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Figure 1: Visual navigation may require interactions that go beyond moving forward/backward, and turning left/right. For

example, the agent in the top row needs to push the chair out of its way to reach the target. Interactive navigation entails

deeper understanding of the outcome of agents actions on objects in the scene. In this paper, we introduce Neural Interaction

Engine (NIE) to explicitly predict the effect of actions on objects poses. By integrating NIE with our policy network we

show that we can perform long-horizon planning while predicting the outcome of the actions. We evaluate NIE for visual

navigation where the path to the goal is obstructed, and moving objects to specific locations in the scene and show major

improvements over state of the art in these tasks.

Abstract

We have observed significant progress in visual naviga-

tion for embodied agents. A common assumption in study-

ing visual navigation is that the environments are static; this

is a limiting assumption. Intelligent navigation may involve

interacting with the environment beyond just moving for-

ward/backward and turning left/right. Sometimes, the best

way to navigate is to push something out of the way. In this

paper, we study the problem of interactive navigation where

agents learn to change the environment to navigate more ef-

ficiently to their goals. To this end, we introduce the Neural

Interaction Engine (NIE) to explicitly predict the change in

the environment caused by the agent’s actions. By model-

ing the changes while planning, we find that agents exhibit

significant improvements in their navigational capabilities.

More specifically, we consider two downstream tasks in the

physics-enabled, visually rich, AI2-THOR environment: (1)

reaching a target while the path to the target is blocked (2)

moving an object to a target location by pushing it. For both

tasks, agents equipped with an NIE significantly outperform

agents without the understanding of the effect of the ac-

tions indicating the benefits of our approach. The code and

dataset are available at github.com/KuoHaoZeng/

Interactive_Visual_Navigation.

1. Introduction

Embodied AI has witnessed remarkable progress over

the past few years owing to advances in learning algorithms,

benchmarks, and standardized tasks. A popular task that has

received a considerable amount of attention is visual navi-

gation [3, 5, 8, 29, 39, 48], where the goal is to navigate

towards a specific coordinate or object within an unseen en-

vironment. One of the common implicit assumptions for

these navigation methods is that the scene is static, and the

agent cannot interact with the objects to change their pose.

Consider the scenario that the path of the agent towards

the target location is blocked by an obstacle (e.g., a chair)

as shown in Fig. 1 (top). To reach the target, the agent has

to move the obstacle out of the way. Therefore, planning

for reaching the target requires not only understanding the

outcome of agent actions but also the dynamics of agent-

object interactions. There are many factors such as object

size, spatial relationship with other objects in the scene, and

reaction of the object to the applied forces, that influence

the outcome of the interaction with the object. Hence, long-
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horizon planning for navigation conditioned on the object

dynamics offers unique challenges that are often overlooked

in the recent navigation literature.

The first challenge is to learn whether an action affects

the pose of an object or not. Navigation actions (e.g., rotate

right or move ahead) typically do not affect the position of

objects in the world coordinate frame while interaction ac-

tions (e.g., pushing an object) can change the object pose.

The objects move in the ego-centric view of the agent due to

agent movements or interaction with objects. Learning how

objects move as a result of camera motion or interaction im-

poses the second challenge. Learning how to interact with

objects is another challenge. For example, the agent should

learn that pushing an object against a wall does not change

its pose.

In this paper, we propose a novel model for navigation

while interacting with objects within a scene that jointly

plans a sequence of actions and predicts the changes in the

scene conditioned on those actions. More specifically, the

model includes a Neural Interaction Engine (NIE) module

that predicts the affine transformation of objects from the

perspective of the agent conditioned on the actions. The

goal is to learn if/how the actions affect the pose of the ob-

jects. The NIE module receives gradients for not only the

prediction of the pose in the next frame but also the naviga-

tion policy.

We evaluate our model on two downstream tasks Ob-

sNav and ObjPlace. The goal of ObsNav is to reach a spe-

cific coordinates in a scene while the paths from the initial

location of the agent to the target are blocked by objects.

The goal of ObjPlace is to push an object on the floor while

navigating so it reaches a target point. These are challeng-

ing tasks since the agent requires an accurate understand-

ing of the dynamics of the objects and their interaction with

other objects in the scene. We perform our experiments in

120 scenes of the physics-enabled AI2-THOR [19] environ-

ment. Our experiments show significant improvement over

baselines that are not capable of explicitly predicting the ef-

fect of interactions showing the merit of our NIE model.

