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Abstract

Generative adversarial network (GAN) has become one

of the most important neural network models for classical

unsupervised machine learning. A variety of discriminator

loss functions have been developed to train GAN’s discrim-

inators and they all have a common structure: a sum of

real and fake losses that only depends on the actual and

generated data respectively. One challenge associated with

an equally weighted sum of two losses is that the training

may benefit one loss but harm the other, which we show

causes instability and mode collapse. In this paper, we in-

troduce a new family of discriminator loss functions that

adopts a weighted sum of real and fake parts, which we call

adaptive weighted loss functions or aw-loss functions. Us-

ing the gradients of the real and fake parts of the loss, we

can adaptively choose weights to train a discriminator in

the direction that benefits the GAN’s stability. Our method

can be potentially applied to any discriminator model with

a loss that is a sum of the real and fake parts. Experiments

validated the effectiveness of our loss functions on uncon-

ditional and conditional image generation tasks, improving

the baseline results by a significant margin on CIFAR-10,

STL-10, and CIFAR-100 datasets in Inception Scores (IS)

and Fréchet Inception Distance (FID) metrics.

1. Introduction

Generative Adversarial Network (GAN) [15] has be-

come one of the most important neural network models

for unsupervised machine learning. The origin of this idea

lies in the combination of two neural networks, one genera-

tive and one discriminative, that work simultaneously. The

task of the generator is to generate data of a given distri-

bution, while the discriminator’s purpose is to try to rec-
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ognize which data are created by the generative model and

which are the original ones. While a variety of GAN mod-

els have been developed, many of them are prone to issues

with training such as instability where model parameters

might destabilize and not converge, mode collapse where

the generative model produces a limited number of different

samples, diminishing gradients where the generator gradi-

ent vanishes and training does not occur, and high sensitiv-

ity to hyperparameters.

In this paper, we focus on the discriminative model to

rectify the issues of instability and mode collapse in train-

ing GAN. In the GAN architecture, the discriminator model

takes samples from the original dataset and the output from

the generator as input and tries to classify whether a par-

ticular element in those samples is real or fake data [15].

The discriminator updates its parameters by maximizing

a discriminator loss function via backpropagation through

the discriminator network. In many of the proposed mod-

els [15, 16, 30, 28], the discriminator loss function consists

of two equally weighted parts: the “real part” that purely re-

lies on the original dataset and the “fake part” that depends

on the generator network and its output; for simplicity we

will call them Lr and Lf for real and fake losses, respec-

tively. For example, in the original GAN paper [15], the

discriminator loss function LD is written as

LD = Lr + Lf , (1)

with Lr = Ex∼pd

[

logD(x)
]

and Lf = Ez∼pz

[

log(1 −

D(G(z)))
]

, where D and G are the discriminative and gen-

erative models, respectively, pd is the probability distribu-

tion of the real data, and pz is the probability distribution of

the generator parameter z.

The goal of the GAN discriminator training is to increase

both Lr and Lf so that the discriminator D(·) assigns high

scores to real data and low scores to fake data. This is done

in (1) by placing equal weights on Lr and Lf [15]. How-

ever, the training with LD is not performed equally on Lr

and Lf . Indeed, a gradient ascent training step along the

∇LD may decrease Lr (or Lf ), depending on the angle be-
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tween ∇LD and ∇Lr (or ∇Lf ). For example, if we have

a large obtuse angle between ∇Lr and ∇Lf , which is the

case in most training steps (see §5.1), training along the di-

rection of ∇LD may potentially decrease either Lr or Lf

by going in the opposite direction to ∇Lr or ∇Lf (see §3

and §5.2). We suggest that this reduction on the real loss

may destabilize training and cause mode collapses. Specifi-

cally, if a generator is converging with its generated samples

close to the data distribution (or a particular mode), a train-

ing step that increases the fake loss will reduce the discrimi-

nator scores on the fake data and, by the continuity of D(·),
reduce the scores on the nearby real data as well. With the

updated discriminator now assigning lower scores to the re-

gions of data where the generator previously approximated

well, the generator update is likely to move away from that

region and to the regions with higher discriminator scores

(possibly a different mode). Hence, we see instability or

mode collapse. See §5.3 for experimental results.

