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Abstract

The goal of out-of-distribution (OOD) detection is to han-

dle the situations where the test samples are drawn from a

different distribution than the training data. In this paper,

we argue that OOD samples can be detected more easily if

the training data is embedded into a low-dimensional space,

such that the embedded training samples lie on a union of

1-dimensional subspaces. We show that such embedding of

the in-distribution (ID) samples provides us with two main

advantages. First, due to compact representation in the fea-

ture space, OOD samples are less likely to occupy the same

region as the known classes. Second, the first singular vector

of ID samples belonging to a 1-dimensional subspace can

be used as their robust representative. Motivated by these

observations, we train a deep neural network such that the

ID samples are embedded onto a union of 1-dimensional

subspaces. At the test time, employing sampling techniques

used for approximate Bayesian inference in deep learning,

input samples are detected as OOD if they occupy the re-

gion corresponding to the ID samples with probability 0.

Spectral components of the ID samples are used as robust

representative of this region. Our method does not have any

hyperparameter to be tuned using extra information and it

can be applied on different modalities with minimal change.

The effectiveness of the proposed method is demonstrated on

different benchmark datasets, both in the image and video

classification domains.

1. Introduction

Many classification methods are designed and deployed

under the assumption that training data contains samples

from all the possible classes that the classifier will encounter

during testing. Of course, such assumption does not hold in

many applications; as it may not be possible to cover every

potential input class in the training set. Thus, it is desir-

able to detect out-of-distribution (OOD) samples; the input

instances that do not belong to any of the training classes.

In general, OOD detection techniques try to either use the

class membership probabilities as a measure of uncertainty

[12, 21, 36, 39, 14], or define a measure of similarity be-

tween the input samples and the training dataset in a feature

space [2, 40, 20, 28]. As discussed in [20], the features

extracted from a conventional softmax classifier follow a

class-conditional Gaussian distribution. However, general

class-conditional Gaussian embeddings are not particularly

appropriate for outlier detection, as they are not easily dis-

tinguishable in the feature space.

In this work, we claim that we can improve the OOD

detection performance by constraining the representation of

in-distribution (ID) samples in the feature space. Particularly,

if we embed the training samples such that the feature vec-

tors belonging to each known class lie on a 1-dimensional

subspace, OOD samples can be detected more robustly

with higher probability, compared to a class-conditional

non-degenerate Gaussian embeddings. Such a union of 1-

dimensional subspaces representation provides us with two

main advantages. First, due to compact representation in

the feature space, OOD samples are less likely to occupy

the same region as the known classes. In other words, a

random vector in a high-dimensional space lies on a specific

1-dimensional line with probability 0. Second, we show

that the first singular vector of a 1-dimensional subspace

is a robust representative of its samples. We exploit these

two desirable features and reject samples as OOD, if they

occupy the region corresponding to the training samples

with probability 0. This region is identified by the set of the

first singular vectors of the training classes. To estimate the

probability, we use Monte Carlo sampling techniques used

in Bayesian deep learning such as [25, 8].

Our work is primarily motivated by the rich literature of

spectral methods in signal processing and machine learning.

Spectral techniques have been proven to be very effective
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for different tasks such as robust estimation [6], learning

mixture models [29], representative selection [43], and de-

fense against backdoor attacks [35]. We are also inspired by

the OOD detection method proposed in [20], in which au-

thors use the ID feature vectors to estimate their distribution

and to detect OOD samples. In contrast, we engineer the

distribution of ID feature vectors to minimize the error prob-

ability, without knowing the distributions of OOD samples,

and enforce our desired distribution on the feature vectors.

Our proposed method does not need extra information or

a subset of OOD examples for hyperparameter tuning or

validation. This is in contrast to many existing methods

that use some subset of the OOD samples, either during

validation [21, 36, 20, 28], or even during training [13, 42].

Despite improving the results, the availability of such extra

information is questionable in many real-world applications.

