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Abstract

Analyzing complex scenes with Deep Neural Networks is

a challenging task, particularly when images contain multi-

ple objects that partially occlude each other. Existing ap-

proaches to image analysis mostly process objects inde-

pendently and do not take into account the relative occlu-

sion of nearby objects. In this paper, we propose a deep

network for multi-object instance segmentation that is ro-

bust to occlusion and can be trained from bounding box

supervision only. Our work builds on Compositional Net-

works, which learn a generative model of neural feature ac-

tivations to locate occluders and to classify objects based

on their non-occluded parts. We extend their generative

model to include multiple objects and introduce a frame-

work for efficient inference in challenging occlusion sce-

narios. In particular, we obtain feed-forward predictions

of the object classes and their instance and occluder seg-

mentations. We introduce an Occlusion Reasoning Module

(ORM) that locates erroneous segmentations and estimates

the occlusion order to correct them. The improved seg-

mentation masks are, in turn, integrated into the network

in a top-down manner to improve the image classification.

Our experiments on the KITTI INStance dataset (KINS) and

a synthetic occlusion dataset demonstrate the effectiveness

and robustness of our model at multi-object instance seg-

mentation under occlusion. Code is publically available at

https://github.com/XD7479/Multi-Object-Occlusion.

1. Introduction

Scenes in images most often depict multiple objects that

partially occlude each other. Recent studies [38, 18] showed

that deep networks are less robust at recognizing partially

occluded objects compared to Humans. The main difficul-

ties are raised by the combinatorial variability of the object

ordering and positioning, as well as the fact that scenes can

contain known and unknown object classes.

One approach to address the problem of occlusion in

Figure 1: Our proposed model corrects erroneous instance

segmentations through multi-object reasoning. Left: Two

input images that are processed independently. The seg-

mentation results identify visible object parts in blue, in-

visible parts in red, and context in green. Note how in the

top image, the model cannot identify the occlusion. Center:

By enforcing consistency between segmentations of nearby

objects, our model can identify conflicting segmentations

(white area). Right: Reasoning about the occlusion order

resolves the erroneous predictions.

deep networks is data augmentation [36, 5, 34, 1]. While

this increases the robustness of deep networks, the classi-

fication performance on partially occluded objects still re-

mains substantially worse compared to non-occluded ob-

jects. Recent work introduced compositional deep networks

(CompositionalNets) and showed that these are more ro-

bust to partial occlusion compared to data augmentation ap-

proaches [16, 17, 30]. CompositionalNets are deep neural

network architectures in which the fully connected classifi-

cation head is replaced with a differentiable compositional

model. The structure of the compositional model enables

CompositionalNets to decompose images into objects and

context, as well as to further decompose objects into their

individual parts. The generative nature of the composi-

tional model enables it to segment objects and occluders
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[28] and to recognize objects based on their non-occluded

parts. However, CompositionalNets, as well as other pop-

ular architectures, treat each object in an image indepen-

dently and do not explicitly exploit the mutual relationship

of nearby objects.

In this paper, we introduce a deep network for multi-

object instance segmentation that is robust to occlusion and

can be trained from bounding box supervision only. Our

work builds on and significantly extends Compositional-

Nets. Specifically, we extend the generative model in Com-

positionalNets to allow for instance segmentation of mul-

tiple mutually occluding objects in an image. This multi-

object generative model is hard to optimize because of the

mutual dependencies between objects. To solve this opti-

mization efficiently, we introduce an Occlusion Reasoning

Module (ORM) that takes as input the independent predic-

tions of each objects label, the instance segmentation and

the occluder segmentation (Figure 1). We proceed to esti-

mate possibly erroneous predictions through an occlusion

voting mechanism. During occlusion voting, each object

in the image votes for every pixel in its bounding box if

the pixel is occupied by the object or if is occluded. Pixels

which receive ambiguous votes from multiple objects indi-

cate segmentation errors. To correct these we leverage the

occlusion order of overlapping bounding boxes based on the

classification scores. The corrected instance and occlusion

segmentation masks are fed back into the CompositionalNet

to mask out those features that induced segmentation errors,

and to improve the prediction of the object class.