We propose a new approach in training the discrimina-

tive model by modifying the discriminator loss function and

introducing adaptive weights in the following way,

Law
D = wr · Lr + wf · Lf . (2)

We adaptively choose wr and wf weights to calibrate the

training in the real and fake losses. Using the information

of ∇Lr and ∇Lf , we can control the gradient direction,

∇Law
D , by either training in the direction that benefits both

Lr and Lf or increasing one loss while not changing the

other. This attempts to avoid a situation where training may

benefit one loss but significantly harm the other. A more

detailed mathematical approach is presented in §3.

Our proposed method can be applied to any GAN model

with a discriminator loss function composed of two parts

as in (1). For our experiments we have applied adap-

tive weights to the SN-GAN [34], AutoGAN [14], and

BigGAN [5] models for unconditional as well as condi-

tional image generating tasks. We have achieved signif-

icant improvements on them for CIFAR-10, STL-10 and

CIFAR-100 datasets in both Inception Scores (IS) and

Fréchet Inception Distance (FID) metrics, see §4. Our

code is available at https://github.com/vasily789/adaptive-

weighted-gans.

Notation: We use 〈·, ·〉2 to denote the Euclidean in-

ner product, ‖x‖2 the Euclidean 2-norm, and ∠2(x, y) :=

arccos
(

〈x,y〉2
‖x‖2‖y‖2

)

the angle between vectors x and y.

2. Related Work

GAN was first proposed in [15] for creating generative

models via simultaneous optimization of a discriminative

and a generative model. The original GAN may suffer

from vanishing gradients during training, non-convergence

of the model(s), and mode collapse; see [6, 31, 33, 38, 39]

for discussions. Several papers [1, 16, 28, 30] have ad-

dressed the issues of vanishing gradients by introducing

new loss functions. The LSGAN proposed in [30] adopted

the least squares loss function for the discriminator that re-

lies on minimizing the Pearson χ2 divergence, in contrast to

the Jensen–Shannon divergence used in GAN. The WGAN

model [1, 16] introduced another way to solve the prob-

lem of convergence and mode collapse by incorporating

Wasserstein-1 distance into the loss function. As a result,

WGAN has a loss function associated with image quality

which improves learning stability and convergence. The

hinge loss function introduced in [28, 43] achieved smaller

error rates than cross-entropy, being stable against different

regularization techniques, and having a low computational

cost [12]. The models in [3, 26, 45] adopted a loss func-

tion called maximum mean discrepancy (MMD). A repul-

sive function to stabilize the MMD-GAN training was em-

ployed in [46], and the MMD loss function was weighted

in [11] according to the contribution of data to the loss func-

tion. [37] presented a dual discriminator GAN that com-

bines two discriminators in a weighted sum.

New loss functions are not the only way of improving

GAN’s framework. DCGAN [38], one of the first and more

significant improvements in the GAN architecture, was the

incorporation of deep convolutional networks. The Progres-

sive Growing GAN [21] was created based on [1, 16] with

the main idea of progressively adding new layers of higher

resolution during training, which helps to create highly re-

alistic images. [14, 13, 42] developed neural architecture

search methods to find an optimal neural network architec-

ture to train GAN for a particular task.

There are many works dedicated to the conditional GAN,

for example BigGAN [5] which utilized a model with a

large number of parameters and larger batch sizes showing

a significant benefit of scaling.