Furthermore, our technique can be easily deployed on many

existing frameworks and different modalities, e.g. images,

videos, etc. In summary, this paper makes the following

contributions:

• We demonstrate that if feature vectors lie on a union of

1-dimensional subspaces, the OOD samples can be robustly

detected with high probability and we show how we can

impose such constraint on the ID feature vectors (Section 3);

• We propose a new OOD detection test, which exploits

the first singular vector of the feature vectors extracted from

the training set, in conjunction with MC sampling (Section

4);

• Our framework does not have hyperparameters, does

not need extra information, and can be easily applied to

existing methods with minimal change. Furthermore, the

proposed method can be applied to different domains. Here,

we introduce a new baseline for OOD detection for human

action classification in videos.

2. Related Work

The problem of detecting outliers and anomalies in the

data has been extensively studied in machine learning and

signal processing communities and is closely related to out-

lier detection, a topic that has been greatly studied both in the

supervised [9] and unsupervised [38] settings. The literature

in this area is sizable. Thus, we mainly focus on the recent

deep learning approaches. These methods either estimate the

distribution of ID samples [20, 28] or use a distance metric

between the test samples and ID samples to detect OOD

samples [21, 12].

Many of the existing approaches employ the OOD

datasets during training [42, 13] or validation steps [21, 36,

20, 28, 19, 30]. For instance, in [42], the network is fine-

tuned during the training to increase the distance between

ID and OOD distributions. Other interesting methods, such

as [21, 36, 20], apply a perturbation on each sample at test

time to exploit the robustness of their network in detecting

ID samples. However, they use part of the OOD samples

to fine-tune the perturbation parameters. On the other hand,

methods that rely on generative models or autoencoders,

such as [28], also require hyperparameter tuning for loss

terms, regularization terms, and/or latent space size. Authors

in [32] propose to use extra supervision, in particular several

word embeddings, to construct a better latent space and to

detect OOD samples more accurately. A table summariz-

ing the prior work and how they leverage extra information

is provided in the supplementary material. Having access

to extra information certainly helps with the performance.

However, it can be argued that OOD detectors should be

completely agnostic of unknown distributions, which is a

more realistic scenario in the wild. On the other hand, only a

few approaches, such as [12, 27, 40, 24, 14], do not require

the OOD samples neither during training nor validation. For

instance, Hendricks and Gimpel [12] show how the softmax

layer can be used to detect OOD samples, when its predic-

tion score is below a threshold. In [40], the authors rely

on reconstructing the samples to produce a discriminative

feature space. However, methods that rely on either recon-

struction or generation [27, 40, 28] do not perform well in

scenarios where sample generation or reconstruction is more

difficult, such as large-scale datasets or video classification.

While the problem of detecting OOD samples in image clas-

sification has been subject of many studies, in the human

action classification domain the focus has been on zero-shot

and few shot learning [26]. To the best of our knowledge,

this work is the first one to benchmark OOD results on two

different modalities, i.e. image classification and human

action recognition in videos.

3. Union of 1-dimensional Subspaces for Out-

of-Distribution Detection

Given a training dataset consisting of N sample-label

pairs belonging to L known classes, our goal is to train a

neural network such that at the test time it can be determined

if an unlabeled sample is an out-of-distribution sample (not

belonging to any of the L known classes) or not. We are

particularly interested in the scenarios where OOD samples

are not available. Thus, we do not use OOD samples during

training or validation. We argue that OOD detection perfor-

mance can be improved if the feature vectors from the known

classes lie on a union of 1-dimensional subspaces. In short,

such embedding has two main properties that we can take

advantage for OOD detection: (i) Due to the compactness

of ID samples in the feature space, OOD samples can be

detected with higher probability, compared to conventional

class-conditional non-degenerate Gaussian embeddings, and

(ii) First singular vector of the samples in each class can be

used as a robust representative of that class and can be ef-
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fectively employed to distinguish between the ID and OOD

samples. Below, we discuss each of these advantages in

more details.

Distribution-agnostic minimization of error probability:

Computing the error probability for OOD detection is a diffi-

cult task to carry out. This is due to the fact that, by defini-

tion, we do not have much information about the probability

distribution of the OOD samples. However, it can be shown

that the probability of error can be minimized by making

the distribution of the known classes as compact as possible.

