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Abstract

Local processing is an essential feature of CNNs and

other neural network architectures—it is one of the rea-

sons why they work so well on images where relevant in-

formation is, to a large extent, local. However, perspec-

tive effects stemming from the projection in a conventional

camera vary for different global positions in the image.

We introduce Perspective Crop Layers (PCLs)—a form of

perspective crop of the region of interest based on the

camera geometry— and show that accounting for the per-

spective consistently improves the accuracy of state-of-the-

art 3D pose reconstruction methods. PCLs are modu-

lar neural network layers, which, when inserted into ex-

isting CNN and MLP architectures, deterministically re-

move the location-dependent perspective effects while leav-

ing end-to-end training and the number of parameters of

the underlying neural network unchanged. We demon-

strate that PCL leads to improved 3D human pose recon-

struction accuracy for CNN architectures that use cropping

operations, such as spatial transformer networks (STN),

and, somewhat surprisingly, MLPs used for 2D-to-3D key-

point lifting. Our conclusion is that it is important to uti-

lize camera calibration information when available, for

classical and deep-learning-based computer vision alike.

PCL offers an easy way to improve the accuracy of exist-

ing 3D reconstruction networks by making them geometry-

aware. Our code is publicly available at github.com/yu-

frank/PerspectiveCropLayers.

1. Introduction

Convolutional neural networks (CNNs) have proven

highly effective for image-based prediction tasks because of

their translation invariance and the locality of the computa-

tion they perform. For 3D pose estimation, this allows them

to focus on image locations that carry information about the
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Figure 1: Perspective effects and correction with PCL

crops. The skier looks as if she turns, from front to back-

wards facing, although recorded with a static camera and

going straight. PCLs correct the stretching originating from

the projection onto the image plane and matches the 3D

pose label to the local view direction of the crop.

pose while discarding other ones [43, 30, 6, 27, 32, 39, 44,

42, 20, 51, 17, 47].
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Convolutions in the image plane, however, ignore the

perspective effects caused by projecting a 3D scene in 2D.

For example, as shown in Figure 1, a person captured by

static camera in a fixed pose and moving in a constant di-

rection is seen from different angles as their image location

changes. Applying the same convolutional filter at the top-

left image corner and at the bottom-right one will therefore

yield different features, even though the pose is the same.

In practice, this is typically tackled by increasing the width

and depth of the network, so that different filters and lay-

ers can model the same 3D pose perspective-distorted in

different ways. The effectiveness of this procedure, how-

ever, strongly depends on the availability of large amounts

of training data, which is far from being a given for pose

estimation in the wild. Notably, two-stage approaches that

lift 3D pose from 2D pose estimates using multilayer per-

ceptrons (MLPs) [2, 28, 8, 23, 22, 34, 31, 26] rely also on

translational invariance by centering the 2D pose on a root

joint, thereby losing important cues on perspective distor-

tion too.

In this paper, we therefore introduce Perspective Crop

Layers (PCLs) to explicitly account for perspective distor-

tion within CNNs and other neural networks. Specifically,

we use a homography to map the input image to a virtual

camera with pre-defined intrinsic parameters that point to

the region of interest (RoI). The homography parameters are

functions of the RoI’s location and scale. Hence, this yields

a synthetic view in which the location-dependent perspec-

tive deformations are undone. The 3D pose inferred from

this synthetic view can then be projected into the original

image. This requires a priori knowledge about the intrinsic

camera parameters, which is rarely a problem in real-world

situations because they either are readily available from the

camera specifications or can be inferred from the input im-

ages alone [45, 11]. We will further show that our PCLs are

robust to calibration inaccuracies. Ultimately, all the oper-

ations performed by our PCLs are differentiable, and thus

amenable to end-to-end learning, while removing the need

for the CNN to learn the already known perspective geom-

etry. Our contributions can be summarized as follows:

• We showcase the influence of perspective effects on

3D pose estimates that increases for poses away from

the image center, which is disregarded by virtually all

state-of-the-art algorithms;

• We derive the equations to compensate for these effects

across the image in a location-dependent manner;

• We encapsulate our formalism into generic NN lay-

ers, dubbed PCLs, that naturally integrate into existing

deep learning frameworks.

