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Abstract

We present deep neural network methodology to recon-

struct the 3d pose and shape of people, including hand ges-

tures and facial expression, given an input RGB image. We

rely on a recently introduced, expressive full body statisti-

cal 3d human model, GHUM, trained end-to-end, and learn

to reconstruct its pose and shape state in a self-supervised

regime. Central to our methodology, is a learning to learn

and optimize approach, referred to as HUman Neural De-

scent (HUND), which avoids both second-order differentia-

tion when training the model parameters, and expensive state

gradient descent in order to accurately minimize a semantic

differentiable rendering loss at test time. Instead, we rely

on novel recurrent stages to update the pose and shape pa-

rameters such that not only losses are minimized effectively,

but the process is meta-regularized in order to ensure end-

progress. HUND’s symmetry between training and testing

makes it the first 3d human sensing architecture to natively

support different operating regimes including self-supervised

ones. In diverse tests, we show that HUND achieves very

competitive results in datasets like H3.6M and 3DPW, as

well as good quality 3d reconstructions for complex imagery

collected in-the-wild.

1. Introduction

Automatic 3d human sensing from images and video

would be a key, transformative enabler in areas as diverse as

clothing virtual apparel try-on, fitness, personal well-being,

health or rehabilitation, AR and VR for improved communi-

cation or collaboration, self-driving systems with emphasis

to urban scenarios, special effects, human-computer inter-

action or gaming, among others. Applications in shopping,

telepresence or fitness would increase human engagement

and stimulate collaboration, communication, and the econ-

omy, during a lock-down.

The rapid progress in 3D human sensing has recently

relied on volumetric statistical human body models [24, 43]

and supervised training. Most, if not all, state of the art

architectures for predicting 2d, e.g., body keypoints [5] or 3d,

e.g., body joints, kinematic pose and shape [30, 48, 16, 19,

36, 8, 17, 20, 2, 44, 18, 40, 15, 29, 45, 49, 33, 37, 27, 26, 14]

rely, ab initio, at their learning core, on complete supervision.

For 2d methods this primarily enters as keypoint or semantic

segmentation annotations by humans, but for complex 3D

articulated structures human annotation is both impractical

and inaccurate. Hence for most methods, supervision comes

in the form of synchronous 2d and 3d ground truth, mostly

available in motion capture datasets like Human3.6M [13]

and more recently also 3DPW [41].

Supervision-types aside, the other key ingredient of any

successful system is the interplay between 3d initialization

using neural networks and non-linear optimization (refine-

ment) based on losses computed over image primitives like

keypoints, silhouettes, or body part semantic segmentation

maps. No existing feedforward system, particularly a monoc-

ular one, achieves both plausible 3d reconstruction and

veridical image alignment1 without non-linear optimization –

a key component whose effectiveness for 3d pose estimation

has been long since demonstrated [34, 35].

The challenge faced by applying non-linear optimization

in high-dimensional problems like 3d human pose and shape

estimation stems from its complexity. On one hand, first-

order model state updates are relatively inefficient for very

ill-conditioned problems like monocular 3d human pose

estimation where Hessian condition numbers in the 10−3

are typical [34]. Consequently, many iterations are usually

necessary for good results, even when BFGS approxima-

tions are used. On the other hand, nonlinear output state

optimization is difficult to integrate as part of parameter

learning, since correct back-propagation would require po-

tentially complex, computationally expensive second-order

1To be understood in the classical model-based vision sense of best

fitting the model predictions to implicitly or explicitly-associated image

primitives (or landmarks), within modeling accuracy.
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updates, for the associated layers. Such considerations have

inspired some authors [19] to replace an otherwise desirable

integrated learning process, with a dual system approach,

where multiple non-linear optimization stages, supplying

potentially improved 3d output state targets, are interleaved

with classical supervised learning based on synchronized 2d

and 3d data obtained by imputation. Such intuitive ideas

have been shown to be effective practically, but remain ex-

pensive in training, and lack not just an explicit, integrated

cost function, but also a consistent learning procedure to

guarantee progress, in principle. Moreover, applying the

system symmetrically, during testing, would still require po-

tentially expensive non-linear optimization for precise image

alignment.