Specifically, consider the binary classification problem of

distinguishing between the OOD samples and samples from

one of the known classes, following multivariate Gaussian

distributions with different means and covariance matrices

N (µo,Σo) and N (µi,Σi), respectively. It has been shown

[7] that the classification error probability pe can be upper

bounded by: pe  p
pipoe

�B , where pi and po are the

probability of samples belonging to the known class and

OOD samples, respectively. B is the Bhattacharyya distance

defined as:

B =
1

8
∆

T (
Σi +Σo

2
)�1

∆+
1

2
ln(

det(Σi+Σo

2
)

p

det(Σi) det(Σo)
),

where ∆ = µi � µo is the distance between the means

of the two distributions. The first term in B represents the

Mahalanobis distance between µi and µo, using Σi+Σo

2 as

the covariance matrix. The second term is a measure of

compactness of the distributions. The larger the det(Σi) is,

the more its corresponding samples are spread out. Thus,

even without any knowledge about µo, Σo, pi, and po, one

can increase B by making N (µi,Σi) as compact as possible.

In the extreme case, where the samples lie on a perfect 1-

dimensional subspace, error probability will be 0, unless the

OOD feature vectors have the exact same distribution as the

known class. To demonstrate this in further details, consider

the following toy examples:

Example 1: Let Σo =



1 0
0 1

�

and Σi =



1 0
0 ✏2

�

, ✏ ⌧

1, meaning that the ID samples occupy an almost 1-

dimensional subspace of the 2-dimensional space. In this ex-

ample, the second term in above equation becomes ln( 1+✏
2

2✏ ),
which approaches infinity as ✏ ! 0, making pe very small.

This is true even if µi = µo.

Example 2: Let Σo = Σi =



1 0
0 ✏2

�

, ✏ ⌧ 1,µi =


µi1

µi2

�

,µo =



µo1

µo2

�

, i.e., ID and OOD samples have the same

degenerate covariance matrix. In this case, the second term

becomes 0, but the first term, which is the Mahalanobis dis-

tance between the mean vectors, is 1
8 [(µi1�µo1)

2+ 1
✏2
(µi2�

µo2)
2]. If ✏ ! 0, pe approaches 0, unless (µi2 � µo2)

2 ! 0
as well. This means that if the means of the distribution have

some mismatch along the degenerate direction, even though

very small, OOD samples can be detected with very small

pe.

Thus, by enforcing the ID feature vectors to lie on 1-

dimensional subspaces, we can detect slight mismatches

between the distribution of the OOD samples in feature

space and the distribution of ID samples, which leads to

better OOD detection.

First singular vector as a robust representative: In the

context of robust statistics, the first singular vector has been

shown to be a great tool to define robust mean and covari-

ance estimators [6]. In addition, the first singular vector

has been used to select the representatives of the class[43].

It can be shown that the first singular vector is robust to

perturbations and noise. Let X l denote an M ⇥N matrix

containing N M -dimensional feature vectors belonging to

class l. Furthermore, consider the autocorrelation matrix of

the class l defined as Cl = X lX
T
l . Eigenvectors and eigen-

values of Cl are the left singular vectors and the square of

singular values of X l, respectively. Adding noise or adding

a new noisy column in X l perturbs Cl, without changing

its dimensions. To quantify the sensitivity of eigenvectors of

Cl against perturbations, we use the following Lemma.

Lemma 1 (from [43]) Assume square matrix C and its

spectrum [�i,vi]. Then, k@vik2 
q

P

j 6=i
1

(λi�λj)2
k@CkF ,

where k.kF denotes Frobenius norm and the partial deriva-

tive is taken with respect to any scalar variable.

If we take the partial derivative with respect to an entry in

C, we can see that the sensitivity of the ith spectral com-

ponent, vi, to perturbations in C, is inversely related to

the gap between its corresponding eigenvalue �i and other

eigenvalues �j , j 6= i. Therefore, we can define the sensi-

tivity coefficient of the ith eigenvector of a square matrix as

si ,
q

P

j 6=i
1

(�i��j)2
. In general, the first singular compo-

nent v1 is the least sensitive direction to the perturbations.

