
ABMDRNet: Adaptive-weighted Bi-directional Modality Difference

Reduction Network for RGB-T Semantic Segmentation

Qiang Zhang1 Shenlu Zhao1 Yongjiang Luo2 Dingwen Zhang1 Nianchang Huang1* Jungong Han3*

1School of Mechano-Electronic Engineering, Xidian University, China
2 School of Electronic Engineering, Xidian University, China

3Computer Science Department, Aberystwyth University, U.K.

nchuang@stu.xidian.edu.cn, jungonghan77@gmail.com

Abstract

Semantic segmentation models gain robustness against

poor lighting conditions by virtue of complementary infor-

mation from visible (RGB) and thermal images. Despite its

importance, most existing RGB-T semantic segmentation

models perform primitive fusion strategies, such as con-

catenation, element-wise summation and weighted summa-

tion, to fuse features from different modalities. These strate-

gies, unfortunately, overlook the modality differences due to

different imaging mechanisms, so that they suffer from the

reduced discriminability of the fused features. To address

such an issue, we propose, for the first time, the strategy of

bridging-then-fusing, where the innovation lies in a novel

Adaptive-weighted Bi-directional Modality Difference Re-

duction Network (ABMDRNet). Concretely, a Modality Dif-

ference Reduction and Fusion (MDRF) subnetwork is de-

signed, which first employs a bi-directional image-to-image

translation based method to reduce the modality differ-

ences between RGB features and thermal features, and then

adaptively selects those discriminative multi-modality fea-

tures for RGB-T semantic segmentation in a channel-wise

weighted fusion way. Furthermore, considering the impor-

tance of contextual information in semantic segmentation,

a Multi-Scale Spatial Context (MSC) module and a Multi-

Scale Channel Context (MCC) module are proposed to ex-

ploit the interactions among multi-scale contextual infor-

mation of cross-modality features together with their long-

range dependencies along spatial and channel dimensions,

respectively. Comprehensive experiments on MFNet dataset

demonstrate that our method achieves new state-of-the-art

results.

*Equally corresponding authors.
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Figure 1. Illustration of modality difference reduction. (a) Bi-

directional modality difference reduction. (b)-(d) Original RGB

features, thermal features and their fused features, respectively.

(e)-(g) RGB features, thermal features and their fused features af-

ter reducing modality differences, respectively.

1. Introduction

Semantic segmentation aims to assign category labels to

each pixel in a natural image, which plays an important role

in many computer vision task, such as autonomous driving

[6, 31], pedestrian detection [1], pathological analysis [20,

26] and so on.

So far, CNN-based RGB semantic segmentation meth-

ods [14,15,20,27] have achieved prominent results in many

large-scale datasets [5, 16]. However, their performance

may significantly degrade under poor lighting conditions.

To boost semantic segmentation performance, recent re-

searches pay more attention to RGB-T semantic segmen-

tation [9, 22, 25], where thermal images may complement

rich contour information and semantic information to RGB

images under poor lighting conditions.

Existing models for multi-modality pixel-level predic-

tion tasks, including RGB-T semantic segmentation and

RGB-T salient object detection, usually adopt simple strate-

gies, such as element-wise summation [25], concatenation

[9] and weighted summation [8, 32], to capture the comple-

mentary information from paired RGB and thermal images.

However, they usually ignore the modality differences be-

tween RGB images and thermal images, which are caused
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by different imaging mechanisms. Such negligence may

lead to inadequate cross-modality complementary informa-

tion exploitation. As shown in Fig. 1, the people region,

marked by red dotted box in Fig. 1(b), has low intensity

values, while the same region in Fig. 1(c) has higher inten-

sity values. If simple fusion operations are employed, the

discriminative target information in the thermal image will

be noticeably suppressed in the fused features, as shown in

Fig. 1(d).