We demonstrate the benefits of our PCLs for 3D human

pose estimation of both rigid objects and articulated people.

PCLs yield a consistent boost in performance, of 2 − 10%
on average and up to 25% at the image boundary where per-

spective effects are strongest. Notably, the improvements

attributable to our PCLs are consistent across the baseline

we seek to improve, which validates our claim that even the

most-advance deep networks do not learn these perspective

effects on the existing datasets. This includes a PCL variant

that undoes the perspective effect on 2D keypoints, thus al-

lowing us to showcase the benefits of our approach on state-

of-the-art 3D pose estimation methods that lift 2D keypoint

detections to 3D poses [22, 33]. Our code is publicly avail-

able at github.com/yu-frank/PerspectiveCropLayers.

2. Related Work

In this section, we discuss existing ways of handling im-

age distortions and review the existing attention window

mechanisms upon which PCLs are built.

Handling perspective effects. Many works sidestep per-

spective effects by training and testing on synthetic render-

ings [1, 7, 49, 48] or real images [10, 49] where the object

of interest is centered manually. However, these methods

are not applicable to natural images where the object can be

at an arbitrary location. If the object location is known in

advance, perspective distortion can be undone in a prepro-

cessing stage. For instance, [24] propose to rotate locally

inferred 3D poses back to the camera frame. This strategy

has later been adopted by [14], but neither of these works

undistorts the input images or input 2D pose. [38, 37] ap-

ply an image correction, however, only approximating the

homography with an affine transformation. In other words,

the above-mentioned approaches neither model the perspec-

tive correction geometrically accurately nor formulate it as a

differentiable layer. However, differentiability is an impor-

tant prerequisite for end-to-end training on natural images,

particularly for unsupervised approaches, that deal with un-

known object locations.

Radial undistortion. Fisheye cameras and others with a

large field of view yield large deformations when mapped

to a rectangular pixel grid. They are better represented with

spherical images, thereby avoiding location-dependent de-

formation entirely. This, however, gives rise to challenges

when one wants to process the resulting non-rectangular

pixel grids with convolutions. [3] compute convolutions on

spherical harmonics, but such frequency-domain networks

do not yet reach the accuracy of regular CNNs. A common

workaround is to unfold the spherical images along the az-

imuth and longitude dimensions, which leads to lesser arti-

facts than perspective projection to a planar image. Never-

theless, extreme stretching at the sphere poles remains. This

deformation has been handled by learning filters that have
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the same response as processing local planar patches [40]

or by using Deformable Convolutional Networks [5]. How-

ever, any convolution is location invariant and misses the

geometric position that caused the deformation. To coun-

teract this, [19] propose to add the pixel coordinates as an

input feature. In our preliminary experiments, however, we

observed this to lead to overfitting and degraded results.

Convolution can be defined directly on the sphere, by

sampling points reflecting the sphere curvature [15, 4].

This leads to high accuracy and position invariance, but

is computationally expensive because non-regular convolu-

tion kernels are needed at each neural network layer, which

hampers parallelization and cache efficiency. By contrast,

we target a single undistortion layer that works in harmony

with regular CNNs, MLPs, and attention mechanisms.

Attention windows. Processing RoIs instead of the en-

tire input image leads to computationally more efficient

and more accurate models. Most prominent and related to

our approach are Spatial Transformer Networks (STN) [13]

that learn invariance to translation, scale, rotation and more

generic warping by spatially transforming the feature maps

with an affine or free-form deformation. Multiple STNs

have also been stacked [18] to model more complex trans-

formations. STNs proceed in two steps: First, a grid of

sample points is defined in the original image, either by

direct regression or by predicting the parameters of a re-

stricted family of transformations, such as a 3×3 matrix for

affine transformations. Second, the pixel value at each grid

point is mapped to the target by bilinear interpolation of the

neighboring image pixels. This yields differentiability and

enables end-to-end training as an ordinary layer within deep

network architectures. It also applies to 3D transformations

[48]. In this work, we generate a sampling grid that undoes

perspective effects in the RoI and use the STN to maintain

differentiability with respect to the RoI position and scale.