We perform extensive experiments on the KITTI IN-

Stance dataset (KINS). We further introduce a synthetic

dataset that comprises artificially generated images of par-

tially occluded objects, which are generated by superim-

posing segmented objects from the KITTI. The synthetic

generation of partially occluded images enables us to eval-

uate custom types of occlusion challenges such as: pair-

wise occlusion, multi-object occlusion and mixed occlusion

containing both known and unknown object classes as oc-

cluders. Our experimental results highlight that reasoning

about multi-object occlusion significantly enhances the ro-

bustness of deep networks as it enables them to detect er-

roneous feed-forward predictions and self-correct through

reasoning about multi-object occlusion. In summary, our

contributions in this work are:

1. We introduce a deep network for multi-object in-

stance segmentation that is robust to occlusion and can be

trained from bounding box super-vision only. Specifically,

our network defines a generative model of multiple objects

and achieves enhanced robustness through reasoning about

multi-object occlusion.

2. We introduce an Occlusion Reasoning Module

(ORM) that enables efficient inference in generative mod-

els with multiple objects. In particular, it detects erroneous

feed-forward predictions and and corrects them through rea-

soning about the occlusion order of objects.

3. We achieve state-of-the-art performance at instance

segmentation under occlusion on the KITTI INStance

(KINS) dataset.

4. We introduce an occlusion challenge generated from

real-world segmented objects with accurate annotations and

propose a taxonomy of occlusion scenarios that pose a par-

ticular challenge for computer vision.

2. Related Work

Occlusion reasoning. A number of approaches have

recently been proposed to integrate occlusion reasoning in

areas including image classification [17, 32], object detec-

tion [30], segmentation [8, 31] and tracking [33]. Gao et

al.[8] introduce binary variables to infer the visible cells

in a bounding box. Hsiao and Hebert [13] model occlu-

sions by reasoning about 3D relationship of objects approx-

imated by their bounding boxes. Recent works on pixel-

level occlusion reasoning include a probabilistic model pro-

posed by George et al.[10] that contains mutual occlu-

sion inference on text-based CAPTCHAs by approximat-

ing MAP solution through message passing. Another prob-

abilistic framework by Yanget al.[33] introduce occlusion

priori modeled by Markov random field to tackle mutual oc-

clusion in object tracking task. Tighe et al.[29] introduce an

inter-class occlusion prior to parse scenes and refine pixel-

level labels. OFNet designed by Lu et al.[22] considers

the relevance between occlusion contours and pixel orien-

tations, but no semantic information is included. Zhan et

al.[35] propose pair-wise order recovery by comparing the

amodal mask completion of neighboring objects in a self-

supervised way, while lack the ability of handling unknown

occlusion. Our proposed architecture performs pixel-level

occlusion reasoning and ensures the consistence of object

shape by object-level occlusion order recovery. Note that

we can handle both the unknown occlusion and multi-object

occlusion at the same time.

Weakly-supervised instance segmentation. While

instance segmentation performance was significantly ad-

vanced by CNN based architectures [11, 3, 21, 2], pixel-

level semantic annotation is required for training by fully

supervised methods. Weakly-supervised segmentation

methods require only image-level supervision [27, 23] and

bounding-box-level annotations [25, 20] to reduce the cost

of dense labeling. DeepCut proposed by Rajchl et al. [25]

extends GrabCut [26] by training a CNN as classifier from

bounding box annotations and address instance segmenta-

tion as energy minimisation problem based on conditional

random fields. Zhou et al.[37] present an instance mask ex-

traction by class response maps indicating visual cues with
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Figure 2: Proposed deep network architecture for multi-object instance segmentation under occlusion. Given an input image,

we crop objects based on their bounding box. Each crop is processed by a Compositional Network to obtain independent

estimates of the object class, instance segmentation and occlusion segmentation. Subsequently, these are processed by

the multi-object reasoning module, which detects inconsistent segmentations and corrects them by taking into account the

occlusion order of the objects. The corrected instance segmentation mask is used in a top-down manner to mask out occluded

features, which, in turn, improves the classification score. Note we draw two Compositional Networks for illustrative purpose,

in practice the images are processed sequentially by the same network.

image-level supervision. Hsu et al.[14] address the prob-

lem as multiple instance learning task and estimate the fore-

ground/background by generating positive/negative bags

based on the sweeping lines of each bounding box. Amodal

instance segmentation task were introduced more recently.