To solve this problem, we propose a novel multi-

modality feature fusion subnetwork, i.e., Modality Differ-

ence Reduction and Fusion (MDRF), to better exploit the

multi-modality complementary information from RGB im-

ages and thermal images via a novel strategy of bridging-

then-fusing. In the bridging stage, as shown in Fig. 1(a),

a bi-directional image-to-image translation [13, 33] based

method is employed to reduce the differences between RGB

and thermal features. The basic idea is that when trans-

ferring images from one modality to another, some non-

discriminative single-modality information, caused by dif-

ferent imaging mechanisms (e.g., Fig. 1(b) and Fig. 1(c)),

will be translated into discriminative ones (e.g., Fig. 1(e)

and Fig. 1(f)) by virtue of the complementary supervision

information from the images of another modality. As a re-

sult, the modality differences between the extracted single-

modality RGB and thermal features will be reduced for bet-

ter fusion (e.g., Fig. 1(d) and Fig. 1(g)). Then, in the fusing

stage, a novel fusion module, i.e., Channel Weighted Fusion

(CWF) module, is presented to capture the cross-modality

information between the corresponding channels of single-

modality RGB and thermal features, whose modality differ-

ences have been reduced in the first step. As shown in Fig.

1(d) and Fig. 1(g), higher discriminative fused features may

be obtained by using the single-modality features that have

reduced modality differences than those original ones.

Furthermore, the diversity of objects, e.g., categories,

sizes and shapes, in a given image is also problematic for

semantic segmentation. Multi-scale contextual information

and their long-range dependencies have been proved to be

effective to address such an issue in RGB semantic segmen-

tation. However, in multi-modality semantic segmentation,

especially for RGB-T semantic segmentation [9, 22, 25],

multi-scale contextual information of cross-modality fea-

tures and their long-range dependencies are not in place yet.

In RGB-T semantic segmentation, only MFNet [9] added

several mini-inception blocks in the encoder to obtain some

contextual information. But this is far limited for semantic

segmentation.

Inspired by [3, 6, 30], we propose two novel modules,

i.e., a Multi-Scale Spatial Context (MSC) module and a

Multi-Scale Channel Context (MCC) module, to exploit the

multi-scale contextual information of cross-modality fea-

tures and their long-range dependencies along spatial and

channel dimensions, respectively. First, multi-scale fea-

tures are obtained by performing the Atrous Spatial Pyra-

mid Pooling (ASPP) module [3] on the original fused cross-

modality features. Then the long-range dependencies for

these multi-scale features along the spatial and channel di-

mensions are established by jointly using the original fused

cross-modality features and their corresponding multi-scale

features in MSC and MCC, respectively. With MSC and

MCC cooperative, the multi-scale contextual information of

cross-modality features and their long-range dependencies

will be fully exploited for RGB-T semantic segmentation.

The main contributions of this paper are summarized as

follows:

(1) An end-to-end ABMDRNet is presented to facilitate

RGB-T semantic segmentation by simultaneously consid-

ering multi-modality difference reduction and multi-scale

contextual information of cross-modality data. Comprehen-

sive experimental results show that our model achieves new

state-of-the-art performance on MFNet dataset.

(2) An MDRF subnetwork is presented to effectively

capture the cross-modality information from the RGB and

thermal images via a strategy of bridging-then-fusing,

which first employs a bi-directional image-to-image trans-

lation based method to bridge the modality gaps between

multi-modality data and then adaptively selects those dis-

criminative multi-modality features for RGB-T semantic

segmentation.

(3) An MSC module and an MCC module are presented

to fully exploit the multi-scale contextual information of

cross-modality features and their long-range dependencies

along the spatial and channel dimensions, respectively.

2. Related work

2.1. RGB-based semantic segmentation

Early RGB-based semantic segmentation methods main-

ly rely on low-level hand-crafted features combined with

flat classifiers, such as Random Forests [23] and multiclass

fuzzy Support Vector Machine [19]. Recently, deep learn-

ing based semantic segmentation models [2,6,15,18,20,27]

have become the mainstream and achieved significant im-

provements. These models are usually based on Fully Con-

volutional Network (FCN) [15] for its simple but reason-

able architecture for pixel-wise prediction. As well, to

address the diversity of objects, these FCN-based models

mainly exploit some pyramid structures, such as Pyramid

Pooling Module (PPM) [34] and Atrous Spatial Pyramid

Pooling (ASPP) [3], to capture the discriminative multi-

scale contextual information from input images. Although

these multi-scale contextual information extraction modules

have achieved great successes in semantic segmentation,

their receptive fields are still limited, thus failing to exploit

the global contextual information. Recently, many mod-
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Figure 2. Overall framework of our proposed model. The blue and red dotted boxes represent the bi-directional modality difference

reduction stage in MDRF subnetwork.

els [17, 30] try to exploit the long-range dependencies to

address such issue and have achieved promising results. For

example, non-local operation [30] was proposed to compute

the response at a position as a weighted sum of the features

for capturing long-range dependencies.