3. Perspective Crop Layer

We start our derivation by formulating local processing

and existing cropping solutions mathematically as an affine

transformation between a real and virtual camera of fixed

orientation. Subsequently, we derive the perspective trans-

formation underlying PCL, which corresponds to a rotation

of the virtual camera frame, and finally introduce the imple-

mentation of PCL via two neural network layers that sand-

wich the backbone prediction network.

3.1. Motivation and Rectangular Crops

Each point q̂ of a rescaled rectangular or trapezoidal im-

age patch can be expressed in terms of the original image

coordinates q. This affine transformation can be written in

-

Figure 2: Virtual camera. Underlying to PCL is the pro-

jection from the original image plane onto a virtual camera

pointing at the crop location. This figure visualizes the var-

ious quantities needed to infer the mapping.

projective coordinates as

q̂ = Cq , with C =





sx cx ax
cy sy ay
0 0 1



 , (1)

where a = [ax, ay] defines a 2D translation, s = [sx, sy]
are scalings in two different directions, and c = [cx, cy] are

skew parameters. Therefore, as shown in Fig. 2, a cropped

image can be thought of as being taken by a virtual camera

with intrinsic parameters Kvirt = CK, where K is the true

3× 3 matrix of intrinsic parameters. As the translation a is

usually chosen so that the patch contains an object of inter-

est, the optical center of the virtual camera depends on the

target location, which means that objects projected far from

the image center are deformed differently from those near

it, as shown in Fig. 1. To remedy this, our goal is to design

a crop operation such that the optical center of the virtual

camera is always at the center of the patch, which makes

perspective distortion independent from image location.

The centering of 2D human pose commonly done in

the state-of-the-art 2D-to-3D lifting approaches is a form

of rectangular cropping, too. A pose is root-centered by

multiplication with an affine matrix C, in which a is the

pelvis/root position, s = 1 and c = 0. The subsequent root-

centered processing with an MLP has the same downsides

as cropping in STNs and convolution in CNNs in that in-

formation about the image location is removed while being

affected by position-dependent perspective effects.
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3.2. Defining a Virtual Camera

We introduce a virtual camera with the same optical cen-

ter as the real one but whose optical axis points at the center

of the target patch p = [px,py] and whose focal length

is chosen to zoom onto the region of interest with factor

s = [sx, sy], as shown in Fig. 2. Below, we derive the

virtual extrinsic parameters, in the form of rotation matrix

Rvirt→real, and virtual intrinsic parameter matrix, Kvirt, such

that these constraints are fulfilled.

Cropping as a change of camera perspective. We aim

to find camera parameters such that mapping a pixel from

the original image to the cropped patch can be done by mul-

tiplying an image coordinate in homogeneous coordinates,

(u, v, 1)⊤, by the matrix

Γ(u, v, s,K) = KvirtR−1

virt→realK
−1 . (2)

This transformation undoes the original projection using

K−1, rotates the resulting point to the virtual camera with

R−1

virt→real and projects it using Kvirt. As for the typical rect-

angular cropping defined in Eq. 1, mapping from the image

to the patch remains a warp and does not depend on the gen-

erally unknown scene geometry. By contrast to rectangular

cropping, this warp is non-linear.