This is because, in many scenarios, the gap between con-

secutive eigenvalues is decreasing (see [3] and references

therein), which leads to s1 < si, 8i � 2. However, we can

further increase the robustness, by embedding the ID feature

vectors onto a union of 1-dimensional subspaces. Since the

singular values represent the amount of energy concentrated

along their corresponding singular vector, if almost all of

the energy of the data points in each class is concentrated

along its corresponding first singular vector, we will have

large �1 and small �i, i � 2 for all the classes. Therefore,

if the feature vectors belonging to the same class lie on a

1-dimensional subspace, we can use the first singular vector

of X l as a robust representative of the class subspace in the

feature space and to reject outliers, as shown in Section 4.
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Figure 1. Overall architecture of the proposed framework. A neural network (e.g., WideResnet28) maps the input onto a feature space. Then,

the cosine similarities between the extracted feature xn and the class vectors wl are used to compute the class membership probabilities.

wls are set to predefined orthonormal vectors and are not updated during training. This leads to the desired embedding, union of uncorrelated

1-dimensional subspaces. At test time, the cosine similarity between the test samples and the first singular vector corresponding to each class

is used to distinguish between the ID and OOD samples.

3.1. Enforcing the Structural Constraints

Intraclass Constraint: We can make the feature vectors

for each known class to lie on a 1-dimensional subspace

by employing cosine similarity. This can be achieved by

modifying the softmax function to predict the membership

probability using pln = e| cos(θln)|
P

l
e| cos(θln)| , where pln is the prob-

ability of membership of feature vector n in class l and

cos(✓ln) =
w

T
l xn

kwlkkxnk
is the cosine similarity between the

learned feature vector xn and the weights of the last fully

connected layer corresponding to class l, i.e.,wl. Note that,

unlike other methods which employ angular margin [37, 23],

we use the absolute value of the cosine similarity to compute

the class memberships. This is due to the fact that the sub-

space membership, and therefore the class membership, does

not change if a vector is multiplied by �1. By employing

such activation function, the feature vectors of each class

are aligned to its corresponding weight vector wl. In other

words, class l forms a 1-dimensional subspace along the

direction of wl in the feature space. Therefore the final loss

function to be minimized is defined as:

L =
1

N

N
X

n=1

� log(
e| cos(θ

∗

n)|

P

l
e| cos(θln)|

), (1)

where ✓⇤n is angle between the nth feature vector and the

weight vector corresponding to its true label.

Interclass Constraint: By using the absolute cosine simi-

larity as the classification criteria, we can ensure the feature

vectors are angularly distributed in the space and form a

union of 1-dimensional subspaces. To boost the interclass

separation of the known classes, we need to decrease the

interclass similarity, in terms of cosine similarity. Minimum

interclass cosine similarity can be enforced by ensuring that

wl are orthogonal to each other. We achieve this by simply

initializing the weight matrix with orthonormal vectors, as

described in [31], and freezing them during the training. Or-

thogonal initialization requires that M > L, which is often

the case in practice (feature space dimension is larger than

number of classes). In other words, the feature extractor,

i.e., the deep neural network, is trained such that it can map

each input sample in class l onto a predefined 1-dimensional

subspace represented by the direction of wl.

Figure 1 shows the overall architecture of the proposed

framework. The neural network maps the input sample onto

a low-dimensional space, where the known classes are repre-

sented by a set of orthonormal vectors. The cosine similarity

between the extracted feature from the nth input sample,

xn, and the vector corresponding to the class subspace, wl,

is used to determine the class membership probability and

therefore the label. Figure 2 demonstrates the effectiveness

of the proposed framework in enforcing the desired embed-

ding. It shows a 3-dimensional embedding, obtained by

PCA, of the feature vectors belonging to the first 3 classes

of CIFAR10. The neural network, WideResnet28, is trained

on all the classes of CIFAR10 with and without enforcing

the proposed structural constraints. Figure 2(a) shows that

the feature vectors belonging to each class extracted from

a plain WideResnet have a fairly isometric Gaussian struc-

ture, meaning that they are spread out in different direction

uniformly. On the other hand, as shown in Figure 2(b), the

feature vectors extracted from the same network trained us-
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Figure 2. 3-dimensional representation of the features belonging to the first 3 classes of CIFAR10 training set, extracted from WideResNet

with and without the proposed embedding: (a) features extracted from a plain WideResnet, (b) features extracted after enforcing the proposed

embedding, and (c) same as (b) after `2-normalizing the feature vectors. The solid lines represent the direction of the first singular vector

corresponding to each class. All the figures contain 3, 000 feature vectors.

ing our proposed technique lie on a union of 1-dimensional

subspaces. We also show the `2-normalized feature vectors

in Figure 2(c) to remove the scale of the feature vectors and

emphasize the angle between each vector and the singular

vector corresponding to its class.