2.2. Multi-modality semantic segmentation

Recently, with the rapid development of imaging tech-

niques, many studies [4,7,9,12,21,22,25,29] employ multi-

modality data (e.g., RGB-T images and RGB-D images) to

address some issues arising from the traditional RGB se-

mantic segmentation. These multi-modality semantic seg-

mentation models are usually divided into two categories,

i.e., feature-level fusion based and image-level fusion based

ones. Specifically, feature-level fusion based models first

extract single-modality features from each input modality

data and then fuse them to capture complementary informa-

tion for semantic segmentation. For example, [11] proposed

an Attention Complementary Module (ACM) to capture

more high-quality single-modality RGB features and depth

features from different channels for boosting the RGB-D

semantic segmentation. [9] adopted an Encoder-Decoder ar-

chitecture, which first extracted RGB features and thermal

features respectively and then fused them by the tailored

short-cut blocks. [25] first fused the multi-level RGB fea-

tures and thermal features by element-wise summation and

then employed an upception block to improve the decoding

results. Different from them, image-level fusion based mod-

els directly take the combination of multi-modality images

as inputs. For example, [22] proposed a sequential dual-

stream CNN architecture, which concatenated an RGB im-

age, the matched thermal image and the coarse mask pre-

dicted by RGB features as a five-channel input to predict

the result.

In contrast to RGB-D semantic segmentation, RGB-T

semantic segmentation attracts less attention. Most exist-

ing RGB-T semantic segmentation models [9, 22, 25] em-

ploy simple fusion strategies, such as element-wise sum-

mation [25] and concatenation [9, 22], to capture the cross-

modality features, while ignoring the modality differences

caused by different imaging mechanisms. Alternatively, in

this paper, a novel strategy of bridging-then-fusing is pre-

sented to capture the cross-modality features, where the

modality differences between multi-modality data are first

reduced and then the discriminative multi-modality features

are adaptively selected for RGB-T semantic segmentation.

3. Method

As shown in Fig. 2, the proposed RGB-T semantic seg-

mentation framework, i.e., ABMDRNet, consists of three

components, including MDRF subnetwork, MSC module

and MCC module. The details of them will be discussed in

the following contents.

3.1. MDRF

Although paired RGB images and thermal images can

provide much complementary information to each other, the

modality differences, caused by different imaging mecha-

nisms, may hinder the integration and exploitation of multi-

modality complementary information from RGB images

and thermal images. Unfortunately, this has been ignored

by most existing models. To address this issue, we de-

sign a novel multi-modality feature fusion subnetwork, i.e.,

MDRF subnetwork, via a strategy of bridging-then-fusing,

which first reduces the modality differences bi-directionally

and then exploits the multi-modality complementary in-

formation. Specifically, the MDRF subnetwork consists of

two stages. The first stage is bi-directional modality differ-

ence reduction, which aims to obtain discriminative single-

modality features with fewer modality differences from

RGB images and thermal images, respectively. The sec-

ond stage is discriminative single-modality features fusion,
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which aims to effectively exploit the complementary infor-

mation from multi-modality features.

3.1.1 Bi-directional modality difference reduction

Inspired by those image-to-image translation methods

[13, 33], we employ a bi-directional bridging strategy to re-

duce the modality differences caused by different imaging

mechanisms. The strategy starts with a bi-directional differ-

ence reduction, including the reduction from RGB to ther-

mal and that from thermal to RGB. Specifically, the multi-

level single-modality features extracted from one modality

are employed to generate a matched pseudo image of an-

other modality. Meanwhile, its corresponding real image

of another modality is also available in RGB-T semantic

segmentation. Considering that, we reduce the differences

from one modality to another modality by enforcing the fea-

tures from the pseudo image and those from the real image

of the same modality to be similar as possible.

As shown in Fig. 2, we exactly employ the same modal-

ity difference reduction structure for RGB images and ther-

mal images (i.e., region marked by blue dotted box and red

dotted box). Therefore, in the following contents, we will

take the procedure of transferring RGB images into thermal

images as an example to show the details of our structure

for modality difference reduction.