Li et al.[19] firstly presented a solution for amodal in-

stance segmentation training with artificial occlusion. Other

methods [39, 24, 7] implement fully-supervised amodal

mask completion. In this work, we build on the weakly-

supervised instance segmentation CompositionalNets[28],

and generalize them to allow for reasoning about multi-

object occlusion.

3. Robustness through Occlusion Reasoning

Notation. The output of the layer l in a DCNN is re-

ferred to as feature map F l = ψ(I,Ω) ∈ R
H×W×D, where

I and Ω are the input image and the parameters of the fea-

ture extractor, respectively. Feature vectors are vectors in

the feature map, f li ∈ R
D at position i, where i is defined

on the 2D lattice of F l with D being the number of chan-

nels in the layer l. We omit subscript l in the following for

clarity since the layer l is fixed a priori in the experiments.

3.1. Prior Work: CompNets for Single Objects

CompositionalNets [16, 17] are deep neural network ar-

chitectures in which the fully connected classification head

is replaced with a differentiable compositional model. In

particular, the classification head defines a generative model

p(F |y) of the features F for an object class y:

p(F |Θy)=
∑

m

νmp(F |θ
m
y ), νm ∈ {0, 1},

M
∑

m=1

νm=1 (1)

Here M is the number of mixtures of compositional

models per each object category and νm is a binary assign-

ment variable that indicates which mixture component is ac-

tive. Θy={θmy ={Am
y , χ

m
y ,Λ}|m=1, . . . ,M} are the over-

all compositional model parameters for the category y. The

individual mixture components are defined as:

p(F |θmy ) =
∏

i

p(fi|A
m
i,y, χ

m
i,y,Λ) (2)

Note how the distribution decomposes the feature map F

into a set of individual feature vectors fi. A
m
y = {Am

i,y|i ∈
[H,W ]} and χm

y = {χm
i,y|i ∈ [H,W ]} are the parameters

of the mixture components.

The feature likelihood is defined as composition of a

foreground and a context likelihood:

p(fi|A
m
i,y, χ

m
i,y,Λ) = p(i|m, y) p(fi|A

m
i,y,Λ) (3)

+ (1− p(i|m, y)) p(fi|χ
m
i,y,Λ). (4)

The parameters of the foreground and context likelihood

are Am
i,y and χm

i,y respectively. p(i|m, y) is a prior that

models how likely a feature vector at position i is to be lo-

cated in the foreground. In particular, Am
i,y = {αm

i,k,y|k =
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Figure 3: Detailed method in Occlusion Reasoning Module (ORM). The input of ORM is the segmentation likelihood maps

of a pair of neighboring objects. The map contains pixel-level prediction into foreground (blue pixels), background (green

pixels) and occlusion (red pixels). Brighter pixel refers to higher likelihood on each position. Segmentation conflict is

detected when one pixel is defined as foreground for both objects. Pixel-level competition is performed to solve the conflict

and re-assign pixels. Pair-wise occlusion order recovery results from the competition, and the occludee’s likelihood map is

then updated accordingly.

1, . . . ,K} are mixture coefficients and Λ = {λk =
{σk, µk}|k = 1, . . . ,K} are the parameters of von-Mises-

Fisher distributions:

p(fi|A
m
i,y,Λ) =

∑

k

αm
i,k,yp(fi|λk), (5)

p(fi|λk) =
eσkµ

T
k fi

Z(σk)
, ||fi|| = 1, ||µk|| = 1. (6)

The context likelihood p(fi|χ
m
i,y,Λ) is defined accordingly.

Note that K is the number of components in the vMF mix-

ture distributions and
∑K

k=0
αm
i,k,y = 1. Z(σk) is the nor-

malization constant. The priors p(i|m, y) and likelihood pa-

rameters can be learned by segmenting the training images

into foreground and background. We follow the approach

introduced in [30] which uses weakly supervised segmenta-

tion based on the bounding box annotation to segment the

context from the object. All model parameters {Ω, {Θy}}
can be trained end-to-end as discussed in [16, 28].