In this paper, we take a different approach and replace the

non-linear gradient refinement stage at the end of a classical

3d predictive architecture with neural descent, in a model

called HUND (Human Neural Descent). In HUND, recurrent

neural network stages refine the state output (in this case the

3d human pose and shape of a statistical GHUM model [43])

based on previous state estimates, loss values, and a context

encoding of the input image, similarly in spirit to non-linear

optimization. However, differently from models relying

on gradient-based back-ends, HUND can be trained end-to-

end using stochastic gradient descent, offers no asymmetry

between training and testing, supports the possibility of po-

tentially more complex, problem-dependent step updates

compared to non-linear optimization, and is significantly

faster. Moreover, by using such an architecture, symmetric

in training and testing, with capability of refinement and

self-consistency, we show, for the first time, that a 3d human

pose and shape estimation system trained from monocular

images can entirely bootstrap itself. The system would thus

no longer necessarily require, the completely synchronous

supervision, in the form of images and corresponding 3d

ground truth configurations that has been previously un-

avoidable. Experiments in several datasets, ablation studies,

and qualitative results in challenging imagery support and

illustrate the main claims.

Related Work: There is considerable prior work in 3d hu-

man modeling [24, 43, 30, 48, 31, 16, 19, 7], as well as

the associated learning and optimization techniques [34, 3].

Systems combining either random 3d initialization or pre-

diction from neural networks with non-linear optimization

using losses expressed in terms of alignment to keypoints

and body semantic segmentation masks exist [3, 48, 19].

Black-box optimization has gained more interest in recent

years [1, 6], usually deployed in the context of meta-learning

[11]. Our work is inspired in part by that of [6, 11] in which

the authors introduce recurrent mechanisms to solve opti-

mization problems, albeit in a different domain and for other

representations than the ones considered in this work. [28]

uses a neural network to directly regress the pose and shape

parameters of a 3d body model from predicted body semantic

segmentation. The network is trained in a mixed supervision

regime, with either full supervision for the body model pa-

rameters or a weak supervision based on a 2d reprojection

loss. [42] propose to learn a series of linear regressors over

SIFT [25] features that produce descent directions analogous

to an optimization algorithm for face alignment. Training

is fully supervised based on 2d landmarks. Similarly, [39]

learn a recurrent network, that given an input image of a face,

iteratively refines face landmark predictions. The network is

trained fully supervised and operates only in the 2d domain.

In [38], a cascade of linear regressors are learned to refine

the 3d parameters of a 3d face model. Training is done over

the entire dataset at a time (multiple persons with multiple

associated face images) on synthetic data, in a simulated,

mixed supervision regime.

2. Methodology

We describe the elements of the proposed methodology,

including the statistical 3D human body model GHUM, as

well as the associated learning and reconstruction architec-

ture used. We also cover the fusion of multiple architectures

in order to obtain accurate estimates for the full body includ-

ing hand gestures and facial expressions.

2.1. Statistical 3D Human Body Model GHUM

We use a recently introduced statistical 3d human body

model called GHUM [43], to represent the pose and the

shape of the human body. The model has been trained end-

to-end, in a deep learning framework, using a large corpus

of over 60,000 diverse human shapes, and 540, 000 human

motions, consisting of 390,000 samples from CMU and

150,000 samples from Human3.6M (subjects S1, S5, S6, S7,

S8). The model has generative body shape and facial ex-

pressions β = (βb, βf ) represented using deep variational

auto-encoders and generative pose θ = (θb, θlh, θrh) for

the body, left and right hands respectively represented us-

ing normalizing flows [46]. We assume a separable prior

on the model pose and shape state p(θ,β) = p(θ) + p(β)
where Gaussian components with 0 mean and unit I co-

variance, as typical in variational encoder and normaliz-

ing flow models. Given a monocular RGB image as input,

our objective is to infer the pose θ ∈ R
Np×1 and shape

β ∈ R
Ns×1 state variables, where Np is the number of

posing variables and Ns is the length of the shape code, re-

spectively. A posed mesh M(θ,β) has Nv associated 3d

vertices V = {vi, i = 1 . . . Nv} with fixed topology given

by the GHUM template. Because the rigid transformation

of the model in camera space – represented by a 6d rotation

[50] r ∈ R
6×1 and a translation vector t ∈ R

3×1 – are

important and require special handling, we will write them

explicitly. The posed mesh thus writes M(θ,β, r, t).
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Figure 1. Overview of our Human Neural Descent (HUND) architecture for learning to estimate the state s of a generative human model