First, a ResNet-50 [10] is employed to extract the

single-modality features from an RGB image. The aver-

age pooling and the fully connected layers of the ResNet-

50 are removed to maintain more spatial information.

Therefore, five levels of single-modality RGB features

{FRGB
n |n=1, 2, 3, 4, 5} are obtained, which have the res-

olutions of 1/2, 1/4, 1/8, 1/16 and 1/32 of the original im-

age sizes, respectively. Then, the last four levels of single-

modality RGB features are fed into an RGB-to-T translation

network to generate the corresponding pseudo thermal im-

age. The translation network first performs four 1 × 1 con-

volutional layers on the four levels of single-modality RGB

features {FRGB
n |n=2, 3, 4, 5} to generate one-channel fea-

ture maps. Then, all of the generated feature maps are up-

sampled and fused to generate a pseudo thermal image

(Ipse−T ). After that, to make the generated pseudo ther-

mal image similar to its corresponding real thermal im-

age and further reduce the modality differences, two aux-

iliary ResNet-18s [10] are employed to extract five lev-

els of auxiliary features (i.e., {Fpse−T
n |n=1, 2, 3, 4, 5} and

{Freal−T
n |n=1, 2, 3, 4, 5}) from the pseudo thermal image

and its real thermal image, respectively. The average pool-

ing and the fully connected layers of the two ResNet-18s

are also removed to maintain the spatial information. By

enforcing the two sets of features to be similar as possible,

the extracted single-modality features {FRGB
n |n=1, 2, 3, 4}

from RGB modality may share some similar properties

with those features {FT
n |n=1, 2, 3, 4} from thermal modal-
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RGB
nF

T
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Figure 3. Structure of the proposed CWF module. The weight

vector Wn is able to weigh the importance of feature maps from

RGB modality.

ity, thus reducing the modality differences between the two

modality data.

For a thermal image, we can also obtain its pseudo RGB

image I
pse−RGB together with its corresponding pseudo

and real RGB image features {Fpse−RGB
n |n=1, 2, 3, 4, 5}

and {Freal−RGB
n |n=1, 2, 3, 4, 5}. Furthermore, the ex-

tracted single-modality features {FT
n |n=1, 2, 3, 4} from the

thermal image may also be enforced to share some simi-

lar properties with those from the RGB image by using the

same way, which will further reduce the modality differ-

ences between the two modality data.
In this stage, the following loss is employed for supervi-

sion, i.e.,

LMD=

5
∑

n=1

L1

(

F
pse−T
n ,F

real−T
n

)

+

5
∑

n=1

L1

(

F
pse−RGB
n ,F

real−RGB
n

)

,

(1)

where L1(∗) denotes L1 loss. Because of the bi-directional

modality difference reduction, there will be smaller differ-

ences between the RGB features {FRGB
n |n=1, 2, 3, 4} and

the thermal features {FT
n |n=1, 2, 3, 4} extracted from the

ResNet-50s. This will improve the discriminability of the

fused cross-modality features, as discussed in the earlier

section.

3.1.2 Channel-Wise Weighted Features Fusion

Having the single-modality features, the next step is to

capture their complementary information by using some fu-

sion strategies for RGB-T semantic segmentation. The most

intuitive ways are element-wise summation or concatena-

tion, which cannot exploit the multi-modality complemen-

tary information effectively. For that, some complex strate-

gies [8, 32] obtain the fused features in a weighted sum-

mation way. However, most existing fusion strategies adopt

the same weights for all of the channels. These weights

may work well for some channels of features, while some

undesirable fusion results may be obtained for some chan-

nels of features. In fact, different channels of features may
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correspond to different classes for semantic segmentation.

Compared with features from different spatial positions,

the features from different channels may have higher class-

discriminability for semantic segmentation.

Considering that, we propose a novel CWF module in

the fusing stage of MDRF to effectively exploit the cross-

modality complementary information by re-weighting the

importance of single-modality features in a channel-

dependent way, rather than in a spatial position-dependent

way. Specifically, given the n-th level of single-modality

features (i.e., {FRGB
n |n=1, 2, 3, 4} and {FT

n |n=1, 2, 3, 4})

from the first stage, as shown in Fig. 3, the proposed CWF

module exploits their multi-modality complementary infor-

mation by using the following steps.

