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Abstract

Despite the substantial progress of active learning for

image recognition, there still lacks an instance-level ac-

tive learning method specified for object detection. In this

paper, we propose Multiple Instance Active Object Detec-

tion (MI-AOD), to select the most informative images for

detector training by observing instance-level uncertainty.

MI-AOD defines an instance uncertainty learning module,

which leverages the discrepancy of two adversarial in-

stance classifiers trained on the labeled set to predict in-

stance uncertainty of the unlabeled set. MI-AOD treats

unlabeled images as instance bags and feature anchors in

images as instances, and estimates the image uncertainty

by re-weighting instances in a multiple instance learning

(MIL) fashion. Iterative instance uncertainty learning and

re-weighting facilitate suppressing noisy instances, toward

bridging the gap between instance uncertainty and image-

level uncertainty. Experiments validate that MI-AOD sets a

solid baseline for instance-level active learning. On com-

monly used object detection datasets, MI-AOD outperforms

state-of-the-art methods with significant margins, particu-

larly when the labeled sets are small. Code is available at

https://github.com/yuantn/MI-AOD.

1. Introduction

The key idea of active learning is that a machine learn-

ing algorithm can achieve better performance with fewer

training samples if it is allowed to select which to learn.

Despite the rapid progress of the methods with less supervi-

sion [21, 20], e.g., weak supervision and semi-supervision,
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Figure 1. Comparison of active object detection methods. (a) Con-

ventional methods compute image uncertainty by simply averag-

ing instance uncertainties, ignoring interference from a large num-

ber of background instances. (b) Our MI-AOD leverages uncer-

tainty re-weighting via multiple instance learning to filter out in-

terfering instances while bridging the gap between instance uncer-

tainty and image uncertainty. (Best viewed in color)

active learning remains the cornerstone of many practical

applications for its simplicity and higher performance.

In the computer vision area, active learning has been

widely explored for image classification (active image clas-

sification) by empirically generalizing the model trained on

the labeled set to the unlabeled set [9, 30, 18, 39, 4, 24, 36,
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25, 34]. Uncertainty-based methods define various metrics

for selecting informative images and adapting trained mod-

els to the unlabeled set [9]. Distribution-based approaches

[30, 1] aim at estimating the layout of unlabeled images to

select samples of large diversity. Expected model change

methods [8, 15] find out samples that can cause the greatest

change of model parameters or the largest loss [42].

Despite the substantial progress, there still lacks an

instance-level active learning method specified for object

detection (i.e., active object detection [42, 43, 2]), where

the instance denotes the object proposal in an image. The

objective goal of active object detection is to select the most

informative images for detector training. However, the re-

cent methods tackled it by simply summarizing/averaging

instance/pixel uncertainty as image uncertainty and unfor-

tunately ignored the large imbalance of negative instances

in object detection, which causes significant noisy instances

in the background and interferes with the learning of image

uncertainty, Fig. 1(a). The noisy instances also cause the in-

consistency between image and instance uncertainty, which

hinders selecting informative images.

In this paper, we propose a Multiple Instance Active

Object Detection (MI-AOD) approach, Fig. 1(b), and tar-

get at selecting informative images from the unlabeled set

by learning and re-weighting instance uncertainty with dis-

crepancy learning and multiple instance learning (MIL).

To learn the instance-level uncertainty, MI-AOD first de-

fines an instance uncertainty learning (IUL) module, which

leverages two adversarial instance classifiers plugged atop

the detection network (e.g., a feature pyramid network) to

learn the uncertainty of unlabeled instances. Maximizing

the prediction discrepancy of two instance classifiers pre-

dicts instance uncertainty while minimizing classifiers’ dis-

crepancy drives learning features to reduce the distribution

bias between the labeled and unlabeled instances.

To establish the relationship between instance uncer-

tainty and image uncertainty, MI-AOD incorporates a MIL

module, which is in parallel with the instance classifiers.

MIL treats each unlabeled image as an instance bag and

performs instance uncertainty re-weighting (IUR) by evalu-

ating instance appearance consistency across images. Dur-

ing MIL, the instance uncertainty and image uncertainty are

forced to be consistently driven by a classification loss de-

fined on image class labels (or pseudo-labels). Optimizing

the image-level classification loss facilitates suppressing the

noisy instances while highlighting truly representative ones.