4. Out-of-distribution Detection Test

If the feature vectors belonging to the known classes

lie on a union of 1-dimensional subspaces, their corre-

sponding region in the feature space has no volume. Thus,

the probability of OOD samples being in the region corre-

sponding to any of the known classes, which is the prob-

ability of false negative pfn, is zero. This can be seen

using the Bhattacharyya bound, discussed in Section 3,

pe = popfn + pipfp  p
pipoe

�B . Therefore, if we make

the known classes occupy a tiny region with no volume in the

space, we will have B ! 1 and pfn ! 0. We use this prop-

erty to classify samples as OOD if they lie inside the region

corresponding to any of the known classes with probability

0. More specifically, given an input instance in and corre-

sponding feature vector xn, this probability can be estimated

using the singular vectors of each class as p(�n  �⇤|in),
where �n is defined as:

�n = min
l

arccos(
|xT

nv
(l)
1 |

kxnk
), (2)

which is the minimum angular distance of the test feature

vector xn, from the first singular vector of any of the classes.

We name this measure as spectral discrepancy. �⇤ is a

critical spectral discrepancy and defines the region belonging

to the known classes. Smaller values of �⇤ corresponds to

more compact regions. In the extreme case of �⇤ = 0, the

input instance in is detected as OOD, if it does not have

the exact same direction as one of the singular vectors. It is

worthwhile to mention that in the ideal case, the first singular

vector of class l, v
(l)
1 , would be the same as wl. However, in

practice, the first singular vector is a better representative of

the subspace after training, as training feature vectors may

not perfectly align with wl. v
(l)
1 can be computed using

the extracted features from training ID samples of class

l. Time complexity order of computing the first singular

vector is linear w.r.t both the number and the dimensions of

the feature vectors [4, 1]. To estimate p(�n  �⇤|in), we

employ Monte Carlo sampling. Specifically:

p(�n  �
⇤|in) =

Z φ∗

0

p(�n|in)d�n ⇡
1

S

S
X

s=1

I(�s
n < �

⇤),

(3)

where S is the number of the Monte Carlo samples and �s
n

is the spectral discrepancy of the sth Monte Carlo sample,

given input instance in. Furthermore, I(.) is the indicator

function that takes value 1 if �s
n < �⇤ and 0 otherwise. To

obtain the samples, we can use the methods proposed for

approximate Bayesian inference in [25, 8]. �⇤ is the decision

parameter, which can be set to achieve a problem-specific

precision and/or recall requirements using different methods

such as [22] or by using the training set (as will be discussed

in Section 5).

Figure 3 demonstrates the effectiveness of employing

spectral discrepancy in distinguishing between ID and

OOD samples. Similar to Figure 2, this figure shows a

3-dimensional representation of the features that are close to

the first 3 classes of the CIFAR10, meaning that the classifier

would classify them as one of these classes. The first two

subfigures show the features extracted from a plain WideRes-

Net. Comparing ID samples (Figure 3(a)) with OOD samples

(Figure 3(b)), it is clear that both ID and OOD samples follow

a very similar structure, which makes OOD detection more

difficult. On the other hand, the last two subfigures illustrate

the `2-normalized features extracted from the WideResNet

trained using our proposed embedding. Comparing the ID

(Figure 3(c)) and OOD (Figure 3(d)) samples, most of the

OOD samples have larger angular distance to their closest

singular vector, compared to the ID samples, which can be

exploited to detect them more accurately. A quantitative

evaluation of this example, including the histogram of spec-

tral discrepancies for ID and OOD samples, is provided in
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Figure 3. 3-dimensional representation of the features extracted

from a plain WideResNet and the same network with our proposed

embedding. (a) ID features extracted from plain network, (b) OOD

features extracted from plain network, (c) ID features extracted

using our embedding, and (d) OOD features extracted using our

embedding. The solid lines represent the direction of the first sin-

gular vector corresponding to each class. OOD samples, extracted

using our embedding, have larger angular distance to their closest

singular vector. All the figures contain 3000 samples.