There are many works devoted to improving or analyz-

ing GAN training. [33] trained the generator by optimizing

a loss function unrolled from several training iterations of

the discriminator training. SN-GAN [34], normalized the

spectral norm of each weight to stabilize the training. Re-

cent work [40] introduced stable rank normalization that si-

multaneously controls the Lipschitz constant and the stable

rank of a layer. [27] developed an analysis to suggest that

first-order approximations of the discriminator lead to in-

stability and mode collapse. [36] proved local stability un-

der the model that both the generator and the discriminator

are updated simultaneously via gradient descent. [9] ana-

lyzed the stability of GANs through stationarity of the gen-

erator. [32] points out that absolute continuity is necessary

for GAN training to converge. Relativistic GAN [20] ad-

dressed the observation that with generator training increas-

ing the probability that fake data is real, the probability of

real data being real would decrease. [2] proposed a method
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of re-weighting training samples to correct for mass shift

between the transferred distributions in the domain trans-

fer setup. [7] viewed GAN as an energy-based model and

proposed an MCMC sampling based method.

3. Adaptive Weighted Discriminator

In GAN training, if we maximize LD to convergence in

training discriminator D, we should meet the goal to in-

crease both Lr and Lf . However, in practice, we train with

a gradient ascent step along ∇LD = ∇Lr + ∇Lf , which

may be dominated by either ∇Lr or ∇Lf . Then, the train-

ing may be done primarily on one of the losses, either Lr or

Lf . Consider a gradient ascent training iteration for LD,

θ1 ←− θ0 + λ∇LD, (3)

where λ is a learning rate. Then using the Taylor Theorem,

we can expand both Lr and Lf about θ0,

Lr(θ1) = Lr(θ0) + λ∇LT
r ∇LD +O(λ2) (4)

= Lr(θ0)

+ λ ‖∇Lr‖2 ‖∇LD‖2 cos (∠2 (∇Lr,∇LD))

+O(λ2) (5)

and

Lf (θ1) = Lf (θ0)

+ λ ‖∇Lf‖2 ‖∇LD‖2 cos (∠2 (∇Lf ,∇LD))

+O(λ2), (6)

where we have omitted the evaluation point θ0 in all gra-

dients (i.e. ∇L∗ = ∇L∗(θ0)) to avoid cumbersome ex-

pressions. If one of ∠2 (∇Lr,∇LD) and ∠2 (∇Lf ,∇LD)
is obtuse, then to the first order approximation, the cor-

responding loss is decreased. This causes a decrease in

the discriminator assigning a correct score D(·) to the real

(or fake) data. Thus, a gradient ascent step with loss (1)

may turn out to decrease one of the losses if the angle

∠2 (∇Lr,∇Lf ) > 90◦. This situation occurs quite often

in GAN training; see §5.1 for some experimental results il-

lustrating this.

This undesirable situation is expected to happen in GAN

training when the generator has produced samples close to

the data distribution or its certain modes. If a training step in

the direction ∇LD results in an increase in the fake loss or

equivalently a decrease in the discriminator scores D(G(z))
on the fake data, it will decrease the scores D(x) on the real

data as well by the continuity of D(·). Equivalently, this

reduces the real loss. With the updated discriminator as-

signing lower scores to the regions of the data where the

generator previously approximated well, the generator up-

date using the new discriminator will likely move in the di-

rection where the discriminator scores are higher and hence

leave the region it was converging to. We suggest that this

is one of the causes of instability in GAN training. If the

regions with high discriminator scores contain only a few

modes of the data distribution, this leads to mode collapse;

see the study in §5.3.

To remedy this situation, we propose to modify the train-

ing gradient ∇LD to encourage high discriminator scores

for real data. We propose a new family of discriminator loss

functions, which we call adaptive weighted loss function or

aw-loss function; see equation (2).

We first show that the proposed weighted discriminator

(2) with fixed weights carries the same theoretical proper-

ties of the original GAN as stated in [15, 32] for binary-

cross-entropy loss function, i.e. when the min-max problem

is solved exactly, we recover the data distribution.

Theorem 1. Let pd(x) and pg(x) be the density functions

for the data and model distributions, Pd and Pg, respec-

tively. Consider Law(D, pg) = wrEx∼pd

[

logD(x)
]

+

wfEx∼pg

[

log(1−D(x))
]

with fixed wr, wf > 0.

