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where λ is a penalty term, x̂ = αx + (1 − α)x′ with α
sampled from the uniform distribution defined on [0, 1]. By

training the generation process Pθ(X|Z, Y ) and the dis-

criminator in an adversarial fashion, the GCM is regularized

to generate x
′ that is similar to x in the same distribution,

i.e., counterfactual-faithful for seen-class samples.

4. Experiments

4.1. Datasets

ZSL. We evaluated our method on standard benchmark

datasets: Caltech-UCSD-Birds 200-2011 (CUB) [60],

SUN [66], Animals with Attributes 2 (AWA2) [62] and at-

tribute Pascal and Yahoo (aPY) [14]. In particular, we

followed the unseen/seen split in the Proposed Split (PS)

V2.0 [62], recently released to fix a test-data-leaking bug

in the original PS. The granularity, total #images, #seen-

classes (|S|) and #unseen-classes (|U|) are given in Table

A1 (see Appendix).

OSR. We used the standard evaluation datasets:

MNIST [31], SVHN [41], CIFAR10 [27] and CI-

FAR100 [27]. The image size, #classes and # images

in train/test split of the datasets are given in Table A2 (see

Appendix). Following the standard benchmark [40, 70] in

OSR, we split MNIST, SVHN and CIFAR10 into 6 seen-

classes and 4 unseen-classes, and construct two additional

datasets CIFAR+10 (C+10) and CIFAR+50 (C+50), where

4 non-animal classes in CIFAR10 are used as seen-classes,

while additional 10 and 50 animal classes from CIFAR100

are used as unseen-classes.

4.2. Evaluation Metrics and Settings

ZSL Evaluation. It was conducted in the Generalized ZSL

setting. We used two metrics: 1) ZSL Accuracy. It consists

of 3 numbers (U, S,H), where U /S is the per-class top-1

accuracy of unseen-/seen-classes test samples, and H is the

harmonic mean of U, S, given by H = 2×S×U/(S+U).
2) CVb. To measure the balance between unseen/seen

classification, we propose to use the Coefficient of Vari-

ation of the seen and unseen binary classification accu-

racy, denoted as CVb. Let Sb and Ub be the binary ac-

curacy on seen- and unseen-classes, respectively. CVb is

given by
√

0.5(Sb − µ)2 + 0.5(Ub − µ)2/µ, where µ =
(Sb + Ub)/2. Note that the variation between S and U of

ZSL Accuracy is not a good measure of balance, as they are

affected by the number of seen- and unseen-classes, which

can be quite different (see SUN in Table A1). 3) AUSUC.

We draw the Seen-Unseen accuracy Curve (SUC) by plot-

ting a series of S against U of ZSL Accuracy, where the

series is obtained by adjusting a calibration factor ω that

is subtracted from the classifier logits on the seen-classes.

Then we use the Area Under SUC (AUSUC) for evaluation.

Compared to a single ZSL Accuracy, SUC and the area pro-

vide a more detailed view of the capability of an algorithm

to balance the unseen-seen decision boundary [11, 12].

OSR Evaluation. We used the following metrics: 1)

Macro-averaged F1 scores over seen-classes and “un-

known” (for all unseen-classes), which shows how well a

method can recognize seen classes while rejecting unseen-

classes samples; 2) Openness-F1 Plot. We also studied

the response of F1 scores under varying openness given by

1−
√

2N/(N +M), where N and M are number of seen-

and unseen-classes, respectively. Compared to a single F1

score where the openness is fixed, this plot shows the ro-

bustness of an OSR classifier to the open environment with

an unknown number of unseen-classes.

Implementation Details. For ZSL, we implemented

our GCM based on the network architecture in TF-

VAEGAN [39]. Following common protocol [64, 32], we

used the ResNet-101 [17] features for X and attributes pro-

vided in [62] for YS ,YU . For OSR, our GCM was imple-

mented using the networks in CGDL [54, 55] and X repre-

sents actual images. Other details are in Appendix.

4.3. Results on ZSL

Mitigate the Imbalance. As shown in Table 1, our coun-

terfactual approach, denoted as GCM-CF, achieves a more

balanced ZSL Accuracy and significantly improves the ex-

isting state-of-the-art (SOTA) by 2.2% to 4.3%, with a much

higher score on U . For example, compared to LisGAN on

aPY, our method gains 3.9% on U while sacrificing only

0.1% on S. To further show that GCM-CF mitigates the un-

seen/seen imbalance, we diagnosed the binary classification

accuracy using CVb in Table 2. Note that existing meth-

ods have very large CVb, which means that there is a large

difference between seen and unseen classification accuracy

and reveals the imbalance problem. Our method has the

lowest CVb. This shows that our approach indeed achieves

a more balanced binary decision boundary between seen

and unseen. However, one may argue that the imbalance

problem can be solved by simply adjusting the calibration

factor ω. Therefore, we plot the SUC using varying ω and

measured the AUSUC on all datasets. The result is shown

in Figure 6, where GCM-CF outperforms other methods in

every inch and achieves the best AUSUC. This shows that

GCM-CF fundamentally improves the unseen/seen classifi-

cation beyond the reach of simple calibration. Overall, the

balanced and much improved ZSL Accuracy, lower CVb

for binary classification, and higher accuracy on varying

calibrations demonstrate that our method mitigates the un-

seen/seen imbalance in ZSL. This indicates that our GCM

generates faithful counterfactuals (see Figure 2c) and sup-

ports the effectiveness of our counterfactual-faithful train-

ing in disentangling Z and Y .

Stage-One Binary Classifier. Our GCM-CF can serve as

a stage-one binary unseen/seen classifier and plug into all
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