GHUM (including shape β and pose θ, as well as person’s global rotation r and translation t) from monocular images. Given an input

image, a first CNN extracts semantic feature maps for body keypoints (K) and part segmentation (B), as well as other features (F). These,

in turn feed, into a second stage CNN that learns to compute a global context code s
c as well as an initial estimate of the model state s0.

These estimates (and at later stages similar ones obtained recursively), together with the value of a semantic alignment loss Lu, expressed in

terms of keypoint correspondences and differentiable rendering measures between model predictions and associated image structures, are

fed into multiple refining RNN layers, with shared parameters δ, and internal memory (hidden state) m. The alignment losses (which can

be unsupervised, weakly-supervised or self-supervised, depending on available data) at multiple recurrent stages M are aggregated into

a learning loss Ll, optimized as part of the learning-to-learn process. The parameters are obtained using stochastic gradient descent, as

typical in deep learning. The model produces refined state estimates s with precise image alignment, but does not require additional gradient

calculations for the recurrent stages neither in training (e.g., second-order parameter updates), nor during testing (first-order state updates). It

is also extremely efficient computationally compared to models relying on nonlinear state optimization at test time.

Figure 2. Our complete full body 3d sensing HUND network combines a feed-forward architecture to detect landmarks and semantically

segment body parts with an attention mechanism that further processes the face, hands and the rest of the body as separate HUND predictive

networks, with results fused in order to obtain the final, full body estimate. See fig.1 for the architecture of an individual HUND network.
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Camera model. We assume a pinhole camera with intrin-

sics C = [fx, fy, cx, cy]
⊤ and associated perspective pro-

jection operator x2d = Π(x3d, C), where x3d is any 3d

point. During training and testing, intrinsics for the full

input image are approximated, fx = max(H,W ), fy =
max(H,W ), cx = W/2, cy = H/2, where H,W are the in-

put dimensions. Our method works with cropped bounding-

boxes of humans, re-scaled to a fixed size of 480 × 480,

therefore we need to warp the image intrinsics C into the

corresponding crop intrinsics Cc

[C⊤

c 1]⊤ = K[C⊤1]⊤, (1)

where K ∈ R
5×5 is the scale and translation matrix, adapt-

ing the image intrinsics C. By using cropped intrinsics, we

effectively solve for the state of the 3d model (including

global scene translation) in the camera space of the input im-

age. For multiple detections in the same image, the resulting

3d meshes are estimated relative to a common world coor-

dinate system, into the same 3d scene. At test time, when

switching Cc with C, the 3d model projection will also align

with the corresponding person layout in the initial image.

2.2. Learning Architecture

The network takes as input a cropped human detection

and resizes it to 480 × 480. A multi-stage sub-network

produces features F ∈ R
60×60×256, keypoint detection

heatmaps K ∈ R
60×60×137 and body-part segmentation

maps B ∈ R
60×60×15. These are embedded into a low-

dimensional space, producing a code vector sc – the super-

script c stands for context, i.e. the optimization’s objective

function context. We also append the cropped camera intrin-

sics Cc to this context vector. At training time, a estimate

s0 of the initial GHUM state s = [θ⊤,β⊤, r⊤, t⊤]⊤ is also

produced. To simulate model refinement2, we employ a Re-

current Neural Network module RNNδ(s
c, si,mi), where

mi is the memory (hidden state) at refinement stage i, and

unroll the updates into M stages (see fig.1)

[
si
mi

]
= RNNδ(si−1,mi−1, L

i−1

u , sc). (2)