1. Given a fixed pg(x), L
aw(D, pg) is maximized by

D∗(x) = wrpd(x)
wrpd(x)+wfpg(x)

for x ∈ supp(pd) ∪

supp(pg).

2. minpg
maxD L

aw(D, pg) = wr log
wr

wr+wf
+

wf log
wf

wr+wf
with the minimum attained by

pg(x) = pd(x).

See Appendix A for a proof of Theorem 1. To choose

the weights wr and wf , we propose an adaptive scheme,

where the weights wr and wf are determined using gradient

information of both Lr and Lf . This structure allows us to

adjust the direction of the gradient of the discriminator loss

function to achieve the goal of training to increase both Lr

and Lf , or at least not to decrease either loss. We propose

Algorithm 1 based on the following gradient relations with

various weight choices.

Theorem 2. Consider Law
D in (2) and the gradient ∇Law

D .

1. If wr = 1
‖∇Lr‖2

and wf = 1
‖∇Lf‖2

, then ∇Law
D is the

angle bisector of ∇Lr and ∇Lf , i.e.

∠2 (∇L
aw
D ,∇Lr) = ∠2 (∇L

aw
D ,∇Lf )

= ∠2 (∇Lr,∇Lf ) /2.

2. If wr = 1
‖∇Lr‖2

and wf = −
〈∇Lr,∇Lf 〉2

‖∇Lf‖
2
2
·‖∇Lr‖2

, then

∠2 (∇L
aw
D ,∇Lf ) = 90◦, ∠2 (∇L

aw
D ,∇Lr) ≤ 90◦.

3. If wr = −
〈∇Lr,∇Lf 〉2

‖∇Lr‖
2
2
·‖∇Lf‖2

and wf = 1
‖∇Lf‖2

, then

∠2 (L
aw
D ,∇Lr) = 90◦, ∠2 (∇L

aw
D ,∇Lf ) ≤ 90◦.

4783



See Appendix A for a proof of Theorem 2. The first case

in the above theorem allows us to choose weights for (2)

such that we can train Lr and Lf by going in the direction

of the angle bisector. However, sometimes the direction of

the angle bisector might not be optimal. For example, if the

angle between ∇Lr and ∇Lf is close to 180◦, then the bi-

sector direction will effectively not train either loss. During

training, Lf is often easier to train than Lr meaning that

the fake gradient has a larger magnitude. In this situation,

we might want to train just on the real gradient direction

by simply choosing wf = 0, but if the angle between ∇Lr

and ∇Lf is obtuse, we will increase Lr but significantly

decrease Lf which is undesirable. The second case in The-

orem 2 suggests a direction that forms an acute angle with

∇Lr and orthogonal to ∇Lf (see Figure 1); such a direc-

tion will increase Lr and to the first order approximation

will leave Lf unchanged. When Lr is high, the third case

in Theorem 2 would allow us to increase Lf while minimiz-

ing changes to Lr.

Inspired by the Theorem 2 and observations that we have

made, we can calibrate discriminator training in a way that

produces and maintains high real loss to reduce fluctuations

in the real loss (or real discriminator scores) to improve sta-

bility. Algorithm 1 describes the procedure for updating

weights of the aw-loss function in (2) during training using

the information of ∇Lr and ∇Lf .

Algorithm 1: Adaptive weighted discriminator

method for one step of discriminator training.

1: Given: Pd and Pg - data and model distributions;

2: Given: α1 = 0.5, α2 = 0.75, ε = 0.05, δ = 0.05;

3: Sample: x1, . . . , xn ∼ Pd and y1, . . . , yn ∼ Pg;

4: Compute: ∇Lr, ∇Lf , sr = 1
n

∑n

i=1 σ(D(xi)),

sf = 1
n

∑n

j=1 σ(D(yj));

5: if sr < sf − δ or sr < α1 then

6: if ∠2 (∇Lr,∇Lf ) > 90◦ then

7: wr = 1
‖∇Lr‖2

+ ε; wf =
−〈∇Lr,∇Lf 〉2

‖∇Lf‖
2
2
·‖∇Lr‖2

+ ε;

