been proven as an effective approach to

saving parameters as well as preserving the accuracy of neu-

ral models. Han et al. [12] proposed to conduct pruning and

retraining alternately, and finally compress a dense model

to its sparse form. Guo et al. [10] incorporated network

connection splicing into the surgery and dynamically im-

plemented the whole compression process. Zhu et al. [54]

proposed a gradual pruning method technique that trained

neural models from scratch and gradually pruned the redun-

dant parameters in this process. Lee et al. [23] introduced a

saliency criterion that identified connections in the network

that were important to the given task in a data-dependent

way before training. Given the desired sparsity level, re-

dundant connections were pruned once, and then the sparse

pruned network was trained in the standard way.

The sparsity caused by network compression typically

resulted in an irregular workload, which was difficult for

hardware acceleration. Mao et al. [27] discussed the trade-

off among sparse regularity, network accuracy, and acceler-

ation. For the coarse-grained sparsity like filter-sparsity and

channel-sparsity, the regular pattern was simple to achieve
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acceleration on general-purpose processors because it was

equivalent to obtaining a smaller dense model [47]. For

fine-grained sparsity, the acceleration on general-purpose

hardware like GPU [31] was very limited. Several custom

accelerators [11] [35] have been used to exploit the irregular

sparse pattern. With the new generation GPU [32], sparse

Tensor Cores can exploit fine-grained structured sparsity to

double the compute throughput for neural networks.

3. Minimally invasive surgery

As aforementioned, many works have found the sweet

spot between model compression and accuracy retrieval.

However, the acceleration of the compressed model is far

from being solved. The focus of this research is simulta-

neously obtaining the high compression ratio, the accura-

cy retrieval performance, and the acceleration on general-

purpose hardware. Our intuition is simple. As we already

have various methods to compress a dense model into the

irregular sparse pattern without obvious accuracy damage.

If we can make tiny changes on the irregular sparse pat-

tern like minimally invasive surgery, and match the ten-

sor acceleration requirements on hardware [32]. Then we

can improve the deployment efficiency of the irregularly-

compressed models.

The proposed model compression method is named as

Minimally Invasive Surgery (MIS) for two reasons. First-

ly, as the principle of minimally invasive surgery [45], it

encompasses surgical techniques that limit the size of inci-

sions needed and so lessens wound healing time, associated

pain and risk of infection. Similarly, when applying MIS

to a compressed model, we only make the limited adjust-

ment to ease the influence on accuracy and memory cost.

Secondly, the goal of MIS is to heal the injured part to

be functional-same as the healthy part. Take the Achilles

tendon rupture as an example. After the surgery, we could

expect a recovered patient to walk, run, and jump like a nor-

mal person. However, for the recovered basketball athlete,

it is very hard for him to come back to his peak. Similarly,

due to the inherent discrepancy between the dense and com-

pressed models, we could expect they are functional-same,

like have similar classification accuracy. It is hard for the

heavily compressed model to have exactly the same repre-

sentation as the dense one. This is also the block in KD.

In the MIS, we refer to the dense baseline model as

the healthy model MH , the sparse model as the recov-

ered model MR. MR is obtained by any model compres-

sion method, and often cannot be easily accelerated by the

general-purpose hardware due to irregularity. We refer to

the target compressed model which satisfies the hardware

acceleration restrictions as the surgical model MS . First-

ly, after applying MIS, MS should have the similar accu-

racy as MH and MR. Secondly, MS and MR have same

compression ratio, which means they have similar memory

costs. Last but not least, due to the inherent different repre-

sentation capabilities, the introduction of MR provides the

upper-bound of what we can expect MS to learn from MH .

Take the image classification task as an example. We use

an arbitrary image as input. MS is initialized by MR with

one-shot magnitude-based pruning to meet the hardware ac-

celeration requirement. Because sometimes we have no ac-

cess to the original training dataset, we cannot always use

the supervised finetuning method to recover the accuracy.

Instead of using the ground truth labels in the traditional su-

pervised finetuning method, we use MH predicted classes as

the “fake” labels. The prediction loss is calculated between

the “fake” label and the predicted class from MS . Similar to

vanilla KD, we use the temperature parameter to control the

probability distribution generated by the softmax function.

We first calculate the distillation loss between the probabil-

ity distributions from MH and MS . Then we calculate the

distillation loss between MR and MS . We emphasize the

second distillation loss to mimic the inherent gap for dense

and sparse models. The overall loss function is the weight-

ed combination of the prediction loss and the two parts of

the distillation loss. We finetune to reduce the overall loss

and finally get the desired MS . We illustrate the workflow

of MIS in Figure 1. We define the Hardware Acceleration

Requirements as an integrated function HAR(·). For exam-

ple, A100 GPU [32] requires two non-zero values in every

four-entry vector to double the math throughput. Then MIS

for classification task is summarized in Algorithm 1.