The loss at each stage i is computed based on the label-

ing available at training time in the form of either 2d or

3d annotations. When both are missing, we are training

with self-supervision. The self-supervised loss at each unit

2HMR[16] uses several recursive output layers on top of a CNN pre-

diction. However HMR does not use a formal RNN to recursively refine

outputs based on a memory structure encompassing the previous estimates,

the image reprojection (keypoint and semantic) error and the image feature

code, as we do, which is the equivalent of a complete non-linear optimiza-

tion context. Nor do we use a discriminator for pose as HMR, but instead

rely on the kinematic normalizing flow prior of GHUM. Hence our approach

is methodologically very different. See §3 for quantitative evaluation.

processing stage i can be expressed as

Li
u(s,K,B) = λkLk(si,K) + λbLb(si,B) + l(θi,βi),

(3)

where l = − log(p), Lk is a 2d keypoint alignment loss,

Lb is a 2d semantic body part alignment (defined in terms

of differentiable rendering), and M is the total number of

training LSTM stages, while λk and λb are cross-validated

scalar values which balance the loss terms.

The keypoint alignment loss, Lk, measures the reprojec-

tion error of the GHUM’s model 3d joints w.r.t. the predicted

2d keypoints. The loss is defined as the 2d mean-per-joint

position error (MPJPE)

Lk(st,K) =
1

Nj

Nj∑

i

‖ji(K)−Π(Ji(st), Cc)‖2. (4)

with Nj keypoints, ji(K) is the 2d location of the i-th 2d

keypoint extracted from the the K heatmap, and Ji(st) is

the i-th 3d keypoint computed by posing the GHUM model

at st.

The body-part alignment loss, Lb, uses the current pre-

diction st to create a body-part semantic segmentation image

I(M(st), Cc) ∈ R
H×W×15. Then we follow a soft differen-

tiable rasterization process[23] to fuse probabilistic contri-

butions of all predicted mesh triangles of the model, at its

current state, with respect to the rendered pixels. In this way,

gradients can flow to the occluded and far-range vertices. To

be able to aggregate occlusion states and semantic informa-

tion, we append to each mesh vertex its semantic label, as a

one-hot vector {0, 1}15×1, and a constant alpha value of 1.

The target body part semantic probability maps B are also

appended with a visibility value, equal to the foreground

probability ∈ [0, 1]H×W×1. The loss is the mean-per-pixel

absolute value of the difference between the estimated and

predicted semantic segmentation maps

Lb(st,B) =
1

HW

HW∑

i

‖Bi − I(M(st), Cc)i‖1. (5)

For body shape and pose, we include two regularizers, pro-

portional to the negative log-likelihood of their associated

Gaussian distributions

l(θ) = − log p(θ) = ‖θ‖2
2
, l(β) = − log p(β) = ‖β‖2

2
.

(6)

When 3d supervision is available, we use the following

unit training loss Li
f , as well as, potentially, the other ones

previously introduced in (3) for the self-supervised regime

Li
f (s) = λmLm(M(si), M̃) + λ3dL3d(J(si), J̃),
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where Lm represents the 3d vertex error between the

ground-truth mesh M̃ and a predicted one, M(si)– obtained

by posing the GHUM model using the predicted state si;

L3d is the 3d MPJPE between the 3d joints recovered

from the predicted GHUM parameters, J(si), and the

ground-truth 3d joints, J̃; λm and λ3d are scalar values that

balance the two terms.

For learning, we consider different losses Ll, including

‘sum’, ‘last’, ‘min’ or ‘max’, as follows

LΣ

u (s,K,B) =
M∑

i=1

Li
u(si,K,B)

L→

u (s,K,B) = LM
u (sM ,K,B)

Lmin

u (s,K,B) =
M

min
i=1

Li
u(si,K,B)

Lmax

u (s,K,B) =
M

max
i=1

Li
u(si,K,B) (7)

We also consider an observable improvement (OI) loss for

Ll [11]

Loi
u =

M∑

i=1

min{Li
u −min

j<i
Lj
u, 0}. (8)

Multiple HUND networks for Body Pose, Shape, and Fa-

cial Expressions. Capturing the main body pose but also

hand gestures and facial expressions using a single network

is challenging due to the very different scales of each region

statistics. To improve robustness and flexibility we rely on

4 part networks, one specialized for facial expressions, two

for the hands, and one for the rest of the body. Based on

an initial person keypoint detection and semantic segmenta-

tion, we drive attention to face and hand regions as identified

by landmarks and semantic maps, in order to process those

features in more detail. This results in multiple HUND net-

works being trained, with estimates for the full body shape

and pose fused in a subsequent step from parts (fig. 2).