In summary, we highlight three primary contributions.

(1) We propose Neural Interaction Engine, as a model for

predicting the state of the observed objects conditioned on

the agent actions. (2) We propose new datasets for two

navigation-based tasks using a physics-enabled framework,

which enables changing the pose of objects and models rich

object-object and agent-object interactions. (3) We show

that predicting the outcome of actions is a crucial capability

for embodied agents by showing significant improvements

over baselines that do not possess this capability.

2. Related Work

Action-conditioned learning of rigid body dynamics.

The goal of these works is to learn the dynamics of rigid

body motion under the effect of applied actions. Byra-

van and Fox [6] segment a point cloud into salient regions

and predict the rigid body motion. Li et al. [21] learn to

re-position and re-orient an object with unknown physical

properties. Several works [11, 12, 13, 46] have proposed

formulations of visual Model Predictive Control, where the

central insight is that a predictive model of sensory in-

put is a powerful signal for learning to perform tasks. A

number of other strategies for action-conditioned learning

have been proposed, these include: learning latent physi-

cal properties of objects using visual observation of interac-

tions with those objects [45], learning forward and inverse

scene dynamics from object interaction data [26], represent-

ing scenes as object-centric graphs and learning to predict

changes in object pose after applying a push action [28],

learning the dynamics of balls and walls in the game of bil-

liards [14], and modeling the dynamics of robot interactions

by jointly estimating forward and inverse models of dynam-

ics [1]. In contrast to all of these approaches, we consider

the more complex mobile robot scenario, where we factor-

ize the effect of robot motion and object motion.

Learning dynamics from perception. The dynamics of

objects can be inferred from images and videos alone with-

out any interaction. [35] decompose frame-to-frame pixel

motion into scene depth, 3D camera rotation and transla-

tion, and a set of object regions with their corresponding

3D motion. [22] reason about the underlying physical prop-

erties of objects that appear in a sequence of frames and

predict future motion of those objects. [17, 41] jointly train

a perception module, an object-based physics engine and

a renderer to generate the future predictions. [7] propose

Neural Physics Engine that outputs the future states of ob-

jects and their properties. [36] also infers the physical state

of objects from video input and predict their future trajecto-

ries. [40] infer physical properties of objects such as mass

and density from videos. [24, 25, 46, 47] predict the dynam-

ics of objects and their future trajectory. These approaches

focus on simple scenarios (such as balls of uniform mass or

a stack of cubes), no agent action is considered or assume a

static camera.

Visual navigation. The tasks that we consider in this pa-

per involves visual navigation. Visual navigation has been

addressed in various papers in recent Embodied AI liter-

ature. Most works focus on point navigation (PointNav)

[3, 9, 29, 38] or object navigation (ObjectNav) [5, 8, 10, 39].

Our task is different since in these works only static scenes

are considered.

Our task is closer to existing tasks that consider naviga-

tion among movable obstacles [4, 18, 23, 31, 32, 43, 44].

The difference with [31, 32] is that those works are not

learning-based and generalization to unseen scenes is not

evaluated. Our task differs from that of [44] in that our agent

applies forces to objects with different magnitudes and di-
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Figure 2: Model overview. Our model includes three main

parts: Visual Encoder, Neural Interaction Engine, and Pol-

icy Network.

rections (as opposed to moving objects by colliding with

them). Our approach also shows significant improvements

over the vanilla RL approaches used in [44].

3. Model

In this section, we begin by providing an overview of the

proposed model. We then introduce our Neural Interaction

Engine (NIE) and explain how we integrate the NIE into the

policy network. Finally, we describe the learning objective

and how we learn the entire model with the NIE module.

3.1. Model Overview

Our model has three main components: a visual encoder,

Neural Interaction Engine, and a policy network, as illus-

trated in Fig. 2. First, the visual encoder produces a repre-

sentation v from a visual observation i. The visual obser-

vation includes an RGB image captured by a mounted cam-

era and a depth image captured by a depth sensor. The vi-

sual encoder is a convolutional neural network aiming to ex-

tract informative features from the given observation. Sec-

ond, the NIE, which receives the same input observation

i, extracts keypoints po of an object o ∈ O, and predicts

Pull Right Push Move AheadPush

p

p
a

Figure 3: Keypoint examples. The top row shows ob-

ject keypoints po and bottom row shows action-conditioned

keypoints pa
o resulted from Push, Pull, RightPush and

MoveAhead actions. The keypoints are showon in red.

keypoint locations pa
o after applying each action a ∈ A.