Algorithm 1 Minimally Invasive Surgery (Classification)

Input: Healthy model MH , Recovered model MR, Training images x
Parameter: Distillation temperature τ , Loss adjustment factors α, β, γ, Overall loss

threshold δ
Output: Surgical model MS

1: Init surgical model MS by recovered model MR.

2: while LOverall > δ do

3: Pruning MS to meet the hardware acceleration requirement: HAR(MS).

4: if Ground truth label (lG) exists then

5: Surgical prediction loss: ▲P =▲(lG,MS(x;T = 1))

6: else

7: Surgical prediction loss: ▲P =▲(MH(x;T = 1),MS(x;T = 1))

8: end if

9: Healthy-surgical distillation loss:

▲Dhs=▲(MH(x;T = τ),MS(x;T = τ))

10: Recovered-surgical distillation loss:

▲Drs=▲(MR(x;T = τ),MS(x;T = τ))

11: Calculate the overall loss: LOverall=α*▲P +β*▲Dhs+γ*▲Drs

12: Minimize the overall loss: min[LOverall]
13: end while

14: return Surgical model MS

4. Theoretical demonstration for MIS

The three deep neural networks in the MIS are the
healthy model MH , the recovered model MR, and the sur-
gical model MS . Given x as the input of networks, we can
denote representations at the penultimate layer before logits
as MH(x), MR(x) and MS(x). We use xi and xj to repre-
sent two training samples from different categories. Our tar-
get is to push closer the representations of the healthy mod-
el and surgical model with the training samples from the
same categories, while to push apart the representations of
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Figure 1. Workflows of vanilla Knowledge Distillation (Left) and Minimally Invasive Surgery (Right).

models with the training samples from different categories.
Kullback-Leibler (KL) divergence is applied to measure the
difference between the two representations. Ideally, the tar-
get can be denoted with the following formulas.

KL(MH(xi),MS(xi)) → 0, KL(MH(xj),MS(xi)) → ∞ (1)

If the whole dataset is defined as❉, with N categories, and
each category is denoted as ❉(Ck). Then the target can be
denoted with the following optimization problem.































min
N
∑

k=1

∑

xi∈❉(Ck)

[KL(MH(xi),MS(xi))]
2

max

N
∑

k=1

N
∑

k′=1

∑

xi∈❉(Ck)

k′ 6=k
∑

xj∈❉(C
k′ )

[KL(MH(xj),MS(xi))]
2

(2)

4.1. Information theory perspective

From information theory, there will be an information

entropy threshold to measure whether the network can keep

the same functionality after compression. Take the classi-

fication task as the example, if the entropy (H(·)) of the

compressed model is higher than the threshold, the classi-

fication accuracy keeps the same with the original model,

otherwise, the accuracy will drop. The information entropy

threshold of dataset ❉ is defined as T❉. The essence of the

success in the model compression method is information

redundancy in model representation. And intuitively speak-

ing, the model before compression has higher information

redundancy than the compressed model. The information

redundancy is defined as ϕH and ϕR for the healthy and

recovered models.

We can also define the distillation learning effective ratio

between the two models to represent how difficult to dis-

till useful information from the original model. The large

effective ratio means useful information is easy to be dis-

tilled, and the distilled model learns more effectively. We

can define the distillation learning effective ratio of the sur-

gical model from the healthy model is DSH , and the ratio of

the surgical model from the recovered model is DSR, and

the ratio of the recovered model from the healthy model is

DRH . Intuitively speaking, if the original model has more

parameters, or the parameters amount of two models has

a more obvious gap, it is harder for the complete distilla-

tion and to mimic the behavior of the original model. So

DSH < DRH , and DSH < DSR.
For the vanilla knowledge distillation between the

healthy and recovered models, we assume the recovered
model can recover to the same accuracy level as the healthy
model, then:

H (MR) = H (MH)D
RH

= (T❉ + ϕH)D
RH

≥ T❉ (3)

For the vanilla knowledge distillation between the healthy
and surgical models:

H (MS) = H (MH)D
SH

= (T❉ + ϕH)D
SH

< (T❉ + ϕH)D
RH

(4)

For the vanilla knowledge distillation between the recov-
ered and surgical models:

H
(

MS
′)

= H (MR)D
SR

= (T❉ + ϕR)D
SR

< (T❉ + ϕH)D
SR

(5)

So we cannot make sure the distilled surgical models from

the previous two situations still have enough information

entropy to exceed the threshold T❉.
According to the proposed MIS method, the surgical is

distilled information from both of the healthy and surgi-
cal models. We assume the mutual information between
the healthy and recovered models will be learned once with
higher learning effective ratio, then:

H
(

MS
′′)

= H
(

MH ∩ MR

)

D
SH

+ H (MR)D
SR

= (ϕH − ϕR)D
SH

+ (T❉ + ϕR)D
SR

= (T❉ + ϕH)D
SH

+ (T❉ + ϕR)
(

D
SR

− D
SH

)

(6)

So we can find H (MS
′′) >H (MS

′) and H (MS
′′) >H (MS)

at the same time. It proves why MIS has the better chance

to distill more information and achieve better accuracy.