3. Experiments

View of Experimental Protocols. There is large variety

of models and methods now available for 3d human sens-

ing research, including body models like SMPL [24] and

GHUM [43], or reconstruction methods like DMHS [30],

HMR [16], SPIN [19] etc., set aside methods that combine

random initialization or neural network prediction and non-

linear refinement[3, 47]. To make things even more complex,

some models are pre-trained on different 2d or 3d datasets

and refined on others. A considerable part of this devel-

opment has a historical trace, with models built on top of

each-other and inheriting their structure and training sets, as

available at different moments in time. Set that aside, mul-

tiple protocols are used for testing. For Human3.6M [13]

only, there are at least 4: the ones originally proposed by the

dataset creators, on the withheld test set of Human3.6M (or

the representative subset Human80K [12]) as well as others,

created by various authors, known as protocol 1 and 2 by

re-partitioning the original training and validation sets for

which ground truth is available. Out of these 2, only protocol

1 is sufficiently solid in the sense of providing a reasonably

large and diverse test set for stable statistics (e.g., 110,000

images from different views in P1 vs. 13,700 in P2, from

the same camera, at the same training set size of 312,000

configurations for both). Hence we use P1 for ablations and

the official Human3.6M test set for more relevant compar-

isons. For some of the competing methods, e.g. SPIN[19],

HMR[16] we ran the code from the released github reposi-

tories ourselves on the Human3.6M test set since numbers

were not reported in the original publications. Results are

presented in table 2. We will also use 3DPW [41] for similar

reasons, or rather, in the absence of other options in the wild

(30,150 training and 33,000 testing configurations). Test-

ing all other model combinations would be both impractical

and irrelevant, especially for new models like GHUM where

most prior combinations are unavailable and impossible to

replicate. As a matter of principle, 3D reconstruction mod-

els can be evaluated based on the amount of supervision

received, be it 2d (for training landmark detectors #2d det

or, additionally, for direct 3d learning #2d), # 3d, or synchro-

nized #2d-3d annotations, the number of images used for

self-supervision #I, as well as perhaps number of parameters

and run-time. In addition, ablations for each model, e.g.,

HUND, would offer insights into different components and

their relevance. We argue in support of this being one sci-

entifically sound way of promoting diversity in the creation

of new models and methods, rather than closing towards

premature methodological convergence, weakly supported

by unsustainable, ad-hoc, experimental combinatorics.

For our self-supervised (SS) experiments, we employ

two datasets containing images in-the-wild, COCO2017 [22]

(30,000 images) and OpenImages [21] (24,000), with no

annotations in training and testing. We refer to weakly-

supervised (WS) experiments as those where ground truth

annotations are available, e.g. human body keypoints. We

do not rely on these but some other techniques including

HMR and SPIN do, hence we make this distinction in order

to correctly reflect their supervision level.

For fully supervised (FS) experiments, we employ

H3.6M and 3DPW. Because we work with the newly re-

leased GHUM model, we retarget the mocap raw marker

data from H3.6M to obtain accurate 3d mesh supervision for

our model [43]. Because the ground-truth of 3DPW is pro-

vided as SMPL 3d meshes, we fit the GHUM model by using

an objective function minimizing vertex-to-vertex distances

between the two corresponding meshes.