Partial Occlusion. Compositional networks can be aug-

mented with an outlier model to enhance their robustness to

partial occlusion. The intuition is that at each position i in

the image either the object model p(fi|A
m
i,y, χ

m
i,y,Λ) or an

outlier model p(fi|β,Λ) is active:

p(F |θmy , β)=
∏

i

p(fi|β,Λ)
1−zm

i p(fi|A
m
i,y,Λ)

zm
i . (7)

The binary variables Zm = {zmi ∈ {0, 1}|i ∈ P} indicate

if the object is occluded at position i for mixture component

m.

The outlier model is defined as:

p(fi|β,Λ) =
∑

k

βn,kp(fi|σk, µk). (8)

Note that the model parameters β are independent of the

position i in the feature map and thus the model has no spa-

tial structure. The parameters of the occluder models β are

learned from clustered features of random natural images

that do not contain any object of interest [16].

Instance segmentation with CompositionalNets. Sun

et al.[28] showed that instance segmentation can be

achieved with CompositionalNets by simply comparing the

likelihood terms of the model. In particular, we can pre-

dict the pixel-wise labels to be foreground F , context C or

occlusion O by computing the respective likelihoods:

p(fi = O) = p(i|m, y) p(fi|β,Λ) (9)

p(fi = F , y) = p(i|m, y) p(fi|A
m
i,y,Λ) (10)

p(fi = C, y) = (1− p(i|m, y)) p(fi|χ
m
i,y,Λ) (11)

3.2. Compositional Networks for Multiple Objects

The main limitation of Compositional Networks is that

they assume only one object is present in an image. They

can be trivially generalized to multiple objects by treating

each object independently [16, 30]. However, assuming in-

dependence between objects neglects the relations between

them and leads to inconsistencies in the segmentation re-

sults. For example Figure 3 shows how two objects with

overlapping bounding boxes both predict that they are visi-

ble in the overlapped region. Whereas, it is clear that only

one object can be visible per pixel in an image.

In this work, we aim to resolve such inconsistencies by

enabling deep networks to reason about multi-object occlu-

sion. In particular, we generalize the generative model in

compositional networks to multiple objects by extending
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the model likelihood:

p(F |θmy1
, . . . , θmyN

, β) =
∏

i

N+1
∏

n=1

pn(fi)
zi,n , (12)

with
∑

n zi,n=1 and zi,n∈{0, 1}. This generalized

likelihood includes n={1, . . . , N} object models

pn(fi)=p(F |θ
m
yn
, β), which correspond to the num-

ber of objects in the image, and the outlier model

pN+1(fi)=p(fi|β,Λ). Note that, by the design of the

likelihood, only one object model can be active at any

location i in the feature map F . Maximizing the model

likelihood defined in Equation 12 is difficult because it

involves multiple objects and the visibility at each pixel

zi,n depends on the visibility of the neighboring pixels. We

solve this complex optimization problem by introducing

a multi-object reasoning module into the architecture of

CompositionalNets.

3.3. Reasoning about Multi­Object Occlusion

In this section, we introduce a deep network for multi-

object instance segmentation that is robust to occlusion and

can be trained from bounding box super-vision only. To

make our discussion concise, we constrain ourselves in this

section to images that contain two objects, where one par-

tially occludes the other. Note, however, that our model

trivially extends to multiple objects.

Feed-forward extraction of likelihood maps. Our pro-

posed network architecture is illustrated in Figure 2. We

draw two CompositionalNet architectures to enhance the

clarity of the illustration, in practice they are sequentially

processed by the same network. The objects in the input

image I are cropped based on their bounding box and first

independently processed by a CompositionalNet. For each

image crop I1, I2 we obtain a class prediction ŷ1, ŷ2 and

three likelihood maps that encode the foreground, context

and occlusion likelihood in the feature map:

F1 = {p(fi = F , ŷ1)|∀i ∈ P} (13)

C1 = {p(fi = C, ŷ1)|∀i ∈ P} (14)