Iterative instance uncertainty learning and instance uncer-

tainty re-weighting bridge the gap between instance-level

observation and image-level evaluation, towards selecting

the most informative images for detector training.

The contributions of this paper include:

(1) We propose Multiple Instance Active Object Detec-

tion (MI-AOD), establishing a solid baseline to model the

relationship between the instance uncertainty and image un-

certainty for informative image selection.

(2) We design instance uncertainty learning (IUL) and

instance uncertainty re-weighting (IUR) modules, provid-

ing effective approaches to highlight informative instances

while filtering out noisy ones in object detection.

(3) We apply MI-AOD to object detection on commonly

used datasets, improving state-of-the-art methods with sig-

nificant margins.

2. Related Work

2.1. Active Learning

Uncertainty-based Methods. Uncertainty is the most

popular metric to select samples for active learning [31],

which can be defined as the posterior probability of a pre-

dicted class [17, 16], or the margin between the posterior

probabilities of the first and the second predicted class [14,

28]. It can also be defined upon entropy [32, 26, 14] to mea-

sure the variance of unlabeled samples. The expected model

change methods [29, 33] utilized the present model to esti-

mate the expected gradient or prediction changes [8, 15] for

sample selection. MIL-based methods [33, 13, 40, 6] se-

lected informative images by discovering representative in-

stances. However, they are designed for image classification

and not applicable to object detection due to the challenging

aspect of crowded and noisy instances [38, 37].

Distribution-based Methods. These methods select di-

verse samples by estimating the distribution of unlabeled

samples. Clusters [27] were applied to build the unla-

beled sample distribution while discrete optimization meth-

ods [11, 7, 41] were employed to perform sample selection.

Considering the distances to the surrounding samples, the

context-aware methods [12, 3] selected the samples that can

represent the global sample distribution. Core-set [30] de-

fined active learning as core-set selection, i.e., choosing a

set of points such that a model learned on the labeled set

can capture the diversity of the unlabeled samples.

In the deep learning era, active learning methods remain

falling into the uncertainty-based or distribution-based rou-

tines [18, 39, 4]. Sophisticated methods extended active

learning to the open sets [24], or combined it with self-

paced learning [36]. Nevertheless, it remains questionable

whether the intermediate feature representation is effective

for sample selection. The learning loss method [42] can

be categorized as either uncertainty-based or distribution-

based. By introducing a module to predict the “loss” of the

unlabeled samples, it estimates sample uncertainty and se-

lects samples with large “loss” like hard negative mining.

2.2. Active Learning for Object Detection

Despite the substantial progress of active learning, few

methods are specified for active object detection, which
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Figure 2. MI-AOD illustration. (a) Instance uncertainty learning (IUL) utilizing two adversarial classifiers. (b) Instance uncertainty re-

weighting (IUR) using multiple instance learning. Bigger symbols (“+” and “−”) indicate larger weights. (Best viewed in color)

faces complex instance distributions in the same images and

are more challenging than active image classification. By

simply sorting the loss predictions of instances to evaluate

the image uncertainty, the learning loss method [42] speci-

fied for image classification was directly applied to object

detection. The image-level uncertainty can also be esti-

mated by the uncertainty of a lot of background pixels [2].

CDAL [1] introduced spatial context to active detection and

selected diverse samples according to the distances to the la-

beled set. Existing approaches simply used instance-/pixel-

level observations to represent the image-level uncertainty.

There still lacks a systematic method to learn the image un-

certainty by leveraging instance-level models [44, 45].

3. The Proposed Approach

3.1. Overview

For active object detection, a small set of images X 0

L

(the labeled set) with instance labels Y0

L and a large set of

images X 0

U (the unlabeled set) without labels are given. For

each image, the label consists of bounding boxes (ylocx ) and

categories (yclsx ) for objects of interest. A detection model

M0 is firstly initialized by using the labeled set {X 0

L,Y
0

L}.

With the initialized model M0, active learning targets at se-

lecting a set of images X 0

S from X 0

U to be manually labeled

and merging them with X 0

L for a new labeled set X 1

L, i.e.,

X 1

L = X 0

L ∪ X 0

S . The selected image set X 0

S should be

the most informative, i.e., can improve the detection perfor-

mance as much as possible. Based on the updated labeled

set X 1

L, the task model is retrained and updated to M1. The

model training and sample selection repeat some cycles un-

til the size of labeled set reaches the annotation budget.