8: else

9: wr = 1
‖∇Lr‖2

+ ε; wf = ε;

10: end

11: else if sr > sf − δ and sr > α2 then

12: if ∠2 (∇Lr,∇Lf ) > 90◦ then

13: wr =
−〈∇Lr,∇Lf 〉2

‖∇Lr‖
2
2·‖∇Lf‖2

+ ε; wf = 1
‖∇Lf‖2

+ ε;

14: else

15: wr = ε; wf = 1
‖∇Lf‖2

+ ε;

16: end

17: else

18: wr = 1
‖∇Lr‖2

+ ε; wf = 1
‖∇Lf‖2

+ ε;

19: end

∇Law
D

∇Lr ∇Lf

Figure 1: Depiction of the second case of Theorem 2.

Algorithm 1 is designed to first avoid, up to the first or-

der approximation, decreasing Lr or Lf during a gradient

ascent iteration. Furthermore, it chooses to favor training

real loss unless the mean real score is greater than the mean

fake score (i.e. sf ≤ sr) and the real mean score is at least

α1 = 0.5 (i.e. α1 ≤ sr). Here the mean discriminator

scores sr and sf represent the mean probability that the

discriminator assigns to xi’s and yj’s respectively as real

data. When sr is highly satisfactory with sr ≥ α2 = 0.75
(the midpoint between the minimum probability 0.5 and the

maximum probability 1 for correct classifications of real

data), we favor training the fake loss; otherwise, we train

both equally. By maintaining these training criteria, we will

reduce the fluctuations in real and fake discriminator scores

and hence avoid instability. See study in §5.3. Note that we

impose a small gap δ = 0.05 in sf − δ > sr to account for

situations when sr is nearly identical to sf .

The way we favor training the real or fake loss depends

on whether the angle between ∇Lr and ∇Lf is obtuse or

not. In Algorithm 1, the first and the third cases are con-

cerned with the more frequent situation (see §5.1 and Figure

4) where the angle between∇Lr and∇Lf is obtuse. These

cases are the ones that are developed in Theorem 2. In the

first case, we favor training real loss by going in the direc-

tion orthogonal to the ∇Lf , illustrated in Figure 1. In the

third case, we favor the fake loss by going in the direction

orthogonal to∇Lr. In a similar manner, the second and the

fourth cases are concerned with the situation when the angle

between ∇Lr and ∇Lf is acute. We use the same criteria

to decide if training should favor the real or fake directions,

but in this case we favor training the real or fake loss by

using the direction of the corresponding gradient. Lastly,

in the fifth case, it is desirable to increase both sr and sf
without either taking priority, so we choose to train in the

direction of the angle bisector between ∇Lr and ∇Lf .

The two threshold α1 and α2 in Algorithm 1 can be

treated as hyperparameters. Our ablation studies show that

the default α1 = 0.5 and α2 = 0.75 as discussed earlier are

indeed good choices, see Appendix B.

All weights stated in Algorithm 1 normalize both the

real and fake gradients for the purpose of avoiding differ-
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Figure 2: aw-AutoGAN: CIFAR-10 (left), STL-10 (center), CIFAR-100 (right); samples randomly generated.

ently sized gradients, which has the effect of preventing

exploding gradients and speeds up training, i.e. achieves

better IS and FID with fewer epochs, see Figure 3. With

this implementation, we implement a linear learning rate

decay to ensure convergence. However, aw-method per-

forms well without normalization, and achieves comparable

results. We list the detailed results in Appendix B.

A small constant ε is added to all the weights in Algo-

rithm 1 to avoid numerical discrepancies in cases that would

prevent the discriminator model from training/updating. As

an example, there are cases when our algorithm would set

wr = 0 but at the same time ∇Lf would be almost zero,

which will result in ∇Law
D being practically zero. We have

set ε = 0.05 in all of our experiments.