Section 5 (e.g., Figure 4). Furthermore, an algorithmic de-

scription of the training and testing phases of our proposed

method is provided in the supplementary material.

5. Experiments

Datasets: For the image classification task, we train

the WideResNet model on CIFAR-10 and CIFAR-100 [16]

datasets, which consist of 50,000 images for training and

10,000 images for testing, with an image size of 32 ⇥ 32.

The testing set is used as the ID testing samples. Similarly

to prior work [20, 21, 24], for the OOD testing samples, we

use the following datasets: (i) TinyImagenet: The Tiny Im-

ageNet dataset consists of 10,000 test images of size 36⇥ 36
belonging to 200 different classes, which are sampled from

the original 1,000 classes of ImageNet [5]. As in [21, 36]

we construct two datasets from TinyImagenet: TinyIma-

genet-crop (TINc) and TinyImagenet-resize (TINr), by either

randomly cropping or downsampling each image to a size

of 32 ⇥ 32. (ii) LSUN: LSUN [41] consists of 10,000 test

images from 10 different scene categories. Like before, we

randomly crop and downsample the LSUN test set to con-

struct two datasets LSUN-crop (LSUNc) and LSUN-resize

(LSUNr).

For the action classification task, we train a 3DResNet

model on UCF101 [33] and HMDB51 [17] datasets, which

consist of 13320 videos with 101 classes and 6766 videos

with 51 classes, respectively. As in previous works in zero-

shot learning domain [26], we perform a random split the

datasets between OOD classes and ID classes. UCF101 is

divided in 50/51 ID/OOD classes, while UCF101 is divided

in 25/26 ID/OOD classes.

Evaluation Metrics: We evaluate the OOD detection per-

formance using the following metrics: FPR at 95% TPR

indicates the false positive rate (FPR) at 95% true positive

rate (TPR). Detection Error indicates the minimum mis-

classification probability. It is computed by the minimum

misclassification rate over all possible values of �⇤. AU-

ROC, defined as the Area Under the Receiver Operating

Characteristic curve, is computed as the area under the FPR

against TPR curve. AUPR In is computed as the area un-

der the precision-recall curve. For AUPR In, ID images

are treated as positive. AUPR Out is similar to the metric

AUPR-In. Opposite to AUPR In, OOD images are treated

as positive. F1 Score is the maximum average F1 score over

all possible critical spectral discrepancy values �⇤.

We deploy WideResNet with depth 28 and width 10 as

the neural network architecture for the image classification

task and a 3DResNet [11] with 32 residual layers as the

neural network for the action classification task. As in [26],

our 3DResNet is initialized with weights pretrained on the

Kinetics dataset [15]. Both network parameters are set as

the original implementations in [44, 11], except the last

layer, which is modified as discussed in Section 3. At the

test time, unless otherwise stated, we draw 50 Monte Carlo

samples to estimate p(�n  �⇤) and to detect the OOD

samples. To draw MC samples for the image classification

task, we employ the SWAG-Diag method proposed in [25].

However, the storage and computation requirements of [25]

makes it less practical for larger networks. Thus, for the

video classification setup we employ the method in [8] to

draw samples. Other uncertainty estimation methods such as

[18, 34, 10] can also be used to estimate the uncertainty in

conjunction with our proposed method. Additional training

details are provided in the supplementary material1.

Table 4 compares our results with recent OOD detection

techniques in terms of F1-score. As denoted in the table,

we use the code provided by the authors from most of the

baselines to generate the results under a fair setting, i.e.,

same architecture, same datasets, and same metrics. For

[27, 40], we provide the results reported by the authors, as

these methods rely on reconstruction and/or generation of

samples and the same architecture cannot be used. In ad-

dition, since these methods only report their performance

using F1-score, we also use this metric for all the methods.