O1 = {p(fi = O)|∀i ∈ P} (15)

we compute F2, C2,O2 respectively. We illustrate the like-

lihood maps throughout the paper as a two-dimensional heat

map that is color coded. In particular, we visualize at each

pixel which likelihood has the highest value by coloring oc-

cluder red, foreground blue and context green. The pixel

intensity encodes the difference between the three likeli-

hood terms. For dark pixels all likelihoods have similar val-

ues, hence indicating that the model is uncertain, whereas

at bright pixels one likelihood is clearly higher compared

to the other. As shown in Figure 3, instance segmentation

based on the likelihood maps can be incorrect in the region

Input image Order graph

Figure 4: Occlusion order graph recovered by the proposed

network. Left: Input image with bounding boxes; Right:

Occlusion order graph, where the direction of the arrows

indicates occlusion. Note how the correct ordering is recov-

ered in a very challenging occlusion scenario.

where the two bounding boxes overlap (yellow box), par-

ticularly, for the occluded object. In practice, we observe

that errors occur most often when an object is occluded by

another object of the same category. As discussed earlier,

this is caused by the fact that the segmentation is performed

independently of other objects in an image, and in addition

also per pixel independently. While these independence as-

sumptions enable an efficient feed-forward inference, they

neglect important relationships in images. For example in

the overlapping region of the bounding boxes in Figure 3,

we want all pixels to be assigned to the same object. It

is very unnatural to treat every pixel independently. We

propose a multi-object reasoning module that resolves such

segmentation conflicts by taking into account additional re-

lationships between objects at minimal computational over-

head.

Pixel-level competition. Figure 3 illustrates the pipeline

of the occlusion reasoning module. We first detect segmen-

tation conflicts as those image pixels are classified as fore-

ground by both object models (Figure 3, I). We denote this

conflict set as C. Note that for the occludee (the occluded

object), some of the feature vectors in the occluded region

are mis-classified as foreground, however, their likelihoods

are lower compared to those of the occluder at the same

pixel (indicated by the intensity of the color).

We exploit this by taking into account the relationship

between both objects. In particular, we assign the feature

vector fi to one of the two objects by comparing their fore-

ground likelihoods (Figure 3, II):

zi,1=

{

1, if p(fi=F , ŷ1) > max{p(fi=F , ŷ2), p(fi=O)}

0, otherwise

(16)

We compute the visibility variables of the second object zi,2
and the outlier model zi,3 accordingly. Using the estimated

visibility variables, we can re-assign each pixel in the cor-

responding segmentation maps (Figure 3, III).
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Figure 5: We synthesis three challenging occlusion scenar-

ios: Occlusion with (a) 2 objects; (b) 4 objects with com-

plex inter-object occlusion; and (c) multi-object occlusion

including objects with of previously unseen occlusion.

Order recovery. At this stage, each pixel has been up-

dated independently. However, it is natural to assume that

in the overlapping region of two bounding boxes only one

object is the foreground object, whereas the other object is

in the background. Hence all pixels should be assigned to

either of the two objects. To encode this property we es-

timate the occlusion order between the objects (Figure 3,

IV). Specifically, we estimate the occlusion order R(I1, I2)
by comparing the number of pixels assigned to each object

in the region of the segmentation conflict:

R(I1, I2) =

{

1,
∑

i∈C
zi,1 >

∑

i∈C
zi,2

−1, otherwise .
(17)

Figure 4 illustrates the effectiveness of this approach at re-

covering the occlusion order, even in challenging, multi-

object occlusion scenarios. Using the predicted occlusion

order R(I1, I2), we reassign the visibility variables zi,n in

al ”all or nothing” manner, such that all the variables that are

not assigned to the outlier model are assigned to the object

in the front. Figure 3 illustrates how the multi-object occlu-

sion reasoning benefits the instance segmentation compared

to the input segmentation which was achieved by processing

the images independently.