Extrinsic Parameters. Let Rvirt→real be the 3×3 rotation

matrix that defines the virtual camera orientation. It can be

written as RyRxRz , where Rx, Ry , and Rz are the Euler

rotation matrices that rotate counter-clockwise around the

x, y, and z axes of the original camera coordinate system,

as depicted by Fig. 2. Two degrees of freedom of Rvirt→real,

Rx and Ry , are determined by pinning the center of the vir-

tual camera to the backprojected point p = K−1(u, v, 1)⊤

in the real camera. Formally, we compute

Rvirt→real =











1√
1+p2

x

−pxpy√
(1+p2

x
+p2

y
)(1+p2

x
)

px√
1+p2

x
+p2

y

0

√
1+p2

x√
1+p2

x
+p2

y

py√
1+p2

x
+p2

y

−px√
1+p2

x

−py√
(1+p2

x
+p2

y
)(1+p2

x
)

1√
1+p2

x
+p2

y











,

(3)

The details are provided in the appendix.

The yaw angle around the optical axis is unconstrained.

We set it to zero (pointing upwards) in our experiments. In-

stead, Rz could be controlled, to normalize subject orienta-

tion to pose human subjects upright in the virtual view.

Intrinsic Parameters. Let

Kvirt =





f virt
x 0 tvirt

x

0 f virt
y tvirt

y

0 0 1



 (4)
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Figure 3: Focal length settings. We propose three different

variants for inferring the focal length of the camera to match

the pixel scales in the original and transformed view. The

intersection of the green cones with the image plane is the

fraction of pixels that is cropped by PCL. Only Option C

maintains a consistent scaling between center and off-center

positions.

be the 3 × 3 matrix of intrinsic parameters of the virtual

camera. Putting the optical center in the middle of the patch

means that tvirt
x = tvirt

y = 0.5. The virtual focal lengths are

f virt = [f virt
x , f virt

y ] = hvirt

s
, where hvirt is a function of the

original focal length in the horizontal and vertical direction

stored in K, and s determines the crop scale in relation to

the full image. Together with p, it defines the area of inter-

est and is the input to PCL.

There is no universal way for choosing hvirt, the virtual

camera’s focal length, without scaling to the smaller crop

size. We propose the following three alternatives and eval-

uate their influence empirically in Section 4:

A. Setting hvirt to f , the original focal length.

B. Setting hvirt to f‖p‖, so that the virtual image plane

intersects with the real one at p.

C. Setting hvirt
x = fx‖p‖

√

p2
x + 1 and hvirt

y = fy
‖p‖2√
p2

x
+1

to preserve pixel scales.

Although the nature of such a perspective transforma-

tion cannot maintain scale in all parts of the image, the last

choice of parameters guarantees that scale between the orig-

inal and virtual image is preserved along the vertical and

horizontal axis, while scaling non-linearly in the diagonal

direction. Fig. 1 visualizes this behavior, and Fig. 3 illus-

trates the crop width after with each of the three choices.
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3D pose

(in original camera) 3D pose (in virtual camera)

original

camera frustum

virtual camera frustum

(in virtual camera coordinates)

camera    -axis

camera    -axis

virtual camera frustum

(in original camera)

Figure 4: 3D Pose change. Because networks equipped

with a PCL layer operate in a virtual camera, the 3D pose

prediction living in these coordinates is transformed back

from virtual to original camera coordinates in the PCL inv

layer by applying Rvirt→real.

3.3. Differentiable Network Layer

PCLs are designed to facilitate perspective correction

within existing deep neural network architectures. We pro-

pose the two forms that are depicted in Fig. 5. Two layers

are involved, the projection to the virtual camera and the

transformation of the reconstruction to the original camera.

PCL for lifting 2D keypoints to 3D with MLPs. For net-

works taking 2D keypoints as input, such as the locations of

the human body parts detected in the image plane, Eq. 2 can

be applied directly on every 2D coordinate and becomes a

simple pre-processing that normalizes the 2D pose for per-

spective effects. The target center location p can be chosen

as the mean of all joints, or a root joint. We use the pelvis

location as crop target for human pose estimation.