Considering the large number1 of instances in each im-

age, there are two key problems for active object detec-

tion: (1) how to evaluate the uncertainty of the unlabeled in-

stances using the detector trained on the labeled set; (2) how

to precisely estimate the image uncertainty while filtering

out noisy instances. MI-AOD handles these two problems

by introducing two learning modules respectively. For the

first problem, MI-AOD incorporates instance uncertainty

learning, with the aim of highlighting informative instances

in the unlabeled set, as well as aligning the distributions of

the labeled and unlabeled set, Fig. 2(a). It is motivated by

the fact that most active learning methods remain simply

generalizing the models trained on the labeled set to the un-

labeled set. This is problematic when there is a distribution

bias between the two sets [10]. For the second problem,

MI-AOD introduces MIL to both the labeled and unlabeled

set to estimate the image uncertainty by re-weighting the in-

stance uncertainty. This is done by treating each image as

an instance bag while re-weighting the instance uncertainty

under the supervision of the image classification loss. Opti-

mizing the image classification loss facilitates highlighting

truly representative instances belonging to the same object

classes while suppressing the noisy ones, Fig. 2(b).

1For example, the RetinaNet detector [19] produces ∼100k of anchors

(instances) for an image.
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Figure 3. Network architecture for instance uncertainty learning. (a) Label set training. (b) Maximizing instance uncertainty by maximizing

classifier prediction discrepancy. (c) Minimizing instance uncertainty by minimizing classifier prediction discrepancy.

3.2. Instance Uncertainty Learning

Label Set Training. Using the RetinaNet as the base-

line [19], we construct a detector with two discrepant in-

stance classifiers (f1 and f2) and a bounding box regres-

sor (fr), Fig. 3(a). We utilize the prediction discrepancy

between the two instance classifiers to learn the instance

uncertainty on the unlabeled set. Let g denote the feature

extractor parameterized by θg . The discrepant classifiers

are parameterized by θf1 and θf2 and the regressor by θfr .

Θ = {θf1 , θf2 , θfr , θg} denotes the set of all parameters,

where θf1 and θf2 are independently initialized.

In object detection, each image x can be represented by

multiple instances {xi, i = 1, ..., N} corresponding to the

feature anchors on the feature map [19]. N is the number

of the instances in image x. {yi, i = 1, ..., N} denote the

labels for the instances. Given the labeled set, a detection

model is trained by optimizing the detection loss, as

argmin
Θ

ldet(x) =
∑

i

(

FL(ŷf1i , yclsi ) + FL(ŷf2i , yclsi )

+ SmoothL1(ŷfri , yloci )
)

,

(1)

where FL(·) is the focal loss function for instance clas-

sification and SmoothL1(·) is the smooth L1 loss func-

tion for bounding box regression [19]. ŷf1i = f1(g(xi)),

ŷf2i = f2(g(xi)) and ŷfri = fr(g(xi)) denote the pre-

diction results (classification and localization) for the in-

stances. yclsi and yloci denote the ground-truth class label

and bounding box label, respectively.

Maximizing Instance Uncertainty. Before the labeled

set can precisely represent the unlabeled set, there exists a

distribution bias between the labeled and unlabeled set, es-

pecially when the labeled set is small. The informative in-

stances are in the biased distribution area. To find them out,

f1 and f2 are designed as the adversarial instance classifiers

with larger prediction discrepancy on the instances close to

the boundary, Fig. 2(a). The instance uncertainty is defined

as the prediction discrepancy of f1 and f2.

To find out the most informative instances, it requires to

fine-tune the network and maximize the prediction discrep-

ancy of the adversarial classifiers, Fig. 3(b). In this proce-

dure, θg is fixed so that the distributions of both the labeled

and unlabeled instances are fixed. θf1 and θf2 are fine-tuned

on the unlabeled set to maximize the prediction discrepan-

cies for all instances. At the same time, it requires to pre-

serve the detection performance on the labeled set. This is

fulfilled by optimizing the following loss function, as

argmin
Θ\θg

Lmax =
∑

x∈XL

ldet(x)−
∑

x∈XU

λ · ldis(x), (2)

where

ldis(x) =
∑

i

|ŷf1i − ŷf2i | (3)

denotes the prediction discrepancy loss. ŷf1i , ŷf2i ∈ R
1×C

are the instance classification predictions of the two classi-

fiers for the i-th instance in image x, where C is the number

of object classes in the dataset, and λ is a regularization

hyper-parameter determined by experiment. As shown in

Fig. 2(a), the informative instances with different predic-

tions by the adversarial classifiers tend to have larger pre-

diction discrepancy and larger uncertainty.