4.2. Bayes perspective

Now, suppose the classification accuracy is AccH and
AccR for the healthy model MH and the recovered mod-
el MR, respectively. The surgical model is initialized by
the recovered model, so its classification accuracy MS is
equal to MR. We define a latent variable C which repre-
sents whether the classification results provided by the neu-
ral models are right (C = 1) or wrong (C = 0). Then the pri-
or probability of the healthy, recovered, and surgical models
can be denoted as:

P (CH = 1) = AccH , P (CH = 0) = 1 − AccH

P (CR = 1) = AccR, P (CR = 0) = 1 − AccR

P (CS = 1) = AccR, P (CS = 0) = 1 − AccR

(7)

For ease of notation, we define the events U and V to denote
the model representations between the healthy and surgical
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models, the recovered and surgical models are similar, i.e.,

U ⇒ MH(x)
.
= MS(x), U ⇒ MH(x) 6= MS(x)

V ⇒ MR(x)
.
= MS(x), V ⇒ MR(x) 6= MS(x)

(8)

According to the total probability formula, for the vanilla
knowledge distillation:

P (CS = 1) = P (CS = 1 | U)P (U) + P (CS = 1 | U)P (U) (9)

For the proposed MIS method:

P (CS = 1) = P (CS = 1 | U, V )P (U, V ) + P (CS = 1 | U, V )P (U, V )

+ P (CS = 1 | U, V )P (U, V ) + P (CS = 1 | U, V )P (U, V )

(10)

Because the surgical model is initialized by the recovered
model, so prior probability of event V is:

P (V ) = 1, P (V ) = 0 (11)

The prior total probability formula of MIS method will

degrade into the vanilla knowledge distillation form.

Because when the model representations between the

healthy and surgical models are similar, the probability of

P (CS = 1 | U) will be very close to the prior probability

of the healthy model. So it will not be the problem for the

vanilla KD and MIS method.
With the definition of the distillation learning effective

ratio, then for the vanilla KD method, the probability of
whether a similar representation tuple (MH(x),MS(x)) is
from the same category (CS = 1) or different category
(CS = 0) is denoted as:

P (U | CS = 1) = D
SH
1 , P (U | CS = 0) = D

SH
0 (12)

According to the Bayes theorem, the posterior probability
for the right classification (CS = 1) when the representation-
s from the healthy model and the surgical model are similar
is given by:

P (CS = 1 | U) =
P (U | CS = 1)P (CS = 1)

P (U | CS = 1)P (CS = 1) + P (U | CS = 0)P (CS = 0)

=
DSH

1 AccR

DSH
1 AccR + DSH

0 (1 − AccR)

(13)

Similarly, the posterior probability for the right classifica-
tion (CS = 1) when the representations from the healthy
model and the surgical model are different is given by:

P (CS = 1 | U) =
P (U | CS = 1)P (CS = 1)

P (U | CS = 1)P (CS = 1) + P (U | CS = 0)P (CS = 0)

=
(1 − DSH

1 )AccR

(1 − DSH
1 )AccR + (1 − DSH

0 )(1 − AccR)

(14)

In the MIS method, with the introduction of the recovered
model, the Bayes formulas are as follows:

P (CS = 1 | U, V ) =
P (CS = 1)P (U | CS = 1)P (V | CS = 1, U)

P (U)P (V | U)

= P (CS = 1 | U)
P (V | CS = 1, U)

P (V | U)

(15)

P (CS = 1 | U, V ) =
P (CS = 1)P (U | CS = 1)P (V | CS = 1, U)

P (U)P (V | U)

= P (CS = 1 | U)
P (V | CS = 1, U)

P (V | U)

(16)

Compare the total probability formulas (9) and (10), MIS
method divide the last item of vanilla KD into two parts.