PCL for CNNs. Applying PCL to CNNs requires a two-

stage CNN architecture. First, one or more RoIs (p, s)Ni=1

are predicted from the input image I ∈ R
W×H×F using

a detection network. Subsequently, the input is cropped

to focus the attention of the subsequent reconstruction net-

work. PCL replaces the cropping by implementing Eq. 2

and Eq. 3. The pixels are warped using bilinear interpo-

lation, as in the conventional STNs [13] we introduced in

the related work section. Because the transformation Γ, the

definition of Rvirt→real, and the virtual camera matrix Kvirt

rely on simple algebraic operations, the entire process is an-

alytically differentiable. To improve efficiency and numer-

ical stability, we parametrize Rvirt→real in terms of length

measures (Eq. 3) instead of angles and computationally-

expensive trigonometric functions in the general definition

of Euler angles. The derivation and relation of both are de-

tailed in the appendix.
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Figure 5: PCL integration into existing architectures.

PCLs are applied in pairs, sandwiching the original neural

network backbone with the PCL mapping from original to

virtual image space and the PCL inv that maps 3D predic-

tions back to the original camera coordinates.

PCL inv: back-transformation to the real camera. The

derived perspective crop has the regular grid structure of a

normal image or feature map. Any neural image processing

steps can be performed on it as is. However, the derived

quantities will live in the coordinates of the virtual camera.

As for classical attention windows, if the spatial context is

important, the processed crop needs to be translated back to

the original camera coordinates. For 3D quantities, such as

3D human pose, this amounts to applying Rvirt→real on the

reconstruction, as shown in Fig. 4. This PCL inv layer is

the same for MLPs and CNNs.

4. Experiments

We evaluate the improvements brought about by PCL on

the task of 3D human pose estimation from either images

or 2D keypoints, and show that they hold for neural net-

works of diverse complexity. The benefits of PCL for the

2D to 3D lifting task on Human 3.6 Million dataset [12]

and MPI-INF-3DHP dataset [25] are shown qualitatively

in both Fig. 6 and in additional experiments in the supple-

mental video.

Baselines. We integrate PCL into the three neural network

architectures for 3D pose estimation discussed below, and

compare the resulting networks with the original ones.

MLP+RC: As a first baseline, we use the four-layer

MLP from [21] with root centering. To ensure a fair com-

parison, we scale the 2D input of the baseline by the crop

scales s that are used in PCL.

T-CNN: Our second baseline consists of the temporal

convolution 2D to 3D lifting approach of Pavllo et al. [33],
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H3.6M MPI-INF-3DHP
Img + Crops

Img + Crops

Img + Crops

Img + Crops

M
LP + RC

M
LP + PCL

M
LP + RC

M
LP + PCL

MPJPE: 41.9

MPJPE: 61.6

MPJPE: 40.7

MPJPE: 45.9

MPJPE: 54.7

MPJPE: 32.7

MPJPE: 91.2

MPJPE: 37.9

Figure 6: Qualitative examples. For both, H3.6M (left)

and MPI-INF-3DHP (right), PCL improves 3D pose esti-

mation significantly by predicting the orientation of limbs

more precisely. The MLP+PCL output is shown in blue

and the baseline w/o PCL in red. Individual MPJPE scores

(in mm) are reported for each, which relates the visual and

quantitative improvements.

which operates on pose sequences. To date, it is the most

accurate method in its class.

CNN+STN: ResNet [9] is the most widely used back-

bone for predicting 3D pose from images. As baseline, we

use an STN that takes a 265 × 265 image as input and out-

puts a 128× 128 patch. We do almost all tests with ground-

truth crop locations determined by bounding box annota-

tions in the dataset. This guarantees that the differences in

performance that we measure during evaluation are entirely

due to the type of cropping and not differences in a detec-

tor network. We test a version with an an additional L2

loss on the crop location predicted by a ResNet-18 detec-

tor network, trained end-to-end with the 3D reconstruction

objective. We test ResNet backbones of depth 18 and 50.

Each baseline is extended with PCLs as follows, and as

sketched in Fig. 5.

MLP+PCL: Our method replaces the traditional hip-

centering in [21] with the PCL and PCL inv layers.

T-CNN+PCL: We apply PCL to [33] by transforming

the sequence of frames to the virtual camera pointing to the

image coordinates in the middle of the sequence. Note that

this centering is a significant difference to the original [33],

which works with absolute 2D positions as input. For sim-

plicity, we assume the optical center is at the image center.