Algorithm 1 has a small computational overhead. At

each iteration we compute inner products and norms that are

used for computing wr and wf , and then use these weight

to update ∇Law
D . If we have k trainable parameters, then it

takes an order of 6k operations to compute inner products

between real–fake, real–real, and fake–fake gradients, and

an order of 3k operations to form ∇Law
D , totalling to an or-

der of 9k operations in Algorithm 1. This is a fraction of

total computational complexity for one training iteration.

4. Experiments & Results

We implement our Adaptive Weighted Discriminator

for SN-GAN [34] and AutoGAN [14] models, and for

SN-GAN [34] and BigGAN [5] models, on unconditional

and conditional image generating tasks, respectively (com-

monly referred to as unconditional and conditional GANs).

AutoGAN is an architecture based on neural search. In our

experiments; we do not invoke a neural search with our aw-

loss, we have simply implemented the aw-method on the

model and architecture exactly provided by [14].

We test our method on three datasets: CIFAR-10 [25],

STL-10 [10], and CIFAR-100 [25]. The datasets and imple-

mentation details are provided in Appendix B. We present

the implementation with normalized gradients using linear

learning rate decay. We also give results of non-normalized

version without learning rate decay in Appendix B.

All of the above mentioned models train the discrimina-

tor by minimizing the negative hinge loss [28, 43]. Our

aw-loss also uses the negative hinge loss as follows:

Law
D =− wr · Ex∼pd

[

min(0, D(x)− 1)
]

− wf · Ez∼pz

[

min(0,−1−D(G(z))
]

, (7)

with wr and wf updated every iteration using Algorithm 1.

To evaluate the performance of the models, we employ

the widely used Inception Score [39] (IS) and Fréchet In-

ception Distance [18] (FID) metrics; see [29] for more de-

tails. We compute these metrics every 5 epochs and we re-

port the best IS and FID achieved by each model within

the 320 (SN-GAN), 300 (AutoGAN), and BigGAN (1,000)

training epochs as in the corresponding original works.

We first present the results for the unconditional GAN

for the datasets CIFAR-10, STL-10 and CIFAR-100 in Ta-

bles 1, 2, and 3 respectively. In addition to baseline results,

we have included top published results for each dataset for

comparison purposes.

Method IS ↑ FID ↓
Imp. MMD GAN [46] 8.29 16.21

MGAN [19] 8.33±.10 26.7

MSGAN [44] - 11.40

SRN-GAN [40] 8.53±.04 19.57

StyleGAN2 [22] 9.21±.09 8.32

SN-GAN [34] 8.22±.05 21.7

aw-SN-GAN (Ours) 8.53±.11 12.32

AutoGAN [14] 8.55±.10 12.42

aw-AutoGAN (Ours) 9.01±.03 11.82

Table 1: Unconditional GAN: CIFAR-10.
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Figure 3: AutoGAN vs aw-AutoGAN IS and FID plots for the first 40 epochs.

For CIFAR-10 in Table 1, our methods significantly

improve the baseline results. Indeed, our aw-AutoGAN

achieves IS substantially above all comparisons other than

StyleGAN2. StyleGAN2 outperforms aw-AutoGAN but

uses 26.2M parameters vs. 5.4M for aw-AutoGAN.

Method IS ↑ FID ↓
ProbGAN [17] 8.87±.09 46.74

Imp. MMD GAN [46] 9.34 37.63

MGAN [19] 9.22±.11 -

MSGAN [44] - 27.10

SN-GAN [34] 9.10±.04 40.10

aw-SN-GAN (Ours) 9.53±.10 36.41

AutoGAN [14] 9.16±.12 31.01

aw-AutoGAN (Ours) 9.41±.09 26.32

Table 2: Unconditional GAN: STL-10.

For STL-10 in Table 2, our methods also significantly

improve SN-GAN and AutoGAN baseline results. Our

aw-SN-GAN achieved the highest IS and aw-AutoGAN

achieved the lowest FID score among comparisons.