KD : P (CS = 1 | U)P (U)

MIS : P (CS = 1 | U, V )P (U, V ) + P (CS = 1 | U, V )P (U, V )
(17)

In the initialization stage, the values of vanilla KD and MIS

method are the same. However, the distillation learning ef-

fective ratios of these two methods are different. For vanilla

KD, without the help of the recovered model, the learning

effective ratio is DSH < DSR. What is worse, this item

needs the surgical model to learn when its representation

is different from that of the healthy model. Intuitively, the

learning effective ratio is even lower as the learning task is

more difficult. For the MIS method, the first item in expres-

sion (17) is modeling the situation that the representations

between the healthy and the surgical models are differen-

t, however, the representations between the recovered and

the surgical models are similar. This phenomenon often ap-

pears because, for the distilled model with a high compres-

sion ratio, the expressive capability will reduce. Moreover,

learning from the recovered model with similar representa-

tion is much easier, leading to a satisfactory learning effec-

tive ratio. Although the second item in (17) is difficult to

learn, that phenomenon is very rare. We can just ignore it.

In conclusion, the MIS method keeps the same total

probability but changes the learning effective ratio and the

probability distribution. Because the optimization process

cannot guarantee to find the global optimum. So an easier

learning target has a higher expectation to achieve during

the same learning and optimization process.

5. Experimental results

For the experiments in this section, we choose Py-

Torch [36] to implement all algorithms. Most of the training

and fine-tuning experimental results are obtained with V100

GPU clusters [31]. The acceleration performance results

are obtained with A100 GPU clusters [32] to fully utilize its

Tensor Core [33] support for fine-grained structured spar-

sity. Because V100 and A100 GPUs could provide much

larger math throughput of FP16 than FP32 data type, we

also combine MIS with the mixed-precision training [28]

provided by APEX1 to compress the models into a more

hardware-efficient format. So all the accuracy results re-

ported by MIS are using FP16 as the default data type. All

the reference algorithms use the default data type provided

in public repositories. (All use FP32 except where noted.)

And more results with different adjustment parameters

(α, β and γ) in sections 5.1 to 5.4 can refer to Appendix.

5.1. Effectiveness experiments for classification task

To evaluate the effectiveness of the MIS on the im-

age classification task, ResNet-50 [14], ResNeXt-101 [49],

VGG-19 [41], Inception-V3 [42], DenseNet-161 [18] and

MobileNet-V2 [39] from TorchVision2 are chosen as the

experiment target models. The original sparse models serve

as MR are trained with the public Distiller library3 [56].

1https://github.com/NVIDIA/apex.
2https://github.com/pytorch/vision.
3https://github.com/NervanaSystems/distiller.
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The results are shown in Table 1. *-FINE represents the

fine-grained sparse model obtained by adopting a gradu-

al pruning technique (AGP) 4 [54], *-BLK represents the

block-grained [55] sparse model, *-SUR represents the fine-

grained [10] sparse model by applying pruning and splicing

in a dynamical manner, *-SNIP represents the single-shot

pruned [23] model by analyzing the connection sensitivi-

ty. In this experiment, MIS does not use the ground truth

label provided by ImageNet [7] dataset. It takes the predict-

ed label from MH to calculate the surgical prediction loss.

The loss adjustment parameters among the surgical predic-

tion loss (α), the healthy-surgical distillation loss (β) and

the recovered-surgical distillation loss (γ) apply 1, 10, 50,

respectively. (The variance is within ±0.17 for Top-1, and

±0.15 for Top-5 accuracy with different random seeds.)

Model
Healthy Model Accuracy Sparsity

Ratio
Recovered Model Accuracy Surgical Model Accuracy

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

ResNet-50 76.130 92.862

70%-FINE 76.496 93.080 75.910 92.650

85%-FINE 75.670 92.682 75.198 92.280

90%-FINE 74.680 92.298 74.156 91.874

95%-FINE 71.830 90.646 71.414 90.288

70%-BLK 76.452 92.990 76.224 92.852

80%-SUR 75.538 92.670 75.162 92.390

ResNeXt-101 78.188 93.886

75%-FINE 79.078 94.468 79.254 94.544

85%-FINE 78.764 94.368 78.880 94.398

90%-FINE 78.530 94.110 78.584 94.154

95%-FINE 76.922 93.574 77.058 93.596

75%-BLK 79.063 94.404 79.173 94.471

80%-SUR 78.631 94.356 78.845 94.502

VGG-19 74.246 91.838

50%-FINE 75.578 92.694 75.552 92.732

75%-FINE 73.716 91.499 73.724 91.513

90%-FINE 73.435 91.358 73.437 91.361

75%-BLK 73.689 91.443 73.721 91.493

80%-SUR 73.523 91.406 73.620 91.469

Inception-V3 77.568 93.644

50%-FINE 78.204 93.998 78.092 94.014

75%-FINE 77.832 93.762 77.904 93.794

90%-FINE 77.335 93.601 77.453 93.604

75%-BLK 77.689 93.599 77.717 93.620

80%-SUR 77.495 93.622 77.518 93.639

DenseNet-161 77.114 93.578

50%-FINE 78.564 94.280 78.422 94.176

75%-FINE 77.745 93.835 77.750 93.912

90%-FINE 77.201 93.576 77.310 93.611

75%-BLK 77.668 93.697 77.676 93.701

80%-SUR 77.504 93.601 77.515 93.650

MobileNet-V2 71.880 90.290
50%-FINE 69.023 88.765 70.804 88.918

75%-FINE 68.371 88.303 68.500 88.412

Table 1. MIS effectiveness on image classification task.