Self-correction through occlusion updates. Compared

to the occlusion variables Zm, which were estimated in

the feed-forward stage, the newly estimated visibility vari-

ables zi,n take into account the knowledge of neighboring

objects and their occlusion order graph. This newly ac-

quired knowledge can subsequently be used to recompute

the model likelihood p(F |Θy) of the occluded object, by

replacing the occlusion variables in Equation 7. As our ex-

perimental results demonstrate, this top-down refinement

enables CompositionalNets to correct miss-classifications

that were induced by wrongly estimated occlusion vari-

Mask L0 L1 L2 L3 Mean

Mask R-CNN ✓ 85.8 81.5 72.7 51.9 73

CompNet ✗ 75.8 67.7 44.4 23.3 64.3

Ours (iter=2) ✗ 75.9 69.2 54.0 34.6 67.2

Mask L0 L1 L2 L3 Mean

PCNet-M ✓ 83.1 77.5 68.5 51.6 70.2

BBTP ✗ 77.9 71.6 67 67.8 71.1

CompNet ✗ 76.6 76.1 75.9 74.7 76.2

Ours (iter=2) ✗ 76.9 76.4 76.5 76.5 76.7

Table 1: Modal and amodal instance segmentation on

the KINS dataset (top and bottom). We compare to

fully-supervised Mask R-CNN, self-supervised PCNet-M,

weakly-supervised BBTP, and CompNets with and without

ORM. Occlusion levels L1-L3 are defined as: L1: 1%-30%,

L2: 30%-60%, L3: 60%-90% of the object is occluded.

ables. This will particularly improve the classification per-

formance of occluded objects by a large margin. We re-

peat the self-correction through multi-object reasoning re-

currently as the updated classification score can lead to

changes in the assignment of the mixture models, and hence

can lead to improved segmentations.

4. Experiments

We evaluate our deep network for multi-instance seg-

mentation under occlusion on the KINS dataset and on an

artificially generated occlusion challenge dataset. We will

present experimental results of weakly-supervised modal

and amodal instance segmentation, and ablate the occlusion

reasoning module for order recovery.

4.1. Datasets

KINS. The KINS dataset [24] is augmented from KITTI

[9] with more instance pixel-level annotation for 8 cate-

gories including amodal instance segmentation and relative

occlusion order. Amodal instance segmentation aims at seg-

menting the complete instance shape, even when the object

is only partially visible. The dataset contains 7474 images

for training and 7517 for testing.

Occlusion Challenge. The amodal segmentation pre-

dicted on 2D real-world images by human judgements is

still subjective and imprecise. Synthetic datasets are created

to generate pixel-accurate annotations for the invisible parts

of objects. Some generate 2D images from synthetic 3D

scenes, e.g., DYCE [6] provides natural configuration of ob-

jects in indoor scenes and SAIL-VOS[15] provides densely

labeled video data extracted from the photo-realistic game

GTA-V. These datasets contain natural object boundaries,

while being deficient in photo-realistic textures. Others like

[19] superimposing objects over other images to create arti-
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Figure 6: Qualitative results for modal segmentation on KINS and images from our occlusion challenge. The top row show

the input images including bounding box annotations. Images in the second row are generated by the baseline CompNet, and

the third row shows the results by our CompNet with multi-object ORM. The last row shows the ground truth.

ficial occlusion with real-world textures. For the purpose of

studying different types of occlusion challenges, we intro-

duce a dataset with custom artificially generated occlusion

scenarios. We crop non-occluded objects from images in

KITTI based on their segmentation mask, and place them

in images with random backgrounds (Figure 5).

Since only complete visible objects are selected and the

exact shape of each object is available, our occlusion chal-

lenge provides more accurate annotation for amodal masks

compared with the human estimated masks in KINS. Most

importantly, the synthetic nature of the dataset allows us to

design challenging scenarios occlusion scenarios. In partic-

ular, we propose three types of occlusion challenges: 1) The

basic and simplest occlusion scenario includes two objects,

where one occludes the other. 2) A much more complex

occlusion relationship is defined when four objects occlude

each other with different amounts partial occlusion. Recov-

ering the occlusion order and modal as well as amodal seg-

mentation requires significant reasoning processes, even for

humans. 3) Another challenging scenario is defined when

the occluders contain a mixed set of object classes, some of

which are known at training time, while are some are nat-

ural objects that are not part of the training data, such as

street signs, bushes, and etc.