CNN+PCL: We simply replace the rectangular STN

crop with our PCL layer, as detailed in Section 3.3.

Datasets. H3.6M: We evaluate the effectiveness of PCL

on the popular Human 3.6 Million dataset [12] that fea-

tures eleven subjects performing 14 different actions and

provides ground-truth 3D poses and camera calibration. We

use the established train/validation/test split, 17-joint skele-

ton, and the pre-processing of [29]. We set the rectangular

and PCL crop location to the pelvis 2D joint and compute

the crop scale as the width and height of a tightly-fitting

bounding box. We also experiment with using the GT depth

for scale estimation. We compare variants using 2D detec-

tions from [41, 46] and ground truth as input for 2D to 3D

lifting. When we compare to [33], we use their preprocess-

ing and train/validation/test split since consecutive frames

are required. For simplicity, we assume that the image size

is 1000× 1000, although size varies from 1000 to 1002.

MPI-INF-3DHP: We also evaluate our approach on the

MPI-INF-3DHP dataset [25], which, compared to H3.6M,

contains more extreme poses, outdoor environments, and is

shot with wide field-of-view cameras, leading to stronger

perspective effects. The cameras are calibrated, and all

frames are labeled with 3D pose. We use the color augmen-

tation from [29] and the official test set and training subjects

1-8 for training, while withholding the first sequence of sub-

ject 4 and the last sequence of subject 8 for validation. We

set the rectangular and PCL crop location to the pelvis joint

for 2D to 3D lifting and at the mean of the 2D poses for the

image-based variants. The crop scale is computed as the

width and height of a tightly fitting bounding box.

ToyCube: We introduce a synthetic dataset containing

images of a rendered cube of edge length 0.5 m. We use

this toy example to ablate individual factors of variation,

such as the effect of illumination and pose distribution.

Training setup. The 3D pose is trained on an L2 loss us-

ing Adam [16] with a learning rate of 0.001 for the 2D to

3D lifting models and 0.0005 for the image to 3D networks.

The temporal convolution networks are trained using Ams-

grad [36] with an initial learning of 0.001 and a learning

rate decay factor of 0.95 applied after each epoch. We train

2D to 3D lifting methods for 200 epochs and batch size

64 and the temporal convolution networks for 80 epochs

and batch size 1024 with up to 243 frames in each batch

element. Lastly, image to 3D networks using a ResNet-

50 backbone are trained for 40 and 150 epochs on H3.6m

and MPI-INF-3DHP respectively. The ResNet-18 backbone

trained on H3.6M is trained for 60 epochs.

Metrics. To quantitatively evaluate 3D pose accuracy, we

use the Mean Per Joint Position Error (MPJPE), computed

as the average Euclidean distance of the predicted 3D joints

to the ground-truth ones, where both poses are centered

at the pelvis. All MPJPE results are reported in millime-

ters. We also report the percentage of correct keypoints

(PCK), encoding the proportion of joints whose distance to

the ground truth is less than a threshold, using thresholds of

50 and 100 millimeters.
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H3.6M MPI-INF-3DHP

Input Model MPJPE ↓ PCK @ 50mm ↑ PCK @ 100mm ↑ MPJPE ↓ PCK @ 50mm ↑ PCK @ 100mm ↑
2D GT + 3D Root GT MLP + RC ([21]) 45.3± 0.2 66.8± 0.3 91.4± 0.2 69.4± 0.4 46.4± 0.5 77.0± 0.3
2D GT + 3D Root GT MLP + PCL (Ours) 40.1± 0.5 72.8± 0.5 93.3± 0.2 45.6± 0.5 70.1± 0.5 89.7± 0.3

2D GT MLP + RC ([21]) 48.4± 0.4 62.9± 0.5 90.3± 0.2 74.1± 0.5 43.0± 0.3 74.7± 0.7
2D GT MLP + PCL (Ours) 43.8± 0.1 68.3± 0.1 92.2± 0.0 50.1± 0.2 65.5± 0.2 87.8± 0.1