Fig. 3 shows typical examples of pchair and pa
chair after

applying Push, Pull, RightPush and MoveAhead ac-

tions. More specifically, the NIE predicts affine transfor-

mation matrices ma
o ∈ R

4×4 corresponding to each ob-

ject and each action. Then, we derive the pa
o by translat-

ing and rotating the po via ma
o in 3D space. Applying the

affine transformation to the keypoints preserves the rigid

body constraint while moving keypoints of the same ob-

ject. The NIE summarizes both the extracted keypoints and

the action-conditioned keypoints into an action-conditioned

state feature ra. In this way, the NIE provides possible out-

comes resulting from each action to the policy network. Fi-

nally, given a goal representations g, the policy network uti-

lizes both v and ra to generate an action a for the agent.

3.2. Neural Interaction Engine

The NIE operates by first extracting object keypoints

p ∈ R
O×(N×3), where N denotes the number of key-

points, O denotes the observed objects, and each p ∈ R
3

describes a point in the three dimensional space, and then,

based on these keypoints, predicting the action-conditioned

keypoints pa ∈ R
O×|A|×(N×3) for each action a in the ac-

tion space A. The engine captures a summary of possible

outcomes for each action and object. These summaries are

used by the policy network to sample an action a.

As shown in Fig. 4, the input to NIE includes the obser-

vation i, which includes an RGB frame and a depth map,

the visual representation v from the visual encoder, the ob-

ject category embedding, and the action index embedding.

The observation is first passed through a MaskRCNN [16]

to obtain object segmentations. To extract the keypoints, we

heuristically detect 8 corner points in an object segment as

the keypoints for this object (see supplementary for more

details). We used a heuristic approach to find the keypoints,

but any other keypoint detection approach (e.g., [20, 33])

could be used instead. Further, using the depth map and

camera parameters of the agent, we back project the key-

points onto the 3-dimensional space.

To predict the outcome of each action, the NIE predicts

affine transformation matrices for each object and action,

as shown in the Affine Transformation module in Fig. 4. In

practice, we first embed the keypoints p into hidden fea-

tures and concatenate it with the object category embed-

ding as well as the action index embedding. Then, we

use an MLP to predict the affine transformation matrix

m ∈ R
O×|A|×4×4 for all objects O and all actions in the

action space A. We translate and rotate the keypoints p ac-

cording to m to obtain pa. Since each ma
o ∈ m encodes the

information associated with object category and the action

a, the predicted keypoints not only contain semantic mean-

ing, but also carry action-dependent information.

To encode keypoints and their corresponding action-
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Figure 4: Neural Interaction Engine. The inputs to the neural interaction engine are action indices, object categories, visual

representation v from the visual encoder, and visual observation i, which includes an RGB image and a depth map. After

encoding each input modality, the engine uses an MLP to predict the affine transformation matrices to translate and rotate

keypoints p to pa corresponding to all objects and all actions. Then, the engine encodes the average of keypoints into hidden

features s as well as sa. Finally, the engine utilizes a self-attention layer to summarize the hidden features into a semantic

action-conditioned state representation ra.

conditioned keypoints, we first compute the center (c and

ca) of both p and pa by averaging the coordinates along

each axis (i.e, cx = 1
N

∑N

n=1 p
n
x , cy = 1

N

∑N

n=1 p
n
y ,

cz = 1
N

∑N

n=1 p
n
z ). Further, we employ a state encoder

to encode c and ca into hidden features (s and sa), as shown

in the Encode module in Fig. 4.

The hidden features s and sa are then concatenated

with the object category embedding to construct a seman-

tic action-conditioned state representation r. Furthermore,

we perform Self-Attention [34] on r over the object cate-

gory axis and an Average-Pooling layer to obtain the action-

conditioned state representation ra, as illustrated in the At-

tention module in Fig. 4. The reason for this step is not only

to make the action-conditioned representation more com-

pact, but also to directly associate it to each action.

Integrating NIE output into the Policy Network. We

construct a global representation f by concatenating the

goal representations g (e.g., target location encoding for the

point navigation task), visual representation v, and action-

dependent state features ra. The policy network takes f

as the input and outputs a probability distribution over the

action space. The agent samples an action from this distri-

bution to execute in the environment.