First, the F
RGB
n and F

T
n are concatenated and then fed

into two convolutional layers to obtain the relative impor-
tance of the paired features from different modalities but in
the same channels. The corresponding importance weight
vector Wn is obtained by

Wn = GAP(σ(Conv(Cat(FRGB
n ,F

T
n );β))). (2)

Here, Conv(∗;β) denotes a convolutional block with a 1×1
convolutional layer and a 3 × 3 convolutional layer and

β denotes its parameters. GAP(∗) denotes the global av-

erage pooling operation. σ(∗) denotes the Sigmoid activa-

tion function, respectively. Higher values in Wn indicate

that corresponding channels of features in RGB modality

are more likely to be important than those corresponding

channels of features from thermal images, and vice versa.

As a result, the relative importance for each channel of fea-

tures from different modalities are obtained. By using these

channel importance weight vectors {Wn|n=1, 2, 3, 4}, the

fused features {Ffused
n |n=1, 2, 3, 4} are obtained by

F
fused
n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Wn ⊙ F
RGB
n + (1−Wn)⊙ F

T
n , n = 1

D(Ffused
n−1

) +Wn ⊙ F
RGB
n + (1−Wn)⊙ F

T
n ,

n = 2, 3, 4

(3)

where ⊙ denotes the channel-wise multiplication and 1 de-

notes a vector of 1’s with the same size of Wn. F
fused
n−1

denotes the fused features from the previous level and D(∗)
is a convolutional block with stride of 2 for downsampling.

With several CWF modules, corresponding channels of

single-modality features from different modalities are re-

weighted and fused. Compared with those fusion strategies

sharing the same weights for different channels, our pro-

posed CWF module may better select those channels of fea-

tures with high discriminability from multi-modality data

for semantic segmentation.

3.2. MSC Module and MCC Module

As discussed in Section 1, multi-scale contextual in-

formation and long-range dependencies have been proved

+
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Figure 4. Structure of the proposed MSC module. The blue anno-

tations denote the sizes of the input and output features of MSC.

to be effective for alleviating the issue of objects diver-

sity in RGB semantic segmentation, but they are still not

well exploited in RGB-T semantic segmentation. For that,

we propose an MSC module and an MCC module to si-

multaneously exploit the multi-scale contextual information

of cross-modality features and their long-range dependen-

cies along the spatial and channel dimensions, respectively.

More specifically, the MSC module is performed on the 3-

rd level of the fused features F
fused
3

and the MCC module

is performed on the 4-th level of the fused features F
fused
4

,

considering the number of parameters in the entire model.

3.2.1 MSC Module

The structure of MSC is shown in Fig. 4. Given the 3-

rd level of the fused features F
fused
3

∈ RH×W×512, MSC

exploits their multi-scale contextual information of cross-

modality features and their long-range dependencies along

the spatial dimension by using the following steps.

First, an ASPP module [3] is employed to extract multi-
scale contextual information from the input fused features.
For that, the ASPP module employs four parallel convo-
lutional branches to obtain four scales of features. In each
branch, a 1 × 1 standard convolutional layer and a 3 × 3
atrous convolutional layer with different dilation rates (i.e.,
1, 6, 12 and 18, respectively) are employed. Then, the four
scales of features are concatenated and fed into a 1 × 1
convolutional layer to reduce their channels, thus obtain-
ing the final multi-scale features Fms

3
∈ RH×W×512. Sub-

sequently, inspired by [6] and [17], a self-spatial correla-
tion matrix Mss ∈ RHW×HW is computed from the fused
multi-scale features by

Mss = Reshape (Fms
3 )× (Reshape (Fms

3 ))T, (4)

where (∗)T denotes matrix transpose and Reshape(∗)
transfers the size of the input matrix from RH×W×C to

RHW×C . This self-spatial correlation matrix Mss cap-

tures the paired-wise similarities of two arbitrary positions

in the multi-scale features and can be employed to extract
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the long-range spatial dependencies among the multi-scale

contextual features.
Meanwhile, considering that the long-range dependen-

cies among the multi-scale contextual features should con-
sist with those of original input features, a cross-spatial cor-
relation matrix Mcs ∈ RHW×HW is also computed from
the original input features to complement the self-spatial
correlation matrix Mss for better capturing the long-range
dependencies along the spatial dimension.