Our proposed method is able to consistently outperform the

1Code for the image classification task is available at https://

github.com/zaeemzadeh/OOD and the code for the action recog-

nition task is available at https://github.com/mmlab-cv/OOD_

video
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Table 1. A comparison of OOD detection results, in terms of F1-score, for different ID and OOD datasets. † represents the results achieved

by our re-run of the publicly available codes. The bottom section summarizes the performance of the methods that use a subset of OOD

samples for hyperparameter tuning, such as finding the best perturbation magnitude. Our method does not have any parameters to be tuned.
ID dataset CIFAR10 CIFAR100

OOD dataset TINc TINr LSUNc LSUNr TINc TINr LSUNc LSUNr

SoftMax Pred. [12]† 0.803 0.807 0.794 0.815 0.683 0.683 0.664 0.693

Counterfactual [27] 0.636 0.635 0.650 0.648 - - - -

CROSR [40] 0.733 0.763 0.714 0.731 - - - -

OLTR [24]† 0.860 0.852 0.877 0.877 0.746 0.721 0.753 0.747

Ours 0.930 0.936 0.962 0.961 0.810 0.860 0.769 0.886

Methods that use OOD samples for validation and hyperparameter tuning.

ODIN [21]† 0.902 0.926 0.894 0.937 0.834 0.863 0.828 0.875

Mahalanobis [20]† 0.985 0.969 0.985 0.975 0.974 0.944 0.963 0.952

Table 2. Performance of the proposed framework for distinguishing ID and OOD test set data for the image classification task, using a

WideResnet with depth 28 and width 10. " indicates larger value is better and # indicates lower value is better. All the methods use the same

network architecture.
Training OOD FPR at Detection AUROC AUPR In AUPR Out

dataset dataset 95% TPR Error

↓ ↓ ↑ ↑ ↑

Softmax. Pred. [12]/OLTR [24]/ Ours

CIFAR10

TINc 38.9/25.6/9.0 21.9/14.8/6.8 92.9/91.3/98.1 92.5/93.2/98.2 91.9/88.3/98.1

TINr 45.6/28.8/7.6 25.3/15.8/6.2 91.0/90.3/98.5 89.7/92.3/98.6 89.9/87.1/98.4

LSUNc 35.0/21.3/2.8 20.0/13.0/3.7 94.5/92.9/99.4 95.1/94.4/99.4 93.1/90.8/99.4

LSUNr 35.0/21.7/3.4 20.0/13.2/3.8 93.9/92.6/99.3 93.8/94.4/99.4 92.8/90.0/99.3

CIFAR100

TINc 66.6/63.8/41.7 35.8/29.0/18.9 82.0/77.4/88.6 83.3/78.7/89.1 80.2/74.4/87.0

TINr 79.2/72.9/29.42 42.1/32.1/14.2 72.2/73.1/93.7 70.4/73.8/94.0 70.8/69.8/93.8

LSUNc 74.0/59.2/38,8 39.5/29.1/13.9 80.3/76.9/93.8 83.4/80.0/93.6 77.0/72.9/93.1

LSUNr 82.2/61.9/20.3 43.6/29.2/11.3 73.9/77.0/95.7 75.7/79.2/96.0 70.1/73.3/95.7

competing methods over different datasets, and is the closest

competitor to the techniques that use OOD sample for vali-

dation. Table 2 compares the performance of our proposed

solution with two of the more competitive baselines over

different metrics, using the same network architecture for all

the methods. Our results are consistent over different OOD

datasets and different metrics, meaning that our method can

perform well for different types of OOD samples, without

any hyperparameter tuning for each OOD dataset.

In the ablation study, Table 4 investigates the impact of

enforcing structure on the OOD detection using spectral

discrepancy. AUROC is computed by using spectral dis-

crepancy for the different variants. This table shows that,

while enforcing the proposed embedding slightly hurts the

ID classification accuracy and does not improve the repre-

sentation ability of the network, it is an effective technique

to distinguish between ID and OOD samples. This table also

shows the effect of MC samples, which are used to compute

the probabilities. As expected, introducing MC sampling

improves the OOD detection performance, regardless of the

feature space structure. However, the improvement is more

significant for networks on which our proposed structure

is enforced. Further, MC sampling alone or enforcing 1D

subspace alone does not make a significant difference. But

the combination of 1D subspaces and MC samples improves

the results significantly. This is mainly because our method

is a probabilistic approach and only works in a probabilistic

setting.