Minimizing Instance Uncertainty. After maximizing

the prediction discrepancy, we further propose to minimize

the prediction discrepancy to align the distributions of the

labeled and unlabeled instances, Fig. 3(c). In this proce-

dure, the classifier parameters θf1 and θf2 are fixed, while

the parameters θg of the feature extractor are optimized by

minimizing the prediction discrepancy loss, as

argmin
θg

Lmin =
∑

x∈XL

ldet(x) +
∑

x∈XU

λ · ldis(x). (4)

By minimizing the prediction discrepancy, the distribution

bias between the labeled set and the unlabeled set is mini-

mized and their features are aligned as much as possible.

In each active learning cycle, the max-min prediction

discrepancy procedures repeat several times so that the in-

stance uncertainty is learned and the instance distributions

of the labeled and unlabeled set are progressively aligned.

This actually defines an unsupervised learning procedure,

which leverages the information (i.e., prediction discrep-

ancy) of the unlabeled set to improve the detection model.
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3.3. Instance Uncertainty Reweighting

With instance uncertainty learning, the informative in-

stances are highlighted. However, as there is a lot of in-

stances (∼100k) in each image, the instance uncertainty

may be not consistent with the image uncertainty. Some

instances of high uncertainty are simply background noise

or hard negatives for the detector. We thereby introduce an

MIL procedure to bridge the gap between the instance-level

and image-level uncertainty by filtering out noisy instances.

Multiple Instance Learning. MIL treats each image as

an instance bag and utilizes the instance classification pre-

dictions to estimate the bag labels. In turn, it re-weights

the instance uncertainty scores by minimizing the image

classification loss. This actually defines an Expectation-

Maximization procedure [35, 5] to re-weight instance un-

certainty across bags while filtering out noisy instances.

Specifically, we add an MIL classifier fmil parameter-

ized by θfmil
in parallel with the instance classifiers, Fig. 4.

The image classification score ŷclsi,c for multiple instances in

an image is calculated as

ŷclsi,c =
exp(ŷfmil

i,c )
∑

c exp(ŷ
fmil

i,c )
·

exp
(

(ŷf1i,c + ŷf2i,c)/2
)

∑

i exp
(

(ŷf1i,c + ŷf2i,c)/2
) , (5)

where ŷfmil = fmil(g(x)) is an N × C score matrix, and

ŷfmil

i,c is the element in ŷfmil indicating the score of the i-th
instance for class c. According to Eq. (5), the image clas-

sification score ŷclsi,c is large only when xi belongs to class

c (the first term in Eq. (5)) and its instance classification

scores ŷf1i,c and ŷf2i,c are significantly larger than those of oth-

ers (the second term in Eq. (5)).

Considering that the image classification scores of the

instances from other classes/backgrounds are small, the im-

age classification loss limgcls is defined as

limgcls(x) = −
∑

c

(

yclsc log
∑

i

ŷclsi,c

+(1− yclsc ) log(1−
∑

i

ŷclsi,c )
)

,
(6)

where yclsc ∈ {0, 1} denotes the image class label, which

can be directly obtained from the instance class label yclsi in

the labeled set. Optimizing Eq. (6) drives the MIL classifier

to activate instances with large MIL score (ŷfmil

i,c ) and large

classification outputs (ŷf1i,c + ŷf2i,c). The instances with small

MIL scores will be suppressed as background. The image

classification loss is firstly applied in the label set training to

get the initial model, and then used to re-weight the instance

uncertainty in the unlabeled set.