Mcs = Reshape
(

F
fused
3

)

×

(

Reshape
(

F
fused
3

))

T

. (5)

With the self-spatial and cross-spatial correlation matrices
Mss and Mcs, the final spatial correlation matrix Ms ∈
RHW×HW is obtained by

Ms = Normalization (Mss +Mcs) , (6)

where Normalization(∗) denotes Min-Max Normalization.
After that, the multi-scale contextual information of the

fused features and their corresponding long-range depen-
dencies along the spatial dimension are obtained by

F
fused′

3
= Reshape′ ((Ms × Reshape (Fms

3 )))+F
fused
3

, (7)

where Reshape′(∗) denotes the inverse process of

Reshape(∗).

3.2.2 MCC Module

Given the 4-th level of the fused features F
fused
4

∈
RM×N×1024, MCC follows similar steps with MSC to
exploit the multi-scale contextual information of cross-
modality features and their long-range dependencies along
the channel dimension. The differences between MSC and
MCC are in the ways of computing correlation matrix. In
MCC, a self-channel correlation matrix Msc ∈ R1024×1024

and a cross-channel correlation matrix Mcc ∈ R1024×1024

are computed. Specifically, after obtaining the multi-scale
features F

ms
4

∈ RM×N×1024 from their input features

F
fused
4

, Msc and Mcc are computed by

Msc = (Reshape (Fms
4 ))T × Reshape (Fms

4 ) , (8)

Mcc =
(

Reshape
(

F
fused
4

))

T

× Reshape
(

F
fused
4

)

. (9)

Similar to that in MSC, the cross-channel correlation
matrix Mcc in MCC is also used to complement the self-
channel correlation matrix Msc for better capturing the
long-range dependencies along the channel dimension. Dif-
ferent from that in MSC, the channel correlation matrixes
capture the paired-wise similarities of two arbitrary chan-
nels in the multi-scale features and can be employed to ex-
tract the long-range channel dependencies among the multi-
scale contextual features. The final channel correlation ma-
trix Mc ∈ R1024×1024 is computed by

Mc = Normalization (Msc +Mcc) . (10)

B
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M
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B
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A
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M
C

C

Figure 5. Visual results of multi-scale cross-modality feature maps

before and after employing MSC and MCC modules.

After that, the multi-scale contextual information of the
fused features and their corresponding long-range depen-
dencies along the channel dimension are obtained by

F
fused′

4
= Reshape′ ((Reshape (Fms

4 )×Mc)) + F
fused
4

.

(11)

By using MSC and MCC, the multi-scale contextual

information of the cross-modality features and their long-

range dependencies along the spatial and channel dimen-

sions are captured simultaneously. As shown in Fig. 5, the

discriminability of the fused cross-modality features will be

greatly boosted by introducing those contextual informa-

tion.

3.3. Loss Function

The total loss function Ltotal for training our model
consists of the semantic segmentation loss Ls and multi-
modality differences loss LMD, i.e.,

Ltotal = λ1Ls (S,G) + λ2LMD, (12)

where λ1 and λ2 denote two hyper-parameters for balancing
the two losses. They are empirically set to 1 and 5 in our
experiments, respectively. G denotes the ground truth and
S denotes the final prediction. Considering the imbalance of
pixels of each class presented in the MFNet dataset, inspired
by [18], we employ the weighted cross-entropy loss as the
semantic segmentation loss Ls, which is defined by

Ls = −

m
∑

i=1

n
∑

j=1

w(xij)× p (xij)× log (q (xij)), (13)

where m and n represent the width and height of an image.

(i, j) represents the coordinate of a pixel. w(xij) represents

the weight coefficient of the pixel class. p(xij) represents

the ground truth label of the pixel and q(xij) represents the

predicted result on the pixel.