5.2. Effectiveness experiments for detection task

To evaluate the effectiveness of the MIS on the detec-

tion task, Faster R-CNN [37], RetinaNet [24], Mask R-

CNN [13] from Detectron5, and SSD [26] from NVIDI-

A repository6 are chosen as the experiment target model-

s. The original sparse models serve as MR are compressed

with AGP method and trained with the Distiller library3.

The results are shown in Table 2. R50, R101 and X101

in the brackets represent the ResNet-50, ResNet-101 and

ResNeXt-101 models served as the backbone of the detec-

tion networks. 1x and 3x represent the different learning

rate schedulers which are applied when training the back-

bone models. AP and AR represent the average precision

and average recall metrics. In this experiment, MIS use

4Notice some of the sparse ResNet-50 models and all of the sparse

ResNeXt-101 models have higher accuracy than the pre-trained dense

models provided by TorchVision.
5https://github.com/facebookresearch/detectron2.
6https://github.com/NVIDIA/DeepLearningExamples.

the ground truth info provided by COCO [25] dataset. The

loss adjustment parameters among the surgical prediction

loss (α), the healthy-surgical distillation loss (β) and the

recovered-surgical distillation loss (γ) apply 1, 10, 15.

Model
Healthy Model Sparsity

Ratio
Recovered Model Surgical Model

Box AP Box AR Box AP Box AR Box AP Box AR

Faster R-CNN(R50-1x) 37.65(±0.12) 52.14(±0.17)
50% 38.58(±0.11) 53.04(±0.16) 38.76(±0.14) 53.05(±0.17)

75% 36.67(±0.14) 51.31(±0.21) 36.57(±0.13) 51.42(±0.19)

Faster R-CNN(R50-3x) 39.79(±0.14) 52.14(±0.17)
50% 39.96(±0.13) 53.97(±0.15) 39.89(±0.12) 53.92(±0.14)

75% 38.85(±0.16) 52.92(±0.16) 38.94(±0.15) 53.21(±0.18)

Faster R-CNN(R101-3x) 41.92(±0.16) 55.55(±0.11)
50% 42.03(±0.14) 55.53(±0.19) 42.01(±0.11) 55.65(±0.18)

75% 41.12(±0.18) 55.11(±0.22) 41.11(±0.15) 55.23(±0.20)

Faster R-CNN(X101-3x) 43.08(±0.12) 55.63(±0.09)
50% 42.59(±0.15) 55.74(±0.17) 42.68(±0.14) 55.83(±0.18)

75% 42.52(±0.18) 55.63(±0.21) 42.63(±0.19) 55.74(±0.19)

RetinaNet(R50-1x) 36.45(±0.15) 53.36(±0.18)
50% 37.43(±0.16) 53.82(±0.14) 37.42(±0.17) 54.11(±0.12)

75% 34.85(±0.15) 51.84(±0.19) 34.81(±0.16) 51.93(±0.18)

RetinaNet(R50-3x) 38.45(±0.14) 54.34(±0.16)
50% 37.44(±0.17) 53.71(±0.14) 37.55(±0.16) 53.81(±0.19)

75% 37.40(±0.18) 53.33(±0.20) 37.43(±0.15) 53.28(±0.15)

RetinaNet(R101-3x) 40.04(±0.13) 55.61(±0.15)
50% 39.33(±0.14) 55.22(±0.19) 39.27(±0.15) 55.07(±0.18)

75% 39.22(±0.15) 54.32(±0.22) 39.06(±0.17) 54.33(±0.18)

SSD(R50) 25.11(±0.08) 36.13(±0.11)
50% 25.83(±0.17) 36.91(±0.20) 25.72(±0.16) 36.80(±0.19)

75% 24.90(±0.22) 35.88(±0.24) 24.86(±0.20) 35.93(±0.21)

Mask R-CNN(R50-1x) 39.91(±0.23) 54.42(±0.11)
50% 39.79(±0.17) 53.92(±0.18) 40.21(±0.15) 54.62(±0.16)