2D Detection MLP + RC ([21]) 69.7± 0.2 46.3± 0.5 80.5± 0.1 - - -

2D Detection MLP + PCL (Ours) 67.0± 0.1 48.7± 0.2 82.1± 0.0 - - -

Image CNN (ResNet50) + STN 96.5 32.7 64.6 117.7 33.6 60.1

Image CNN (ResNet50) + PCL (Ours) 94.1 34.1 65.8 109.5 40.3 66.2

Image CNN (ResNet18) + STN 95.9 35.4 65.6 - - -

Image CNN (ResNet18) + PCL (Ours) 93.9 37.1 66.6 - - -

Table 1: Shown are the reported MPJPE in millimeters as well as the PCK for 2D to 3D keypoint lifting tests performed on

H3.6M. The reported mean and standard deviation is computed over three runs with varying random seed. For MPJPE, lower

values are better and for PCK, higher values are better. We can see from the table that our method significantly outperforms

the baselines that do not use PCL. We bold the best performing models in each category.
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MPJPE gain over 2D image regions

MLP + RC

MLP + PCL

MLP + RC < MLP + PCL 
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Figure 7: Improvement of reconstruction error, binned

with respect to the image position. Left: MLP+RC suf-

fers from perspective effects away from the center, while

MLP+PCL effectively compensates these leading to im-

provements of up to 25%. Right: The consistent differ-

ence of MLP+RC and MLP+PCL is also reflected over a

2D tiling, showing the average MPJPE error difference of

cells with 10 or more frames on the validation set.

4.1. PCL for 2D to 3D Keypoint Lifting

The results for the 2D to 3D lifting task on H3.6M

and MPI-INF-3DHP are provided in Table 1. For H3.6M,

MLP+PCL achieves an MPJPE of 67.0 mm vs. 69.8 mm

MPJPE of the MLP+RC baseline [21] when using 2D de-

tections from [41, 46] as input, a 4% improvement. Even

larger improvements are achieved when using the GT 2D

pose as input and when using the 3D root joint position for

scale estimation. Notably, our method with a scale com-

puted from the 2D pose still outperforms the STN baseline

using 3D ground truth for scale prediction.

We obtain even larger improvements with PCL on the

MPI-INF-3DHP dataset, with 2.4 cm in MPJPE and 22

PCK points. This dramatic improvement is no surprise

since the larger field of view (smaller focal length f ) of

the MPI-INF-3DHP cameras leads to stronger perspective

effects and, therefore, a larger difference between the cor-

Model Original f New f

T-CNN 47.3± 0.0 72.7± 0.5
T-CNN + RC 51.5± 0.1 51.5± 0.1
T-CNN + PCL (known f ) 48.8± 0.3 48.9± 0.2

Table 2: Temporal CNN tests, computed as the MPJPE

over two runs with varying seed on H3.6M. While the base-

line performs the best using the original camera, it is unable

to generalize to new camera settings. The PCL equipped

version strikes the best compromise.

rected and uncorrected views. These experiments also show

that PCL is not specific to any particular focal length.

In Figure 7, we analyze the position dependent effect of

our method on H3.6M. As shown by the plot, the baseline

MPJPE increases with the distance from the subject to the

image center, hinting at the negative effect of perspective

distortion. PCLs undo this effect, leading to a more stable

MPJPE and outperforming the baseline by a growing mar-

gin as the distance increases. PCL even decreases with the

distance to the center, which is surprising. We believe this is

because the most complex poses in H3.6M, such as sitting

and lying on the ground, are performed in the image center

while walking dominates for the off-center ones.

4.2. PCL for Temporal CNNs

As shown in Table 2 incorporating PCL into the tem-

poral convolutional network of [33] does not improve re-

sults on their original implementation. Our following anal-

ysis shows that this is due to [33] already learning position-

dependent effects by operating on unnormalized 2D pose.

This, however, overfits to the camera used at training time.