4. Experiments

4.1. The Dataset and Evaluation Metrics

Our model is verified in MFNet dataset [9], which is the

only public dataset of natural images for RGB-T semantic

segmentation. This dataset contains 1569 annotated RGB

and thermal natural image pairs, in which 820 image pairs
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Methods mAcc    mIoU 

BS 57.30 47.99 

+BMDR 62.37 51.98 

+BMDR+IFCNN [49] 62.68 52.62 

+BMDR+CW [50] 63.61 52.52 

+BMDR+CWF (MDRF) 64.01 52.91 

+MDRF+MSC-S 65.57 53.31 

+MDRF+MSC-C 64.41 53.27 

+MDRF+MSC 66.93 53.39 

+MDRF+MSC+MCC-S 68.22 53.67 

+MDRF+MSC+MCC-C 66.51 53.60 

+MDRF+MSC+MCC 69.52 54.80 

Table 1. Quantitative results (%) of ablation study. ‘BS’ denotes

the baseline and ‘BMDR’ denotes the bi-directional modality dif-

ference reduction stage in MDRF. Meanwhile, MSC-S (MSC-

C) and MCC-S (MCC-C) indicate only capturing the self (cross)

long-range dependencies among cross-modality features along the

spatial (channel) dimension, respectively.

are taken at daytime and 749 image pairs are taken at night-

time. There are 9 semantic classes, including the unlabeled

background class. All of the images in this dataset have the

same resolution of 480 × 640. For fair comparisons, we fol-

low the same training, testing and verification setting as

in [9]. We adopt the widely-used evaluation metrics (i.e.,

mean Accuracy (mAcc) and mean Intersection over Union

(mIoU)) to evaluate the performance of different models.

4.2. Implementation Details

The proposed network is implemented by PyTorch on an

NVIDIA GTX 1080 Ti GPU. The stochastic gradient de-

scent (SGD) method with a momentum of 0.9 and a weight

decay of 0.0005 is adopted to train our proposed network.

The initial learning rate is set to 0.01, which is decreased by

adopting the exponential decay scheme with base 0.95 dur-

ing training. Moreover, the training data are augmented by

using random flipping, cropping and noise injecting tech-

niques. We train the network about 300 epochs to its con-

vergence.

4.2.1 Ablation Study

In this section, we validate the effectiveness of each

component in our proposed model. The proposed MDRF

subnetwork, MSC module and MCC module are first re-

moved from our model as the baseline (denoted by ‘BS’).

Here, ‘BMDR’ denotes the bi-directional modality differ-

ence reduction stage in MDRF. Meanwhile, MSC-S (MSC-

C) and MCC-S (MCC-C) indicate only capturing the self

(cross) long-range dependencies among cross-modality fea-

tures along the spatial (channel) dimension, respectively.

The quantitative experimental results are shown in Ta-

ble 1. ‘BS+BMDR’ indicates that reducing the modal-

ity differences between multi-modality features benefits

the exploitation of cross-modality complementary infor-

mation, thus boosting the RGB-T semantic segmenta-

tion. Furthermore, it can also be observed that, compared

with other fusion modules (e.g., ‘BS+BMDR+IFCNN’,

‘BS+BMDR+CW’), our proposed CWF module can more

effectively select those discriminative features for seman-

tic segmentation. The results of (‘BS+MDRF+MSC-S’ and

‘BS+MDRF+MSC-C’) and (‘BS+MDRF+MSC+MCC-S’

and ‘BS+MDRF+MSC+MCC-C’) indicate that the intro-

duction of long-range dependencies along the spatial or

channel dimension may provide more effective multi-scale

contextual information for semantic segmentation. Mean-

while, the results of ‘BS+MDRF+MSC+MCC’ indicate that

digging complementarity between the self and cross-spatial

correlation matrices or the self and cross-channel correla-

tion matrices can further facilitate the exploitation of long-

range dependencies for RGB-T semantic segmentation.

4.3. Comparison with State-of-the-art Methods

We compare our model with 9 state-of-the-art (SOTA)

methods, including 3 deep learning based RGB semantic

segmentation methods (DUC [28], DANet [6] and HRNet

[24]), 3 RGB-T semantic segmentation approaches (MFNet

[9], RTFNet [25] and PSTNet [22]) and 3 RGB-D seman-

tic segmentation models (LDFNet [12], ACNet [11] and

SA-Gate(ResNet-50) [4]). The procedure of converting the

RGB semantic segmentation model into an extended RGB-

T model is described as follows. First, we repeat the one-

channel thermal image three times as a three-channel image.

Then, their proposed networks are taken as the backbones

of the RGB and thermal branches, respectively. Finally,

the last output features before the prediction layers from

the two branches are added and then fed into the predic-

tion layers to obtain the final semantic segmentation maps.

For the RGB-D models, we directly replace the input one-

channel or HHA-encoded three-channel depth images with

the one-channel thermal images or three-channel thermal

images obtained by the same way in extending RGB mod-

els.