Uncertainty Re-weighting. To ensure that the instance

uncertainty is consistent with the image uncertainty, we as-

semble the image classification scores for all classes to a

score vector wi and re-weight the instance uncertainty as

l̃dis(x) =
∑

i

|wi · (ŷ
f1
i − ŷf2i )|, (7)

where wi = ŷclsi . We then update Eq. (2) to

argmin
Θ̃\θg

L̃max =
∑

x∈XL

(

ldet(x)+limgcls(x)
)

−
∑

x∈XU

λ·l̃dis(x),

(8)

where Θ̃ = Θ∪{θfmil
}. By optimizing Eq. (8), the discrep-

ancies of instances with large image classification scores are

preferentially estimated, while those with small classifica-

tion scores are suppressed. Similarly, Eq. (4) is updated to

argmin
θg,θfmil

L̃min =
∑

x∈XL

(

ldet(x) + limgcls(x)
)

+
∑

x∈XU

(

λ · l̃dis(x) + limgcls(x)
)

.
(9)

In Eq. (9), the image classification loss is applied to the un-

labeled set, where the pseudo image labels are estimated

using the outputs of the instance classifiers, as

ypseudoc = 1

(

max
i

( ŷf1i,c + ŷf2i,c
2

)

, 0.5

)

, (10)

where 1(a, b) is a binarization function. When a > b, it

returns 1; otherwise 0. Eq. (10) is defined based on that in-

stance classifiers can find true instances but are easy to be
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Figure 5. Performance comparison of active object detection methods. (a) On PASCAL VOC using RetinaNet. (b) On PASCAL VOC

using SSD. (c) On MS COCO using RetinaNet.

confused by complex backgrounds. We use the maximum

instance score to predict pseudo image labels and lever-

age MIL to reduce background interference. According to

Eqs. (5) and (6), the image classification loss ensures the

highlighted instances are representative of the image, i.e.,

minimizing the image classification loss bridges the gap be-

tween the instance uncertainty and image uncertainty. By it-

eratively optimizing Eqs. (8) and (9), informative object in-

stances in the same class are statistically highlighted, while

the background instances are suppressed.

3.4. Informative Image Selection

In each learning cycle, after instance uncertainty learn-

ing (IUL) and instance uncertainty re-weighting (IUR),

we select the most informative images from the unlabeled

set by observing the top-k instance uncertainty defined in

Eq. (3) for each image, where k is a hyper-parameter. This

is based on the fact that the noisy instances have been sup-

pressed and the instance uncertainty becomes consistent

with the image uncertainty. The selected images are merged

into the labeled set for the next learning cycle.

4. Experiments

4.1. Experimental Settings

Datasets. The trainval sets of PASCAL VOC 2007

and 2012 datasets which contain 5011 and 11540 images are

used for training. The VOC 2007 test set is used to evalu-

ate mean average precision (mAP). The MS COCO dataset

contains 80 object categories with challenging aspects in-

cluding dense objects and small objects with occlusion. We

use the train set with 117k images for active learning and

the val set with 5k images for evaluating AP.

Active Learning Settings. We use the RetinaNet [19]

with ResNet-50 and SSD [23] with VGG-16 as the base de-

tector. For RetinaNet, MI-AOD uses 5.0% of randomly se-

lected images from the training set to initialize the labeled

set on PASCAL VOC. In each active learning cycle, it se-

lects 2.5% images from the rest unlabeled set until the la-

beled images reach 20.0% of the training set. For the large-

scale MS COCO, MI-AOD uses only 2.0% of randomly se-

lected images from the training set to initialize the labeled

set, and then selects 2.0% images from the rest of the un-

labeled set in each cycle until reaching 10.0% of the train-

ing set. In each cycle, the model is trained for 26 epochs

with the mini-batch size 2 and the learning rate 0.001. After

20 epochs, the learning rate decreases to 0.0001. The mo-

mentum and the weight decay are set to 0.9 and 0.0001 re-

spectively. For SSD, we follow the settings in LL4AL [42]

and CDAL [1], where 1k images in the training set are se-

lected to initialize the labeled set and 1k images are selected

in each cycle. The learning rate is 0.001 for the first 240

epochs and reduced to 0.0001 for the last 60 epochs. The

mini-batch size is set to 32 which is required by LL4AL.

We compare MI-AOD with random sampling, entropy

sampling, Core-set [30], LL4AL [42] and CDAL [1]. For

entropy sampling, we use the averaged instance entropy as

the image uncertainty. We repeat all experiments for 5 times

and use the mean performance. MI-AOD and other meth-

ods share the same random seed and initialization for a fair

comparison. λ defined in Eqs. (2), (4), (8) and (9) is set to

0.5 and k mentioned in Sec. 3.4 is set to 10k.

4.2. Performance

PASCAL VOC. In Fig. 5, we report the performance

of MI-AOD and compare it with state-of-the-art methods

on a TITAN V GPU. Using either the RetinaNet [19] or

SSD [22] detector, MI-AOD outperforms state-of-the-art

methods with large margins. Particularly, it respectively

outperforms state-of-the-art methods by 18.08%, 7.78%,

and 5.19% when using 5.0%, 7.5%, and 10.0% samples.