Method IS ↑ FID ↓
SS-GAN [8] - 21.02†

MSGAN [44] - 19.74

SRN-GAN [40] 8.85 19.55

SN-GAN [34] 8.18±.12
∗ 22.40∗

aw-SN-GAN (Ours) 8.31±.02 19.08

AutoGAN [14] 8.54±.10
∗ 19.98∗

aw-AutoGAN (Ours) 8.90±.06 19.00

Table 3: Unconditional GAN: CIFAR-100; ∗ - results from

our test; † - quoted from [44].

For CIFAR-100 in Table 3, our methods improve IS sig-

nificantly for AutoGAN but modestly for SN-GAN. Our

aw-Auto-GAN achieved the highest IS and the lowest FID

score among comparisons.

We have also included some visual examples that were

randomly generated by our aw-Auto-GAN model in Figure

2. We also consider the convergence of our method against

training epochs by plotting in Figure 3 the IS and FID scores

of 50,000 generated samples at every 5 epochs for Auto-

GAN vs aw-AutoGAN. For all the datasets, our model con-

sistently achieves faster convergence than the baseline.

We next consider our aw-method for a class condi-

tional image generating task using two base models, SN-

GAN [34] and BigGAN [5], on CIFAR-10 and CIFAR-100

datasets. Results are listed in Table 4.

CIFAR-10 CIFAR-100

Method IS ↑ FID ↓ IS ↑ FID ↓
cGAN [35] 8.62 17.5 9.04 23.2

MHinge [23] 9.58±.09 7.50 14.36±.17 17.3

SNGAN [34] 8.60±.08 17.5 9.30† 15.6†

aw-SNGAN 9.03±.11 8.11 9.48±.13 14.42

BigGAN [5] 9.22 14.73 10.99±.14 11.73

aw-BigGAN 9.52±.10 7.03 11.22±.17 10.23

Table 4: Conditional GAN: CIFAR-10 and CIFAR-100; †

- quoted from [41]; BigGAN [5] CIFAR-100 results based

on our test using the code from [4].

Table 4 shows that our method works well for the condi-

tional GAN too. The aw-method significantly improves the

SN-GAN and BigGAN baselines. Indeed, our aw-BigGAN

achieved the best FID for both CIFAR-10 and CIFAR-100

among comparisons.

5. Exploratory & Ablation Studies

In this section, we present three studies to illustrate po-

tential problems of equally weighted GAN loss and advan-
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tages of our adaptive weighted loss. The hinge loss is imple-

mented in the first and second studies, and a binary cross-

entropy loss function is used for the third.

5.1. Angles between Gradients
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Figure 4: Angles between gradients at each iteration. Top:

original loss; Bottom: aw-loss.

In the first study, we examine the angles between ∇Lr,

∇Lf , ∇LD (or ∇Law
D ). We use the CIFAR-10 dataset

with the DCGAN architecture [38] and we look at 50 it-

erations in the first epoch of training. In Figure 4, we plot

the following 3 angles: ∠2(∇Lr,∇Lf ), ∠2(∇Lr,∇LD)
and ∠2(∇Lf ,∇LD) against iterations for the original loss

LD (1) on the top and for the aw-loss Law
D on the bottom.

For the original loss (Left), ∠2(∇Lr,∇Lf ) (blue) stays

greater then 90◦, closer to 180◦. ∠2(∇Lr,∇LD) (green)

often goes above 90◦ and so the training is often done to

decrease the real loss. ∠2(∇Lf ,∇LD) also goes above

90◦, though to a lesser extent. With the aw-loss (Right),

∠2(∇Lr,∇L
aw
D ) and ∠2(∇Lf ,∇L

aw
D ) stay below the 90◦

line and indicate that we train in the direction of ∇Lr and

orthogonal to ∇Lf in most steps.