The quantitative results are shown in Table 2, which

demonstrates that our method outperforms other SOTA

methods by a large margin on the MFNet dataset. This in-

dicates that our method can better exploit the complemen-

tary information from RGB-T images for semantic segmen-

tation. Fig. 6 provides the visual comparisons of different

models. As shown in the first two rows, under some simple

scenes, most models can accurately segment targets. How-

ever, as shown in the 3rd-5th rows, our proposed method

achieves significant superiorities over other SOTA models

under poor lighting conditions. This owes to the strategy

of bridging-then-fusing in MDRF. In addition, as shown in

the 6th-8th rows, our method still outperforms other SOTA
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Methods 
Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump 

mAcc mIoU 
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU 

DUC[28] 98.8 97.7 92.4 82.5 84.1 69.4 71.3 58.9 58.4 40.1 25.5 20.9 17.3 3.4 60.0 42.1 52.2 40.9 61.2 50.7 

DANet[6] 97.4 96.3 91.3 71.3 82.7 48.1 79.2 51.8 48.0 30.2 25.5 18.2 5.2 0.7 47.6 30.3 19.9 18.8 55.2 41.3 

HRNet[24] 99.4 98.0 90.8 86.9 75.1 67.3 70.2 59.2 39.1 35.3 28.0 23.1 12.1 1.7 50.4 46.6 55.8 47.3 57.9 51.7 

LDFNet[12] 96.2 95.3 87.0 67.9 83.9 58.2 82.7 37.2 67.4 30.4 32.9 20.1 8.2 0.8 67.4 27.1 55.6 46.0 64.6 42.5 

ACNet [11] 97.6 96.7 93.7 79.4 86.8 64.7 77.8 52.7 57.2 32.9 51.5 28.4 7.0 0.8 57.5 16.9 49.8 44.4 64.3 46.3 

SA-Gate[4] 98.2 96.8 86.0 73.8 80.8 59.2 69.4 51.3 56.7 38.4 24.7 19.3 0.0 0.0 56.9 24.5 52.1 48.8 58.3 45.8 

MFNet[9] 98.7 96.9 77.2 65.9 67.0 58.9 53.9 42.9 36.2 29.9 12.5 9.9 0.1 0.0 30.3 25.2 30.0 27.7 45.1 39.7 

RTFNet[25] 99.6 98.2 91.3 86.3 78.2 67.8 71.5 58.2 59.8 43.7 32.1 24.3 13.4 3.6 40.4 26.0 73.5 57.2 62.2 51.7 

PSTNet[22] — 97.0 — 76.8 — 52.6 — 55.3 — 29.6 — 25.1 — 15.1 — 39.4 — 45.0 — 48.4 

Ours 98.6 97.8 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8 

Table 2. Quantitative results of different models (%) on the test set of [9]. The value 0.0 represents that there are no true positives. ’—’

denotes that the corresponding results are missed in [22].

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6. Visual comparisons of different methods. (a) RGB images; (b) Thermal images; (c) DUC [28]; (d) DANet [6]; (e) HRNet [24];

(f) LDFNet [12]; (g) ACNet [11]; (h) SA-Gate [4]; (i) MFNet [9]; (j) RTFNet [25]; (k) Ours; (l) GT.

models under complex scenes with multiple objects. This

may benefit from the exploitation of multi-scale contextual

information of cross-modality features and their long-range

dependencies along the spatial and channel dimensions by

using our proposed MSC and MCC modules.

5. Conclusion

In this paper, a novel ABMDRNet has been presented

for RGB-T semantic segmentation, where the modality dif-

ference reduction and multi-scale contextual information

are simultaneously considered. By virtue of the strategy of

bridging-then-fusing, the proposed MDRF subnetwork can

obtain higher discriminative cross-modality features than

those traditional fusion modules do. This greatly improves

the semantic segmentation performance of our proposed

model. Owing to the proposed MSC and MCC modules,

the multi-scale contextual information of the cross-modality

features and their long-range dependencies along the spa-

tial and channel dimensions are well exploited. Thanks to

that, the issue of objects diversity in semantic segmentation

can be addressed to a large extent. With the collaboration of

these subnetworks and modules, our proposed RGB-T se-

mantic segmentation model achieves new SOTA results on

MFNet dataset.
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