In Table 3, we show our result for the action classification

task. To best of our knowledge, we are the first to tackle the

task of Out-Of-Distribution detection in the action recogni-

tion domain. To establish a baseline, we apply the Softmax

threshold method as in [12] on the output of our network.

We are able to consistently outperform the baseline, even

if enforcing the structure hurts the results when is not com-

bined with our OOD detector, which is consistent with the

ablation study shown in Table 4. This illustrates the fact that

our method can be easily applied to different network archi-

tectures and even different modalities, by only replacing the

last fully connected layer of the network.

As a guideline to set the value of the critical spectral

discrepancy �⇤, Figure 4(a) shows the histogram of the spec-

tral discrepancy for samples belonging to CIFAR10, as the

ID dataset, and different real OOD datasets. It is evident

that samples from both the testing and training set of the ID

dataset follow a very similar behaviour. Thus, the training

set can be used to estimate the possible interval of spectral

discrepancies for the ID samples. For instance, about 98% of

the samples in CIFAR10 have a spectral discrepancy of less

than 2 degrees. On the other hand, Figure 4(b) demonstrates

the detection error for different values of the critical spectral

discrepancy �⇤. This figure shows that best detection error

is achieved by setting �⇤ to a value in range [1.3, 2] degrees,

regardless of the OOD dataset. Hence, this figure shows that
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Table 3. Performance of the proposed framework for distinguishing ID and OOD test set data for the action recognition task, using a

3DResNet [11] with 32 residual layers. " indicates larger value is better and # indicates lower value is better. All the methods use the same

network architecture. As in [26], we use 50/51 splits of the UCF101 dataset and 25/26 splits of the HMDB51 dataset.
Training OOD FPR at Detection AUROC AUPR In AUPR Out

dataset dataset 95% TPR Error

↓ ↓ ↑ ↑ ↑

SoftMax. Pred. (Baseline) [12]/ SoftMax. Pred. (Orthogonal Subs.) [12]/ Ours

UCF50 UCF51 86.3/82.44/71.6 36.8/36.1/30.0 66.0/68.3/75.7 89.8/90.1/74.3 25.6/27.8/72.5

HMDB25 HMDB26 82.0/85.2/84.5 41.8/44.5/40.8 59.7/56.4/61.9 88.9/87.6/65.4 20.4/19.7/56.6

Table 4. Ablation study of the proposed framework using CIFAR10

(ID) and TINr (OOD). While enforcing the structure hurts the ID

accuracy slightly, it improves the OOD detection performance

significantly. The remaining two combinations, (No, Yes, No) and

(No, Yes, No), are not meaningful.

Union of 1D Orthogonal MC In Disribution OOD

Subspaces Subspaces Samples Accuracy (%) AUROC

No No No 96.0 95.2

No No Yes 96.0 96.3

Yes No No 95.4 95.6

Yes No Yes 95.4 96.8

Yes Yes No 95.4 95.9

Yes Yes Yes 95.4 98.5
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Figure 4. (a) Empirical probability distribution of the spectral

discrepancy of samples belonging to CIFAR10 (ID) and different

OOD datasets. (b) Detection error for different values of critical

spectral discrepancy �⇤. Both the spectral discrepancy histogram

and the best �⇤ do not change significantly for different datasets.

�⇤ is not sensitive to the OOD dataset and can be set using

only the training set. However, it should be mentioned that

in general the best value for �⇤ depends on the task at hand

and the precision and/or recall requirements. As mentioned

earlier, �⇤ can also be set by many of the threshold esti-

mation techniques such as [22]. More experimental results

such as quantifying the impact of the number MC samples,

robustness of the first singular vector to perturbations, and

ROC curves are provided in the supplementary material.

6. Conclusion

We show that the distribution of the ID samples in the

feature space plays an important role in the OOD detection.

Particularly, we propose to embed the ID samples into a low-

dimensional feature space such that each known class lies

on a 1-dimensional subspace. Such embedding gives us two

main advantages in the OOD detection task: (i) ID samples

occupy a tiny region in the space and (ii) ID samples have

robust representatives. By exploiting these desirable features,

our proposed method is able to outperform state-of-the-art

methods in several performance metrics and different do-

mains. We also establish a new baseline for OOD detection

in the action classification in videos.
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