5.2. Real Discriminator Scores and Real­Fake Gap
after Training

Our second experiment is an ablation study to show

that aw-loss increases the discriminator scores for real data

and increases the gap between real and fake discriminator

scores. We again apply the DCGAN model with the origi-

nal loss LD to CIFAR-10 and at every iteration we examine

the mean discriminator score for the mini-batch of the real

set and the mean discriminator scores for the mini-batch of

the fake dataset generated by the generator. We use the logit

output of the discriminator network as the score. We plot

these two mean scores against each iteration before training

in the first row of Figure 5 and after training (with the orig-

inal loss LD) in the second row. At each of the above train-

ing iterations, we replace LD by the aw-loss Law
D (2) and
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Figure 5: Mean discriminator scores for real data D(x) and

fake data D(G(z)) (Row 1: before training, Row 2: after

original training with LD, Row 3: after training with aw-

loss Law
D ) and their gap (Row 4: GBT - gap before training;

GAOT - gap after original training; GAAWT - gap after aw-

loss training)

train for one iteration with the same training mini-batch. We

plot the mean discriminator scores for the mini-batches of

the real and fake dataset after this training in the third row

of Figure 5. We further present the gaps between the two

scores before training and after training using the original

loss and using aw-loss in the fourth row of Figure 5.

Figure 5 shows that training with aw-loss leads to higher

real discriminator scores (0.921 epoch average) than train-

ing with the original loss (0.248 epoch average). The aver-

age gap between real and fake scores is also larger with the

aw-loss at 1.413 vs. 1.262 of the original loss. Therefore,

with the same model and the same training mini-batch, the

aw-loss produces higher discriminator scores for the real

dataset and larger gaps between real and fake scores. These

are two important properties of a discriminator for the gen-

erator training.

5.3. Instability and Real Discriminator Scores

Our third study examines benefits of high discriminator

scores for a real dataset with respect to instability and mode

collapse of GAN training. We use a synthetic dataset with a

mixture of Gaussian distributions used to test unrolled GAN
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Figure 6: Mixture of eight 2D Gaussian distributions centered at 8 points (right-most column). Row 1: GAN sample points

produced by generators; Row 2: GAN mean discriminator scores for each of 8 classes; Row 3: aw-GAN sample points

produced by generators; Row 4: aw-GAN mean discriminator scores for each of eight classes;

in [33]. The dataset consists of eight 2D Gaussian distri-

butions centered at eight equally distanced points on the

unit circle. We train with a plain GAN as in [33] and we

plot samples of (fake) data generated by the generator ev-

ery 5,000 iterations on the first row of of Figure 6. We see

that the generated data converging to two or three points but

then moving off, demonstrating instability and mode col-

lapse. To understand this phenomenon, at each of the it-

erations that we study in Figure 6, we generate 100 (real)

data points from each of the eight classes and compute their

mean discriminator scores (as the logit output of the dis-

criminator). We plot the mean scores against the classes in

the second row of Figure 6. We observe that the discrimi-

nator scores for the real data do not increase much during

training, staying around 0, which corresponds to 0.5 proba-

bility after the logistic sigmoid function. The scores are also

uneven among different classes. We believe these cause the

instability in the generator training.

We compare the GAN results with aw-GAN that applies

our adaptive weighted discriminator to the plain GAN and

we present the corresponding plots of generated data points

(fake) in the third row of Figure 6 and the corresponding

discriminator scores on the eight classes in the bottom row.

In this case, the generator gradually converges to all eight

classes and the discriminator scores stay high for all eight

classes. Even though the generator was starting to converge

to a few classes (step 5,000), the discriminator scores re-

main high for all classes. Then the generator continues to

converge while convergence to other classes occurs. We be-

lieve the high real discriminator scores maintains stability

and prevents mode collapse in this case.

Conclusions

This paper pinpoints potential negative effects of the tra-

ditional GAN training on the real loss (and fake loss) and

points out that this is a potential cause of instability and

mode collapse. To remedy these issues, we have proposed

the Adaptive Weighted Discriminator method to increase

and maintain high real loss. Our experiments demonstrate

the benefits and the competitiveness of this method.
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