3.3. Learning Objective

To train the model to learn the affine transformation ma-

trix, we use the pose of an object before and after applying

an action a in the environment to construct the ground truth

affine transformation matrix. Then, we apply this ground

truth affine transformation matrix to the keypoints p to ob-

tain the ground truth action-conditioned keypoints ta. We

cast the learning as a regression problem and use L1 loss

to optimize NIE. The agent can only pick one action to ex-

ecute at each timestamp. Hence it is not possible to obtain
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Figure 5: Training pipeline. The entire model is trained by

LPPO and the Affine Transformation module is trained by

LNIE. However, the gradients backpropagated from LNIE are

only used to update the parameters corresponding to pa∗

O∗ ,

where O∗ are the observed object categories and a∗ is the

action taken by the agent. The tensors corresponding to pa∗

O∗

are highlighted in red.

the ground truth action-conditioned keypoints ta for all pos-

sible actions a ∈ A. The agent only observes few objects

among the object categories O, so we do not backpropagate

the gradients back to the object categories that are not ob-

served. As a result, during the training stage (as illustrated

in Fig. 5), we only compute the loss for the executed action

and backpropagate the gradients only through the path cor-

responding to a∗, the action that is actually executed by the

agent and also the observed object categories O∗ ⊂ O:

LNIE = L1(pa∗

O∗ , ta
∗

O∗). (1)

Further, to learn the policy network, we employ the Prox-

imal Policy Optimization (PPO) [30] to perform an on-

policy reinforcement learning, as illustrated in Fig. 5. The
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Figure 6: Dataset examples. Top: five examples in ObsNav dataset, where the blue boxes are obstacles and the yellow circle

is the target position. Bottom: five examples in ObjPlace dataset, where the red boxes are the object that should be displaced

and the yellow circle is the target place.

overall learning objective is L = LPPO + αLNIE, where the

α ≥ 0 is a hyperparameter controlling the relative impor-

tance of the NIE loss.

4. Experiments

To evaluate the effectiveness of the proposed Neural In-

teraction Engine, we evaluate it on two downstream tasks.

In the following, we first describe the two downstream

tasks. We then describe environment details and the datasets

we have collected for training and evaluating the proposed

framework. Further, we provide the implementation details

in Sec. 4.1. In Sec. 4.2 and Sec. 4.3, we introduce our com-

parative baselines and variations of our model. Finally, we

present quantitative and qualitative results in Sec. 4.4.

Downstream tasks. We consider two downstream tasks for

our experiments:

• ObsNav – The goal of ObsNav is to move from a ran-

dom starting location in a scene to specific coordinates

while the path to the target point is blocked by obsta-

cles on the floor. This is similar to PointNav [3] with

the difference that the agent should move objects out

of the way to reach the target.

• ObjPlace – The second downstream task that we con-

sider is ObjPlace. The goal is to move an object on

the floor from a random starting location to a specified

coordinate in a scene. This task requires successive

application of a force to an object while navigating to-

wards the target point.

Successful completion of these tasks requires reasoning

about the outcome of the agent actions while performing

long-horizon planning. Therefore, they are suitable testbeds

to evaluate our model.

Environment settings. In this work, we perform exper-

iments on AI2-iTHOR [19] v2.7.2, which provides fairly

accurate physical properties of objects. AI2-iTHOR is

built using the Unity game engine which enables the sim-

ulation of physical agent-object and object-object interac-

tions. In this environment, we consider actions A = {
MoveAhead, RotateRight, RotateLeft, LookUp,

LookDown, Push, Pull, RightPush, LeftPush,

END}, where MoveAhead moves the agent ahead by

0.25 meters, RotateRight and RotateLeft change

the agent’s azimuth angle by ±90 degrees, LookUp and

LookDown rotate the agent’s camera elevation angle by

±30 degrees, the Push, Pull, RightPush, as well as

LeftPush let the agent push (along ±z and ±x axis) the

closest observed object by applying a force of 100 newtons.

The agent issues the END to indicate that it has completed

an episode. Fig. 3 shows four typical examples where the

agent applies Push, Pull, RightPush, LeftPush ac-

tions. Finally, we set the height and width of RGB and depth

images to 224. Thereby, the ground truth object segmenta-

tion used to learn the NIE is also of the same dimensions.