75% 37.27(±0.16) 52.01(±0.20) 37.41(±0.16) 52.13(±0.15)

Mask R-CNN(R50-3x) 40.62(±0.19) 54.53(±0.12)
50% 40.70(±0.14) 54.63(±0.17) 40.84(±0.16) 54.50(±0.18)

75% 39.90(±0.14) 54.24(±0.18) 39.75(±0.17) 54.22(±0.15)

Mask R-CNN(R101-3x) 42.92(±0.17) 56.51(±0.11)
50% 43.21(±0.19) 56.83(±0.13) 43.01(±0.16) 56.55(±0.17)

75% 42.04(±0.16) 56.01(±0.18) 42.16(±0.15) 56.03(±0.20)

Mask R-CNN(X101-3x) 44.13(±0.14) 56.92(±0.12)
50% 43.95(±0.20) 55.81(±0.24) 43.89(±0.18) 55.74(±0.19)

75% 43.62(±0.19) 56.32(±0.21) 43.80(±0.17) 56.29(±0.17)

Table 2. MIS effectiveness on detection task.

5.3. Effectiveness experiments for translation task

To evaluate the effectiveness of the MIS on the trans-

lation task, we take the GNMT [48] from NVIDIA repos-

itory6 and Transformer [44] from Fairseq7 as the experi-

ment target models. The original sparse models serve as

MR are compressed with the pruning method [6]. The re-

sults are shown in Table 3. WMT14 En-Ge and WMT16

En-Ge in the brackets represent the WMT14 and WMT16

English-German dataset8, respectively. In this experiment,

MIS use the ground truth info provided by WMT datasets.

The loss adjustment parameters among the surgical predic-

tion loss (α), the healthy-surgical distillation loss (β) and

the recovered-surgical distillation loss (γ) apply 1, 2, 5.

Model
Healthy Model Sparsity

Ratio
Recovered Model Surgical Model

BLEU Score BLEU Score BLEU Score

GNMT(WMT16 En-Ge) 24.37(±0.20)

50% 24.77(±0.16) 24.73(±0.15)

75% 24.67(±0.14) 24.69(±0.12)

90% 24.30(±0.13) 24.31(±0.11)

Transformer(WMT14 En-Ge) 28.65(±0.10)

50% 28.89(±0.11) 28.91(±0.12)

75% 28.79(±0.09) 28.77(±0.10)

90% 28.15(±0.12) 28.21(±0.11)

Transformer(WMT16 En-Ge) 27.79(±0.13)

50% 28.01(±0.14) 28.03(±0.13)

75% 27.99(±0.13) 27.97(±0.13)

90% 27.65(±0.11) 27.70(±0.10)

Table 3. MIS effectiveness on translation task.

5.4. Effectiveness experiments for super resolution

To evaluate the effectiveness of the MIS on the super

resolution task, we take the SRResNet9 [22] as the experi-

ment target model. The original sparse models serve as MR

are compressed with the pruning method [16]. SRResNet

is trained on the DIV2K dataset [1]. The DIV2K valida-

tion images, as well as Set5 [4] and Set14 [52] datasets are

7https://github.com/pytorch/fairseq.
8http://www.statmt.org/wmt16/translation-task.html.
9https://github.com/twtygqyy/pytorch-SRResNet.
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used to report deployment quality. In the super resolution

task, image quality is often evaluated by two metrics: Peak

Signal-to-Noise Ratio (PSNR) [19] and Structural Similar-

ity (SSIM) [46]. The results are shown in Table 4, and a

representative output is shown in Figure 2. The loss ad-

justment parameters among the surgical prediction loss (α),

the healthy-surgical distillation loss (β) and the recovered-

surgical distillation loss (γ) apply 1, 1.5, 3, respectively.

Dataset
Healthy Model Sparsity

Ratio
Recovered Model Surgical Model

PSNR SSIM PSNR SSIM PSNR SSIM

Set5 31.803 0.863

50% 31.234 0.870 31.484 0.872

75% 31.145 0.862 31.301 0.861

90% 30.989 0.854 31.004 0.856

Set14 28.643 0.726

50% 28.315 0.755 28.417 0.754

75% 28.275 0.750 28.369 0.753

90% 28.012 0.743 28.134 0.747

DIV2K 29.256 0.788

50% 28.926 0.811 29.025 0.810

75% 28.795 0.793 28.918 0.798

90% 28.423 0.735 28.506 0.740

Table 4. MIS effectiveness on super resolution task.

Ground Truth Healthy Model Recovered Model Surgical Model

Figure 2. Representative super resolution results with enlarge-

ments of boxed areas (The Recovered Model and Surgical Model

are compressed to 50% sparse level).