Architecture Implementation. To predict single-person
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Method MPJPE-PA MPJPE MPJPE Trans #2d det #2d #3d #2d-3d #I

HMR (FS+WS) [16] 58.1 88.0 NR 129k 111k 720k 300k 0

SPIN (FS+WS) [19] NR NR NR 129k 111k 720k/390k 300k 0

HUND (FS+SS) 52.6 69.45 152.6 80k 0 540k 150k 54k

HMR (WS) [16] 67.45 106.84 NR 129k 111k 720k 0 0

HUND (SS) 66.0 91.8 159.3 80k 0 540k 0 54k

Table 1. Performance of different pose and shape estimation methods on the H3.6M dataset, with training/testing based on the representative

protocol P1 (for self-supervised variants this only indicates the images used in testing). MPJPE-PA and MPJPE are expressed in mm. We

also report the global translation of the body as this is supported by our fully perspective camera model (N.B. this is not supported by other

methods which use an orthographic perspective model). We also compare different annotations used in the construction of different models,

with a split into 2d (further differentiated into #2d det for training the joint landmarks and #2d for training the 3d learning algorithm), 3d

and synchronized 2d-3d. The last column gives the number of images for self-supervised variants, e.g., HUND(SS), which do not use either

2d image keypoints or synchronized images and 3d mocap during training.

Method MPJPE

HMR (FS+WS) [16] 89

SPIN (FS+WS) [19] 68

HUND (FS+SS) 66

Table 2. Results of different methods on the H3.6M official held-out

test set. We achieve better results on a large test set of 900k images.

Method MPJPE-PA (mm) MPJPE (mm)

HMR (FS+WS) [16] 81.3 130.0

SPIN (FS+WS)[19] 59.2 96.9

ExPose (FS+WS)[7] 60.7 93.4

HUND (SS) 63.5 90.4

HUND (FS+SS) 57.5 81.4
Table 3. Results on the 3DPW test set for different methods. Notice

that a self-supervised version of HUND produces lower errors com-

pared to the best supervised HMR implementation that includes

not just synchronized 2d − 3d training sets but also images with

2d annotation ground truth. A HUND model that includes asyn-

chronous 2d-3d supervision, in addition to just unlabeled images,

achieves the lowest error, and uses less training data than any other

competitive method – see also table 1.

keypoints and body part segmentation, we train a multi-task

network with ResNet50 [9] backbone (the first CNN in our

pipeline, see fig.1 and fig.2)[30]. We have 137 2d keypoints

as in [4] and 15 body part labels, as in [32]. This network has

34M trainable parameters. The self-supervised training pro-

tocol for HUND assumes only images are available and we

predict 2d body keypoints and body part labels during train-

ing, in addition to body shape and pose regularizers. For the

embedding model (the second CNN in the pipeline) predict-

ing sc, we use a series of 6 convolutional layers with pooling,

followed by a fully connected layer. We use M = 5 LSTM

[10] stages as RNNs for HUND and we set the number of

units to 256, which translates to 525k parameters. In total

there are 950k trainable parameters for the 3D reconstruction

model. We train with a batch size of 32 and a learning rate of

10−4 for 50 epochs. For experiments where we train HUND

using FS+SS, we use a mixed schedule, alternating between

self-supervised and fully-supervised batches. Training takes

about 72 hours on a single Nvidia Tesla P100 GPU. The run-

time of our prediction network for a single image is 0.035s

and 0.02s for HUND, on an Nvidia RTX 2080 GPU.

Evaluation and discussion. Multiple experiments are run

for different regimes. Quantitative results are presented in

tables 1, 2 and 3 for Human3.6M and 3DPW respectively.

A detailed analysis of optimization behavior for one image

is given in fig. 3 as well as, in aggregate, in fig. 4. Visual

reconstructions at different HUND optimization stages, for

several images, are given in fig. 6.

Loss MPJPE-PA (mm) MPJPE (mm)

L→

f 58.50 80.16

LΣ

f 59.91 83.26

Lmin

f 78.61 122.60

Loi
f 79.35 123.90

Lmax

f 83.80 128.0
Table 4. Impact assessment of different meta-losses used in HUND

(FS), trained on the Human3.6M dataset, following protocol 1. The

last and sum losses perform similarly well, with others following

at a distance.

We also study the impact of different meta-learning losses,

as given in (7) and (8), on the quality of results of HUND.