With 20.0% samples, MI-AOD achieves 72.27% detection
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Training Sample Selection mAP (%) on Proportion (%) of Labeled Images

IUL IUR Rand.
Max

Unc.

Mean

Unc.
5.0 7.5 10.0 12.5 15.0 17.5 20.0 100.0

X 28.31 49.42 56.03 59.81 64.02 65.95 67.09

77.28
X X 30.09 49.17 55.64 60.93 64.10 65.77 67.20

X X 30.09 49.79 58.94 63.11 65.61 67.84 69.01

X X 30.09 49.74 60.60 64.29 67.13 68.76 70.06

X X 47.18 57.12 60.68 63.72 66.10 67.59 68.48

78.37X X 47.18 57.58 61.74 64.58 66.98 68.79 70.33

X X 47.18 58.03 63.98 66.58 69.57 70.96 72.03

Table 1. Module ablation on PASCAL VOC. The first line shows the result of the baseline method with random image selection. “Max

Unc.” and “Mean Unc.” respectively denote that the image uncertainty is represented by the maximum and averaged instance uncertainty.

Training mAP (%) on Proportion (%) of Labeled Imgs.

IUL 2.0 4.0 6.0 8.0 10.0

51.01 61.48 69.14 75.14 79.77

X 58.07 67.75 74.91 78.88 80.96

Table 2. The effect of IUL for active image classification. Experi-

ments are conducted on CIFAR-10 using the ResNet-18 backbone

while the images are randomly selected in all cycles.

wi Set
mAP (%) on Proportion (%) of Labeled Imgs.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

1 ∅ 30.09 49.17 55.64 60.93 64.10 65.77 67.20

ŷf1i ∅ 31.67 50.67 55.93 60.78 64.17 66.22 67.30

1 XL 42.52 54.08 57.18 63.43 65.04 66.74 68.32

ŷclsi X 47.18 57.12 60.68 63.72 66.10 67.59 68.48

Table 3. Ablation study on IUR. “wi” is the wi in Eq. (7). “Set”

denotes the sample set for IUR. X and XL denote the whole sam-

ple set and the labeled set, respectively.

mAP, which significantly outperforms CDAL by 3.20%.

The improvements validate that MI-AOD can precisely

learn instance uncertainty while selecting informative im-

ages. When using the SSD detector, MI-AOD outperforms

state-of-the-art methods in almost all cycles, demonstrating

the general applicability of MI-AOD to object detectors.

MS COCO. MS COCO is a challenging dataset for

more categories, denser objects, and larger scale variation,

where MI-AOD also outperforms the compared methods,

Fig. 5. Particularly, it respectively outperforms Core-set

and CDAL by 0.6%, 0.5%, and 2.0%, and 0.6%, 1.3%, and

2.6% when using 2.0%, 4.0%, and 10.0% labeled images.

4.3. Ablation Study

IUL. As shown in Tab. 1, with IUL, the detection per-

formance is improved up to 70.06% in the last cycle, which

outperforms the Random method by 2.97% (70.06% vs.
67.09%). In Tab. 2, IUL also significantly improves the

image classification performance with active learning on

CIFAR-10. Particularly when using 2.0% samples, it im-

proves the classification performance by 7.06% (58.07%

vs. 51.01%), demonstrating the effectiveness of the discrep-

ancy learning module for instance uncertainty estimation.

IUR. In Tab. 1, IUL achieves comparable performance

with the method using the random image selection strategy

in the early cycles. This is because there are significant

noisy instances that make the instance uncertainty inconsis-

tent with image uncertainty. After using IUR to re-weight

instance uncertainty, the performance at early cycles is im-

proved by 5.04%∼17.09% in the first three cycles (row 4

vs. row 1 in Tab. 3). In the last cycle, the performance is im-

proved by 1.28% (68.48% vs. 67.20%) in comparison with

IUL and 1.39% in comparison with the Random method

(68.48% vs. 67.09%). As shown in Tab. 3, image classifi-

cation score ŷclsi is the best re-weighting metric (row 4 vs.
others). Interestingly, when using 100.0% images for train-

ing, the detector with IUR outperforms the detector without

IUR by 1.09% (78.37% vs. 77.28%). These results clearly

verify that the IUR module can suppress the interfering in-

stances while highlighting more representative ones, which

can indicate informative images for detector training.