4.2. Implementation Details

Baselines. We implement Mask R-CNN[11] as base-

line method for the modal instance segmentation. We fur-

ther compare to CompositionalNets [28] with and without

our proposed multi-object reasoning module. We apply

multi-object reasoning either with one reasoning iteration

(iter=1) or recurrently with two iterations (iter=2). Note that

the CompositionalNets perform segmentation in a weakly-

supervised manner from bounding box annotations only.

We compare our method with BBTP [14] and PCNet-M

[35]. BBTP uses a bounding box tightness prior to per-

form weakly-supervised instance segmentation using box-

level annotations. PCNet-M performs amodal mask com-

pletion in a self-supervised manner. PCNet-M is trained to

recover the amodal mask with a given artificially occluded

modal mask. In contrast, our model predicts amodal masks

with bounding box supervision only and is capable of han-

dling both known and unknown occluder classes.

Training setup. We follow the training strategy as pro-

posed in [16, 28]. CompositionalNets are trained from the

feature activations of a ResNeXt-50 [12] model that is pre-

trained on ImageNet[4] and fine-tuned on the respective

datasets. We set the number of mixture components to

M = 8. We train for 60 epochs using SGD with momentum

r = 0.9 and a learning rate of lr = 0.01.

4.3. Instance segmentation under Occlusion

Modal segmentation. We report modal instance seg-

mentation performance in the top Tabulars in Table 1 on

KINS and Table 2 on our occlusion challenge. Four oc-

clusion levels of objects are defined as: L0: 0%-1%, L1:

1%-30%, L2: 30%-60%, L3:60%-90% of the object area

being occluded. To prevent the performance from being af-

fected by a poor bounding box prediction, all models are

given the ground truth amodal bounding boxes during train-

ing and testing. For the KINS data, we observe that the fully

supervised method outperforms weakly-supervised meth-

ods. However, our proposed multi-object extension with

occlusion reasoning manages to significantly reduce the

gap between weakly supervised methods and the fully su-

pervised baseline. We outperform the baseline CompNet

performance in every occlusion level, especially in higher

occlusion levels by L2((9.6%) and L3 (11.3%) in terms

of mIoU. We observe similar performance patterns on the

data for our occlusion challenge. While the CompNet per-
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2 Objects 4 Objects 2 Objects + Unknown Occlusion

Occ Level L0 L1 L2 L3 Mean L0 L1 L2 L3 Mean L0 L1 L2 L3 Mean

Mask R-CNN 88.2 86.3 69.1 58.2 82.3 88.7 88 74.8 63 78.6 90.5 86.8 72.2 57.1 76.7

CompNet 77.8 67.3 51.0 26.3 66.9 76.7 67.1 50.2 26.1 56.0 78.9 72.2 57.8 36.0 63.6

Ours (iter=1) 78.0 75.3 65.4 45.6 72.9 75.2 72.9 61.9 43.0 65.0 77.9 73.3 62.0 41.7 65.8

Ours (iter=2) 78.0 75.3 65.7 47.2 73.1 75.2 72.9 62.2 44.0 65.3 78.0 73.3 62.0 41.7 65.8

2 Objects 4 Objects 2 Objects + Unknown Occlusion

Occ Level L0 L1 L2 L3 Mean L0 L1 L2 L3 Mean L0 L1 L2 L3 Mean

PCNet-M 82.4 81 69.3 47 70 87.2 79.3 63.7 41.3 67.9 - - - - -

BBTP 80.5 73.6 69.5 72.8 74.1 80.5 71.9 64 66 70.6 83.7 77.3 67.9 60.6 72.4

CompNet 78.0 76.6 75.0 72.1 76.7 77.3 75.4 74.1 71.4 74.8 78.4 78.1 76.1 71.9 76.5

Ours (iter=1) 79.9 80.0 79.2 77.7 79.7 78.6 78.9 78.1 76.6 78.2 78.6 78.0 76.2 72.1 76.6

Ours (iter=2) 79.9 80.0 79.3 78.1 79.7 80.0 80.0 79.3 78.1 79.5 78.5 78.1 76.2 72.1 76.6

Table 2: Modal and amodal instance segmentation on our occlusion challenge (top and bottom respectively). We compare to

fully-supervised Mask R-CNN, PCNet-M, and weakly-supervised BBTP, and CompNets with and without ORM. Occlusion

levels L0-L3 are defined as: L0: 0%-1%, L1: 1%-30%, L2: 30%-60%, L3: 60%-90% of the object are are occluded.