Data collection. We use Kitchens, Living Rooms, Bed-

rooms, and Bathrooms for our experiments (120 scenes in

total). We follow the common practice for AI2-THOR

wherein the first 20 scenes are used for training, the next

5 for validation, and the last 5 for testing in each scene cat-

egory. To collect the datasets, we use 20 categories of ob-

jects such as Chair, SideTable, and DogBed. Please

see supplementary for the used objects. These objects are

used as obstacles for ObsNav and as objects that should be
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displaced in ObjPlace. These objects are spawned on the

floor for the downstream tasks. For each object category we

have 5 different variations. We randomly select the first 4
variations to collect the training and validation data and use

the 5th variation to collect the test data.

To generate the dataset for ObsNav, we utilize an undi-

rected graph to compute the path from the agent’s starting

location to the target location. Then, we randomly spawn

an object to block the path. To ensure that there is no way

that the agent can directly reach the target location with-

out moving an object, we repeat this process until there is

no path between the agent’s starting location (source node)

and target location (end node). The top row in Fig. 6 shows

five examples in this dataset.

To generate the dataset for ObjPlace, we first create a

yellow mark at a random location on the floor in a scene

to indicate the target location. We then spawn an object at

another random location, which is at least 2 meters away

from the target location. In total, we collect 10k training

instances, 2.5k validation instances, and 2.5k testing in-

stances for each task. The bottom row in Fig. 6 shows five

examples in this dataset.

4.1. Implementation details

In this work, we use the AllenAct [37] framework to

conduct experiments. We train our model using both LPPO

and LNIE simultaneously. We set the α parameter in Sec-

tion 3.3 to 3. We discuss the effect of α on the performance

in Sec. 4.4. For ObsNav/ObjPlace, an episode is success-

ful if the agent invokes END while the agent/object reaches

a position within 0.2 meters of the target position. During

the training stage, we perform the on-policy reinforcement

learning (PPO) with 80 processes simultaneously. We use

Adam with initial learning rate of 3 · 10−4 which decays

linearly to 0 during training. We set the standard RL reward

discounting parameter γ to 0.99, λgae to 0.95, and number

of update steps to 30 for LPPO. The gradients ∆ are clipped

to satisfy |∆| <= 0.5. We train the policy for 10 million

steps and evaluate the model every 1 million steps.

During the training stage, we use the ground truth ob-

ject mask provided by the environment, while in the testing

stage, we employ a pre-trained MaskRCNN [16] to extract

the segmentation. The number of output classes for both

ground truth segmentation and MaskRCNN is 21, includ-

ing 20 used objects and a background class. We use [42]

to pre-train the MaskRCNN (ResNet-50 with FPN) on our

training scenes with 8k images for 10 epochs. Please see

supplementary for more details about the qualitative results

generated by the MaskRCNN on our validation scenes.

Model architecture. Because the visual observation i in-

cludes an RGB image and a depth image, we employ two

different CNNs, with different input number of channels, in

the Visual Encoder to handle these two observations sepa-

rately. After the CNNs extract features from both observa-

tions, we use a linear layer to fuse the two features together.

In both tasks, we provide the observation from a GPS sensor

to the policy network. The GPS’s observation is a coordi-

nate of the target position for ObsNav or the target place for

ObjPlace. In addition to the GPS’s observation, we em-

ploy a look-up embedding to encode the category of the

target object for ObjPlace. The Encode and MLP shown

in Fig. 4 are a look-up embedding layer and a multi-layer

perceptron, respectively. The Self-Attention layer has three

MLPs as well to handle the key, query, and value embed-

ding. Our policy network consists of a GRU state encoder,

a linear layer for the actor (policy), and a linear layer for

the critic (value). Please refer to supplementary for more

details about each model components such as the number

of layers and hidden dimension.

Reward shaping. We consider a task successful if the

agent invokes the END when the agent achieves the goal.

For ObsNav, the goal is to reach within a certain distance

(0.2 meters) to the target location and for ObjPlace, the ob-

ject should have overlap with the yellow target mark. If the

agent succeeds in an episode, we provide a reward of +10.