By contrast, PCL generalizes perfectly when the camera

changes at test time so long as its properties are known ap-

proximately.

To analyze the effect, we artificially change the focal

length of the test sequences by multiplying all 2D testing
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MLP + RC

MLP + PCL 

Figure 8: Evaluating the effectiveness of PCL when the

focal length of the camera is approximated. We can see

from the figure that for reasonable approximations of the fo-

cal length, PCL still outperforms the rectangular cropping.

poses by a factor of 2/3. This simulates a camera with a

smaller focal length and larger field of view. T-CNN gener-

alizes poorly, as it seemingly overfits to the global position

and scale of the training set, while PCL can adapt perfectly

to the new capture setup without loss in performance.

To facilitate a fair comparison, we created a second base-

line, T-CNN+RC. It centers and scales the input pose se-

quence by subtracting the root joint of the central frame and

scaling by its horizontal and vertical size; this is the same

procedure that is used for the other RC baselines. This

maintains the root motion while removing absolute scale

and the position in the image. This variant generalizes much

better than T-CNN does but has an overall higher error than

T-CNN+PCL. In summary, PCL strikes the best compro-

mise between accuracy on the original domain while being

applicable to new camera geometries and capture setups.

4.3. PCL for CNN Architectures

As shown in the last four rows of Table 1, when using

images as input to a ResNet regressing 3D pose on H3.6M,

the baselines achieves an MPJPE of 96.5 mm, while our

model with PCL yields 94.1 mm, a 2.5% reduction. The

improvement is lower compared to 2D to 3D lifting, likely

because the overall higher error for image to 3D pose pre-

diction compared to 2D to 3D lifting is dominated by other

error factors.

On the MPI-INF-3DHP dataset, PCLs’ improvement is

more pronounced, improving by 8mm and 6 PCK points,

which further validates the previous findings that perspec-

tive effects are stronger on MPI-INF-3DHP, therefore lead-

ing to a clear improvement despite higher total errors.

4.4. Ablation Studies

Robustness to errors in focal length. Although PCL

requires knowledge of the camera’s focal length, it is of-

ten known or can be estimated approximately from image

features [45, 11]. To evaluate the robustness of PCL to er-

roneous estimates, we experiment with an artificial distur-

bance to the true focal length at test time. The 2D input

poses to the MLP+PCL network are deformed as if they

would stem from a camera with different zoom. As shown

in Fig. 8, PCL is relatively robust when the estimated focal

length ranges between 0.7 and 1.5 times the true one.

Network capacity, post-processing, and generaliza-

tion. In addition to the main results, we i) show that the

improvement by PCL is as prominent as doubling the neural

network capacity from two million to four million parame-

ters; ii) show that it is important to apply PCL at training

time instead of on pre-trained models; and iii) analyze the

generalizability of PCL to new unseen positions within the

camera frame on a synthetic cube dataset. Details for all

these tests can be found in the supplemental document.

5. Limitations

The gained improvements come at the cost of requiring

an estimate of the focal length f . Yet, the robustness to-

wards errors in f shows that improvements can still be ob-

tained with a rough guess. It is worth to note that PCL com-

pensates for location-dependent perspective effects. Those

effects that originate from varying distance of the object to

the camera, e.g., selfie vs. third person picture, can not be

resolved with image warps but would require knowledge of

the 3D geometry. Data-driven approaches have been pro-

posed to compensate these [35, 50].

6. Conclusion

We have presented a drop-in replacement for rectan-

gular cropping and root centering that removes location-

dependent perspective effects. It is fully differentiable,

lends itself to end-to-end training, is efficient, does not im-

pose additional network parameters, and the empirical eval-

uation demonstrates significant improvements for 3D pose

estimation. Notably, the strong influence of perspective ef-

fects on the reconstruction accuracy is widely overlooked

in the 3D pose reconstruction literature and these improve-

ments are observed irrespective of the network architecture.

PCL is therefore an important contribution to pushing state-

of-the-art 3D reconstruction methods further.
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