Comparison between different times of occlusion reasoning iteration is also reported. Note that PCNet-M by design cannot

handle unknown occlusion, and therefore cannot be applied in the last challenge.

2 objects 4 objects 2 + unknown

Modal Amodal Modal Amodal Modal Amodal

NOD 70.5 77.8 58.5 75.2 65.0 76.5

OD 73.1 79.7 65.3 79.5 65.8 76.6

Table 3: Ablation study for order recovery. We compare the

modal and amodal instance segmentation results for each

occlusion challenge with and without order recovery.

forms similarly for the first and third occlusion challenge,

its performance drops significantly when four objects mu-

tually occlude each other compared to the other two sce-

narios. Our multi-object occlusion reasoning module en-

ables CompNets to close this performance gap. Overall, the

multi-object reasoning improves the segmentation results in

all occlusion levels and for all challenge scenarios, and in

particular for high occlusion levels L2 and L3.

Amodal segmentation. We report amodal instance seg-

mentation in the bottom Tabulars in Table 1 and Table 2.

Note that the self-supervised PCNet-M requires the modal

mask as supervision to learn amodal mask completion.

From the results, we observe that our model outperforms

all other weakly-supervised methods in all levels of occlu-

sion on the KINS data as well as in the occlusion challenge.

We even surpass the mask-supervised PCNet-M in overall

performance by 6.5% in mIoU.

In summary, with the ability of reasoning about multi-

object occlusion, our proposed ORM significantly improves

the robustness to occlusion compared with primary Com-

positionalNet. It achieves accurate instance segmentation

in challenging occlusion scenarios (Figure 6. Our weakly-

supervised model even outperforms mask-supervised meth-

ods in terms of amodal instance segmentation.

4.4. Ablation study

In Table 3, we verify the effectiveness of the order re-

covery by evaluating modal and amodal segmentation re-

sults on our occlusion challenge. We perform experiments

without pair-wise order (NOD), and with our predicted pair-

wise order (OD). The results demonstrate the benefit of the

order recovery, since per pixel competition cannot always

correctly indicate the occluder and the occludee.

5. Conclusion

In this paper, we introduced a deep network for multi-

object instance segmentation that is robust to occlusion and

can be trained from bounding box supervision only. In par-

ticular, our network defines a generative model of multiple

objects and achieves enhanced robustness through reason-

ing about multi-object occlusion. We further extended our

architecture with an occlusion reasoning module that en-

ables efficient inference in generative models with multi-

ple objects. In particular, it detects erroneous feed-forward

predictions and and corrects them through reasoning about

the occlusion order of objects. Our experiments demon-

strate the robustness of our proposed deep network for in-

stance segmentation under occlusion on the KITTI INstance

dataset and a dataset with synthetic occluders.

Acknowledgements. We gratefully acknowledge fund-

ing support from ONR N00014-18-1-2119, ONR N00014-

20-1-2206 and the Swiss National Science Foundation

(P2BSP2.181713).

11148



References

[1] Guang Chen, Fa Wang, Sanqing Qu, Kai Chen, Junwei Yu,

Xiangyong Liu, Lu Xiong, and Alois Knoll. Pseudo-image

and sparse points: Vehicle detection with 2d lidar revisited

by deep learning based methods. IEEE Transactions on In-

telligent Transportation Systems, pages 1–13, 2020. 1

[2] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao

Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,

Wanli Ouyang, Chen Change Loy, and Dahua Lin. Hybrid

task cascade for instance segmentation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2

[3] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár.

Tensormask: A foundation for dense object segmentation. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 2061–2069, 2019. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 248–255, 2009. 7

[5] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv

preprint arXiv:1708.04552, 2017. 1

[6] Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan:

Segmenting and generating the invisible. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018. 6

[7] Patrick Follmann, Rebecca Kö Nig, Philipp Hä Rtinger,
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