We find reward shaping [27] important to learn the policy

in the two studied tasks. We implement reward shaping for

each task as follows:

• ObsNav: Similar to [29], we implement the reward shap-

ing based on geodesic distance. We provide a reward to

the agent after it takes an action based on the change in the

geodesic distance between the current agent position and

the target position. If the agent takes an action resulting in

a decrease of the geodesic distance, the agent receives the

decreased amount as the reward. Otherwise, if the taken ac-

tion causing an increase in the geodesic distance, the agent

receives the amount of increase as a penalty. There are ob-

stacles blocking the paths to the destination, so we also en-

courage the agent to take actions to move the obstacles out

of the way. Therefore, the environment provides a −0.5
penalty if the agent takes any action that blocks a path be-

tween the agent and the goal and conversely, a 0.5 reward

if the agent’s action opens a new path to the goal. We let

rdis/appear = −0.5 if the agent’s action resulted in blocking

a path, rdis/appear = 0.5 if the agent’s action opened a path,

and rdis/appear = 0 otherwise.

• ObjPlace: For this task, we perform reward shaping only

based on the geodesic distance. We provide a reward to the

agent after it takes an action according to the change in the

geodesic distance between the current object position and

the target position.

To encourage the agent to finish the task as quickly as

possible, we also add a small penalty −0.01 at each step.
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As a result, the total reward at step t is:

rt =

{

rs + rdis/appear + dt−1 − dt + p if goal is reached,

rdis/appear + dt−1 − dt + p otherwise,

where rs is set to 10, dt denotes the geodesic distance be-

tween the agent (object) and the target position at step t, and

p is the step penalty which equals −0.01 and −0.002 for

ObsNav and ObjPlace, respectively. Note that the rdis/appear

is removed in the ObjPlace task. However, adding rdis/appear

is essential to the ObsNav task, since the policy network

with visual observation i but without rdis/appear does not gen-

eralize to the unseen environments even after 10 million

steps of training.

4.2. Baselines

We compare our model with the following baseline

methods. Each baseline uses the same visual encoder and

policy network unless stated otherwise.

PPO. This baseline is a Reinforcement Learning based ap-

proach that has a visual encoder to extract features from

visual observation i and an embedding layer to encode the

GPS readings. The model is trained by Proximal Policy Op-

timization [30] and we use the same learning hyparameters

mentioned in Sec. 4.1 to train using this method.

RGB-D and object segmentation input (RGB-D-S). This

baseline includes a segmentation image as well as the visual

observation i. We extend the Visual Encoder by another

CNN to extract features from the segmentation image. As

mentioned in Sec. 4.1, we use the ground truth segmenta-

tion during the training stage and the results generated by

MaskRCNN (fine-tuned on our data) during the evaluation.

RGB-D and keypoints input (RGB-D-K). To understand

if the keypoints representation extracted from object seg-

mentation is more meaningful than a pure segmentation

image input, we implement this baseline by including the

keypoints extracted by the same heuristic corner detector

(Sec. 3.2) used in our model as an additional input. To en-

code the keypoints, we use the same model architecture as

the NIE module to obtain the semantic action-conditioned

state representation ra as well. However, the LNIE is not

used to learn the NIE module in this baseline. The parame-

ters are updated by the gradients from LPPO only.

PPO + auxiliary loss. We implement a baseline based on

CPC|A [15] to facilitate the policy learning upon the PPO

baseline. During the training stage, the CPC|A utilizes Con-

trastive Predictive Coding as an auxiliary loss to perform

predictive representation learning. To have a fair compar-

ison, we use a GRU with the same hidden size and only

predict one time step in the future.

4.3. Ablations

To perform ablation studies, we evaluate the following

variations of our NIE model.

Methods SR (%) ↑ FDT (m) ↓ SPL ↑
Baselines:

PPO [30] 67.1 0.605 25.7

RGB-D-S 62.8 0.499 25.0

RGB-D-K 70.9 0.459 25.8

CPC|A [15] 73.8 0.370 29.8

NIE (ours) 80.0 0.304 31.3

Ablations:

NIE w/o VO 72.7 0.375 29.2

NIE w/ 1× LNIE 74.1 0.377 29.7

NIE w/ 10× LNIE 78.2 0.278 31.0

Table 1: ObsNav results. We show the result of our method

(referred to as ‘NIE’) along with baselines and ablations of

our model. We use ↑ and ↓ to denote if larger or smaller

values are preferred. We repeat the experiments three times

and report the average.

NIE w/o visual observations. To understand if the visual

observation i can help the prediction of affine transforma-

tion matrices and the action-conditioned keypoints pa, we

implement this model by removing the visual input from

the NIE. Therefore, the NIE only takes the keypoints in co-

ordinate representation with action indices as well as object

categories. We use the same hyperparameters and optimiza-

tion approach mentioned in Sec. 4.1 to train this model.