5.5. Ablation experiments and insights

In this experiment, we want to check the contribution

of each component in MIS to the final model compres-

sion effect. Then we can have a deep insight into why

MIS can outperform state-of-the-art methods. Apart from

AGP and KD methods we have discussed, we also in-

volve the Residual Knowledge Distillation [9] (RKD) and

Contrastive Representation Distillation [43] (CRD) meth-

ods in the comparison. The results are shown in Table 5.

More results with different sparsity ratio can refer to Ap-

pendix. Unsupervised and Supervised in the brackets rep-

resent MIS does not use and use the ground truth info pro-

vided by ImageNet, respectively.

From the results, we can see the gradual pruning tech-

nique (AGP) during finetuning can get a fine-grained sparse

model with even higher accuracy than the dense healthy

Model Algorithm
Sparsity

Ratio
Model Accuracy

Top-1 (%) Top-5 (%)

ResNet-50

Baseline 0% 76.130 92.862

BLK 70% 76.452 92.990

AGP 70% 76.496 93.080

KD 70% 75.950 92.710

RKD 70% 75.474 93.124

CRD 70% 76.432 93.190

MIS(Unsupervised) 70% 75.910 92.650

MIS(Supervised) 70% 76.558 93.188

ResNeXt-101

Baseline 0% 78.188 93.886

BLK 75% 79.063 94.404

AGP 75% 79.078 94.468

KD 75% 79.114 94.466

RKD 75% 78.954 94.482

CRD 75% 78.958 94.462

MIS(Unsupervised) 75% 79.254 94.544

MIS(Supervised) 75% 79.348 94.682

Table 5. Ablation experiment on image classification task.

model. However, the compressed model has an irregu-

lar sparse pattern. So this model can hardly get accelera-

tion on general-purpose processors. This is the same situa-

tion for the models compressed with BLK and KD. When

both methods use the ground truth info, the accuracy of the

compressed model by KD is obviously lower than apply-

ing MIS. It proves the introduction of the recovered model

is essential to improving the final accuracy. RKD also in-

troduces an assisted model. The assistant is to learn the

residual error between the feature maps of the student and

teacher in KD. We can regard it as an improved strategy

than Kullback-Liebler (KL) divergence in KD. But when

we also need to consider the hardware acceleration restric-

tions in RKD, the accuracy is even lower than KD. Differ-

ent from RKD, CRD does not introduce another network. It

improves the KL by distilling the knowledge from the rep-

resentation differences of the student and teacher in the “la-

tent space”. CRD outperforms KD in some tasks. However,

the accuracy of CRD is still lower than MIS. The results of

RKD and CRD prove that the inherent success of MIS does

not only rely on introducing a recovered compressed mod-

el but also on what should be learned from this recovered

model. MIS introduces two distillation loss items to learn

the inherent discrepancy between the representation capac-

ities of the dense and the compressed model, and the dis-

crepancy introduced by hardware acceleration restrictions

between two compressed models. So all of these key dif-

ferences from KD, RKD and CRD contribute to the good

effectiveness of MIS.

We apply the Class Activation Mapping (CAM) tool [53]

to the healthy model MH , the recovered model MR and the

surgical model MS for ResNet-50. CAM can highlight the

importance of the image region to the final prediction. The

visualization results are shown in Figure 3.

For CAM, the red color highlight the “attention” area of

each model. Though the surgical model is restricted by the

hardware acceleration requirements, the CAMs of MH , MR
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Ground Truth Healthy Model Recovered Model Surgical Model

Figure 3. Class activation mapping visualization. (The Recovered

Model and Surgical Model are compressed to 80% sparse level).

and MS all focus on the inherent features of the Malinois in

ground truth image, which leading to the right classification.

We can also find even without the ground truth info from

the training set, MIS can still achieve satisfactory accu-

racy. We show the accuracy curve in Figure 4. MIS in

unsupervised training will obviously lower the accuracy of

the training dataset. However, the accuracy during testing

has less influence. The distillation between the differen-

t representation capacities of the dense and the irregular-

compressed model helps MIS to improve the generalization

without ground truth.

Figure 4. Accuracy change trends during MIS process.

We change the healthy model with a more accurate one

to verify whether it can further improve the effect of MIS.

We use the pre-trained ResNeXt-101 from TorchVision2 as

the healthy model. The results are shown in Table 6.

Model
Sparsity

Ratio
Recovered Model Accuracy Surgical Model Accuracy

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

ResNet-50 0% 76.130 92.862 N/A N/A

ResNeXt-101 0% 78.188 93.886 N/A N/A

ResNet-50

70%-FINE 76.496 93.080 77.038 93.240

85%-FINE 75.670 92.682 75.836 92.704

90%-FINE 74.680 92.298 74.796 92.208

95%-FINE 71.830 90.646 71.964 90.638

70%-BLK 76.452 92.990 77.112 93.304

80%-SUR 75.538 92.670 75.820 92.738

Table 6. MIS with more accurate healthy model.