Hyper-parameters and Time Cost. The effects of the

regularization factor λ defined in Eqs. (2), (4), (8) and (9)

and the valid instance number k in each image for selection

are shown in Tab. 4. MI-AOD has the best performance

when λ is set to 0.5 and k is set to 10k (for ∼100k in-

stances/anchors in each image). Tab. 5 shows that MI-AOD

costs less time at early cycles than CDAL.
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λ k
mAP (%) on Proportion (%) of Labeled Imgs.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

2 10k 47.18 56.94 64.44 67.70 69.58 70.67 72.12

1 10k 47.18 57.30 64.93 67.40 69.63 70.53 71.62

0.5 10k 47.18 58.41 64.02 67.72 69.79 71.07 72.27

0.2 10k 47.18 58.02 64.44 67.67 69.42 70.98 72.06

0.5 N 47.18 58.03 63.98 66.58 69.57 70.96 72.03

0.5 10k 47.18 58.41 64.02 67.72 69.79 71.07 72.27

0.5 100 47.18 58.74 63.62 67.03 68.63 70.26 71.47

0.5 1 47.18 57.58 61.74 64.58 66.98 68.79 70.33

Table 4. Performance under different hyper-parameters.

Method
Time (h) on Proportion (%) of Labeled Imgs.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Random 0.77 1.12 1.45 1.78 2.12 2.45 2.78

CDAL [1] 1.18 1.50 1.87 2.19 2.68 2.83 2.82

MI-AOD 1.03 1.42 1.78 2.18 2.55 2.93 3.12

Table 5. Comparison of time cost on PASCAL VOC.

4.4. Model Analysis

Visualization Analysis. In Fig. 6, we visualize the

learned and re-weighted uncertainty and image classifica-

tion scores of instances. The heatmaps are calculated by

summarizing the uncertainty scores of all instances. With

only IUL, there exist interference instances from the back-

ground (row 1) or around the true positive instance (row

2), and the results tend to miss the true positive instances

(row 3) or instance parts (row 4). MIL can assign high im-

age classification scores to the instances of interesting while

suppressing backgrounds. As a result, IUR leverages the

image classification scores to re-weight instances towards

accurate instance uncertainty prediction.

Statistical Analysis. In Fig. 7, we calculate the number

of true positive instances selected in each active learning

cycle. It can be seen that MI-AOD significantly hits more

true positives in all learning cycles. This shows that the pro-

posed MI-AOD approach can activate true positive objects

better while filtering out interfering instances, which facili-

ties selecting informative images for detector training.

5. Conclusion

We proposed Multiple Instance Active Object Detection

(MI-AOD) to select informative images for detector training

by observing instance uncertainty. MI-AOD incorporates a

discrepancy learning module, which leverages adversarial

Unlabeled Image IUL IURˆ
cls
y

Figure 6. Visualization of learned and re-weighted instance uncer-

tainty and image classification score. (Best viewed in color)
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Figure 7. The number of true positive instances selected in each

active learning cycle on PASCAL VOC using RetinaNet.

instance classifiers to learn the uncertainty of unlabeled in-

stances. MI-AOD treats the unlabeled images as instance

bags and estimates the image uncertainty by re-weighting

instances in a multiple instance learning (MIL) fashion. It-

erative instance uncertainty learning and re-weighting facil-

itate suppressing noisy instances, towards selecting infor-

mative images for detector training. Experiments on large-

scale datasets have validated the superiority of MI-AOD,

in striking contrast with state-of-the-art methods. MI-AOD

sets a solid baseline for active object detection.

Acknowledgement. This work was supported by Nat-

ural Science Foundation of China (NSFC) under Grant

62006216, 61836012 and 61620106005, the Strategic Pri-

ority Research Program of Chinese Academy of Sciences

under Grant No. XDA27000000, Post Doctoral Innovative

Talent Support Program of China under Grant 119103S304,

CAAI-Huawei MindSpore Open Fund and MindSpore deep

learning computing framework at www.mindspore.cn

5337



References

[1] Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan

Arora. Contextual diversity for active learning. In ECCV,

pages 137–153, 2020. 2, 3, 6, 8

[2] Hamed Habibi Aghdam, Abel Gonzalez-Garcia, Antonio M.
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