NIE w/ 1× LNIE. We decrease α, which is used to balance

the LNIE and LPPO. This provides us with an insight about

the importance of LNIE to learn the entire model.

NIE w/ 10 × LNIE. In this ablation study, we increase the

α, which is used to balance the LNIE and LPPO, to 10. This

study shows if a large value of α would have a negative

impact on the final performance.

4.4. Results

Evaluation Metrics. We evaluate all models by Suc-

cess Rate (SR), Final Distance to Target (FDT), and Suc-

cess weighted by Path Length (SPL) [2] for both tasks.

SR is the ratio of the number of successful episodes to

the total number of episodes, FDT is the average dis-

tance between agent/object and the target position as the

agent issues END or an episode reaches the maximum

number of allowed steps (500), and the SPL is defined

as 1
N

∑N

n=1 Sn
Ln

max(Pn,Ln)
, where N is the number of

episodes, Sn denotes a binary indicator of success in the

episode n, Pn is the path length, and Ln is the shortest path

distance in episode n.

ObsNav. The quantitative results of the ObsNav task are

shown in Table 1. Our method outperforms the baselines in

all three metrics, which justifies the effect of using the NIE

model. The performance drops for ‘NIE w/o VO’ ablations,

which shows that visual information is required to estimate

the location of objects. For example, if an object is pushed

against a wall, the visual information helps to reason that
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Figure 7: Qualitative results. Top: An example of the ObsNav task is shown. The blue box is the obstacle the agent should

move away to unblock the path (the blue marking is just for visualization purposes and not visible to the agent). The agent’s

movement is shown by a dashed trajectory in red in the rightmost image. Bottom: An example of the ObjPlace task, where

the red box is the object that should be displaced and the orange circle is the target location. The object’s movement is shown

by a trajectory in red color.

Methods SR (%) ↑ FDT (m) ↓ SPL ↑
Baselines:

PPO [30] 1.2 3.18 0.85

RGB-D-S 1.2 3.15 0.85

RGB-D-K 1.3 2.84 0.88

CPC|A [15] 12.0 2.35 9.3

NIE (ours) 17.5 2.22 14.2

Ablations:

NIE w/o VO 0.8 3.07 0.41

NIE w/ 1× LNIE 15.3 2.11 13.1

NIE w/ 10× LNIE 13.6 2.26 11.5

Table 2: ObjPlace results. We show the result of our

method (referred to as ‘NIE’) along with baselines and ab-

lations of our model. We use ↑ and ↓ to denote if larger

or smaller values are preferred. We repeat the experiments

three times and report the average.

the object will not move. It is not feasible to make such pre-

dictions just by using the keypoint information alone. Our

results on ‘NIE w/ 1×LNIE’ and ‘NIE w/ 10×LNIE’ show

that completely relying on the NIE model is not sufficient

and we need exploration as well. On the other hand, ex-

ploration alone is not sufficient. Therefore, a good balance

between future prediction and exploration is required.

ObjPlace. The results are shown in Table 2. As shown,

there is a huge difference between the baseline models and

our model. We investigated the reason for this huge gap.

Most of the time the baseline agent pushes other objects as

well and eventually blocks the path towards the target.

Qualitative Results. We show qualitative results in Fig. 7.

The top row shows a successful episode of ObsNav, where

the agent pushes the garbage can away to unblock the path.

The bottom row show an example of the ObjPlace task,

where the agent moves the box toward the goal position.

It is interesting to note that the agent goes around the ob-

ject of interest so it can push it towards the target location.

We provide a supplementary video to show more successful

and failure cases. We also provide qualitative results of key-

point prediction in supplementary. We show how well the

NIE model predicts the future location of keypoints condi-

tioned on the actions.

5. Conclusion
We study the problem of predicting the outcome of ac-

tions in the context of embodied visual navigation tasks.

We propose Neural Interaction Engine (NIE) to encode the

changes to the environment caused by navigation and inter-

action actions of the agents. We incorporate NIE into a pol-

icy network and show its effectiveness in two downstream

tasks that require long-horizon planning. The goal of the

first task is to reach a target point in an environment while

the paths to the target are blocked. The second task requires

navigating to a target point while pushing an object. Our

evaluations show the effectiveness of the NIE model in both

scenarios, where we achieve significant improvements over

the methods without the capability of predicting the effect

of actions on the surrounding environment.
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