From the results, we can conclude a more accurate

healthy model can bring extra benefit to accuracy. It also

proves that MIS can be used when dense and compressed

models have different structures. This is not realizable for

the model compression methods which rely on distillation

from pure feature maps, like LIT [21].

5.6. Acceleration performance

We measure the acceleration performance of the com-

pressed models by MIS on general-purposed hardware. In

this experiment, we choose the V100 [31] and A100 [32]

GPUs which can access from the cloud service as the test-

ing platforms. We measure the performance in FP32 and

FP16 data types, respectively. The acceleration results are

shown in Table 7. The performance reported in Table 7 is

the acceleration ratio. The baseline (1.0X) means the real

performance of the dense healthy models with FP32 data

type on V100 GPU.

Task Model
V100 GPU A100 GPU

FP32 FP16 FP32 FP16

Classification

ResNet-50 1.12 ∼ 1.22X 8.77 ∼ 9.50X 1.37 ∼ 1.49X 21.47 ∼ 23.44X

ResNeXt-101 1.07 ∼ 1.18X 8.21 ∼ 9.09X 1.29 ∼ 1.41X 20.77 ∼ 22.81X

VGG-19 1.15 ∼ 1.27X 8.89 ∼ 9.63X 1.37 ∼ 1.53X 22.35 ∼ 24.76X

Inception-V3 1.14 ∼ 1.24X 8.84 ∼ 9.62X 1.37 ∼ 1.51X 22.19 ∼ 24.63X

DenseNet-161 1.17 ∼ 1.26X 9.16 ∼ 9.84X 1.43 ∼ 1.54X 23.05 ∼ 24.84X

MobileNet-V2 1.04 ∼ 1.16X 8.11 ∼ 9.01X 1.23 ∼ 1.37X 19.56 ∼ 21.49X

Detection

Faster R-CNN 1.15 ∼ 1.23X 9.02 ∼ 9.54X 1.37 ∼ 1.47X 22.33 ∼ 24.15X

RetinaNet 1.15 ∼ 1.25X 9.07 ∼ 9.73X 1.35 ∼ 1.46X 22.36 ∼ 24.20X

SSD 1.08 ∼ 1.19X 8.57 ∼ 9.45X 1.33 ∼ 1.47X 21.28 ∼ 23.47X

Mask R-CNN 1.13 ∼ 1.24X 8.98 ∼ 9.86X 1.39 ∼ 1.53X 22.32 ∼ 24.54X

Translation
GNMT 1.15 ∼ 1.26X 9.11 ∼ 9.94X 1.41 ∼ 1.54X 22.63 ∼ 24.68X

Transformer 1.25 ∼ 1.35X 9.88 ∼ 10.68X 1.53 ∼ 1.66X 24.54 ∼ 26.53X

Super Resolution SRResNet 1.13 ∼ 1.24X 8.94 ∼ 9.81X 1.39 ∼ 1.52X 22.28 ∼ 24.38X

Table 7. MIS acceleration on GPUs.

From the results, we can conclude the compressed mod-

els by MIS can get a considerable acceleration effect on

V100 and A100 GPUs. The acceleration in FP32 data type

mainly comes from the reduction of memory bus utilization

and memory access latency. The extra acceleration in FP16

data type on V100 GPU comes from the utilization of FP16

Tensor Core. The extra acceleration in FP16 data type on

A100 GPU comes from the full utilization of new sparse

Tensor Core for irregular sparse pattern acceleration.

6. Conclusion

In this paper, we analyze the potential problems in

knowledge distillation. Inspired by the principle of min-

imally invasive surgery, we propose a brand-new model

compression method. MIS introduces an intermediate mod-

el as the “bridge”. We prove MIS changes the learning ef-

fective ratio and the probability distribution between easy

and hard learning objects from information entropy and

Bayes perspectives. With the comparison and ablation ex-

periments, we show the success of MIS relies on learning

the inherent discrepancy between the representation capaci-

ties of the dense and compressed model, and the discrepan-

cy introduced by hardware acceleration restrictions between

two compressed models. With MIS, we can change the

irregular-compressed models into efficient forms and can

get considerable acceleration in general-purpose GPUs.

For the open-source community, our experimental ob-

servations and proposed compression technique could be

inspiring to the model compression field. Our study also

provides good guidance for people who want to try the lat-

est features for the newly announced A100 GPU.
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