We use a HUND (FS) model trained and evaluated on Hu-

man3.6M (protocol 1). From table 4 we observe that the

last (L→

f ) and sum (LΣ

f ) losses perform best, whereas others

produce considerably less competitive results, by some mar-

gin, for this problem. Finally, we show qualitative visual 3d

reconstruction results, from several viewpoints, for a variety

of difficult poses and backgrounds in fig. 5. Please see our

Sup. Mat. for videos!

Ethical Considerations. Our methodology aims to decrease

bias by introducing flexible forms of self-supervision which

would allow, in principle, for system bootstrapping and adap-

tation to new domains and fair, diverse subject distributions,

for which labeled data may be difficult or impossible to

collect upfront. Applications like visual surveillance and

person identification would not be effectively supported cur-

rently, given that model’s output does not provide sufficient
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Figure 3. Behavior of different optimization methods including standard non-linear gradient-based BFGS, HUND(5), as well as variants of

HUND(i), i ≤ 5, initializing BFGS, in order to assess progress and the quality of solutions obtained along the way (left). Corresponding

cumulative run-times are shown on the right. Observe that HUND produces a good quality solution orders of magnitude faster than gradient

descent (note log-scales on both plots). End refinement using gradient descent improves results, although we do not recommend a hybrid

approach— here we only show different hybrids for insight. This shows one optimization trace for a model initialized in A-pose and

estimated given one image from Human3.6M, but such behavior is typical of aggregates, see e.g., fig. 4. See also fig. 6 for visual illustrations

of different configurations sampled by HUND during optimization.

Figure 4. Optimization statistics for different methods, aggregated over 100 different poses (estimation runs) from Human3.6M. We initialize

in an A-pose and perform monocular 3d pose and shape reconstruction for GHUM under a HUND (FS+SS) model, as well as non-linear

optimization baselines. On the left we show per-joint angle averages w.r.t. ground truth. On the right we show running times in aggregate

for different types of optimization. One can see that BFGS descent under a keypoint+prior loss tends to be prone to inferior local optima

compared to different HUND hybrids, which on average find significantly better solutions. The plot needs to be interpreted in proper context,

as aggregates meant to show distance and run-time statistics per iteration. Hence, they may not be entirely representative of any single run,

but for a singleton see e.g., fig. 3.

detail for these purposes. This is equally true of the creation

of potentially adversely-impacting deepfakes, as we do not

include an appearance model or a joint audio-visual model.

4. Conclusions

We have presented a neural model, HUND, to reconstruct

the 3d pose and shape of people, including hand gestures and

facial expressions, from image data. In doing so, we rely on

an expressive full body statistical 3d human model, GHUM,

to capture typical human shape and motion regularities. Even

so, accurate reconstruction and continuous learning are chal-

lenging because large-scale diverse 3d supervision is difficult

to acquire for people, and because the most efficient infer-

ence is typically based on non-linear image fitting. This is

however difficult to correctly ‘supra’-differentiate, to sec-

ond order, in training and expensive in testing. To address

such challenges, we rely on self-supervision based on dif-

ferentiable rendering within learning-to-learn approaches

based on recurrent networks, which avoid expensive gradient

descent in testing, yet provide a surrogate for robust loss min-

imization. HUND is tested and achieves very competitive

results for datasets like H3.6M and 3DPW, as well as for

complex poses, collected in challenging outdoor conditions.

HUND’s learning-to-learn and optimize capabilities, and

symmetry between training and testing, can make it the first

architecture to demonstrate the possibility of bootstraping

a plausible 3d human reconstruction model without initial,

synchronous (2d, 3d) supervision.
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Figure 5. Visual 3d reconstruction results obtained by HUND. Given initial 2d predictions for body, face and hand keypoints, and initial

predictions for semantic body part labelling, the neural descent network predicts the 3d GHUM pose and shape parameters. Best seen in

color. For other examples and videos see our Sup. Mat.

Figure 6. Visual 3d pose and shape configurations of GHUM sampled by HUND during optimization. First column shows the input image,

columns 2-6 illustrate GHUM estimates at each HUND stage. Columns 7 and 8 show visualizations of the GHUM state from different

viewpoints, after HUND terminates. Columns 9, 10 and 11 show close up views for the reconstructed face expressions, left and right hands.
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