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Abstract

Causal induction, i.e., identifying unobservable mecha-

nisms that lead to the observable relations among variables,

has played a pivotal role in modern scientific discovery, es-

pecially in scenarios with only sparse and limited data. Hu-

mans, even young toddlers, can induce causal relationships

surprisingly well in various settings despite its notorious

difficulty. However, in contrast to the commonplace trait

of human cognition is the lack of a diagnostic benchmark

to measure causal induction for modern Artificial Intelli-

gence (AI) systems. Therefore, in this work, we introduce

the Abstract Causal REasoning (ACRE) dataset for system-

atic evaluation of current vision systems in causal induc-

tion. Motivated by the stream of research on causal discov-

ery in Blicket experiments, we query a visual reasoning sys-

tem with the following four types of questions in either an

independent scenario or an interventional scenario: direct,

indirect, screening-off, and backward-blocking, intention-

ally going beyond the simple strategy of inducing causal

relationships by covariation. By analyzing visual reason-

ing architectures on this testbed, we notice that pure neu-

ral models tend towards an associative strategy under their

chance-level performance, whereas neuro-symbolic combi-

nations struggle in backward-blocking reasoning. These de-

ficiencies call for future research in models with a more

comprehensive capability of causal induction.

1. Introduction

“There is something fascinating about science.

One gets such wholesale returns of conjecture out

of such a trifling investment of fact.”

— Mark Twain [64]

The history of scientific discovery is full of intriguing

anecdotes. Mr. Twain is accurate in summarizing how influ-

ential science theories are distilled from sparse and limited

investments. From only three observations, Edmond Hal-

ley precisely predicted the orbit of the Halley comet and its

next visit, which he did not live to see. From a few cathode
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Figure 1. Abstract causal reasoning tasks administered to human

participants [22, 61]. The Blicket machine possesses various ac-

tivation patterns in these four cases. One needs to discover the

hidden causal relations to answer two types of questions: whether

object A / B is a Blicket, and how to make the machine stop / go.

rays, Joseph Thomson proved and derived the existence of

electrons. From merely crossbreeding of pea plants, Gregor

Mendel established the laws of Mendelian inheritance much

beyond pea plants. Out of many other possible conjectures,

pioneering scientists picked the most plausible ones.

The above examples of causal induction are only a few

acclaimed cases of omnipresent causal reasoning scenarios

in science history and our daily life. In fact, despite the no-

torious complexity in causal discovery, humans, even young

toddlers, can felicitously identify and, sometimes, intervene

in the unobservable mechanisms from only a trifling num-

ber of samples of observable events [19, 58].

This captivating commonplace trait of human cognition

and its paramount connection to human learning mecha-

nism motivate us to ask a counterpart question for modern

Artificial Intelligence (AI) systems:

At what level do current visual reasoning systems

induce causal relationships?

To answer this question, we propose the Abstract Causal

REasoning (ACRE) dataset. ACRE is inspired by the es-

tablished stream of research on Blicket detection originally

administered to young toddlers [7, 19, 20, 21, 22, 23, 35,

42, 44, 58, 60, 61, 66, 67]. The original experiments de-

signed by Gopnik and Sobel [21] introduced a novel setup

for investigating children’s ability of causal induction, in

which children were given a special machine referred to

as “Blicket detector.” Its underlying mechanism is intuitive:

A Blicket detector would activate, lighting up and making
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noise, when a “Blicket” was put on it. The experimenter

demonstrated a series of trials to participants by placing

various (combinations of) objects on the Blicket detector

and showing whether the detector was activated or not. At

length, the participants were asked which object is a Blicket

and how to make an (in)activated Blicket machine stop (go).

This line of work’s intricate nature lies in how the con-

text and query were designed to test abstract causal rea-

soning beyond the simple strategy of covariation; see an

illustration in Fig. 1. As a base test on causal discovery

by covariation, Sobel et al. [61] show that children can

correctly associate cause and effect using direct evidence.

They also show that with only indirect evidence asserting

the Blicketness of object B, children still made accurate

predictions [22]. However, one must go beyond the simple

covariation strategy to discover the hidden causal relations

in the screening-off case and the backward-blocking case.

Specifically, in the screening-off setting (Fig. 1 Top), object

B (non-Blicket) is screened-off by A (Blicket) from prob-

abilistically activating the machine [22]. The backward-

blocking setting (Fig. 1 Bottom) is even more intriguing

as object B, not independently tested, has undetermined

Blicketness despite the fact that every appearance of it is

associated with an activated machine [61]. See Section 3

for details and the supplementary for a symbolic summary.

The proposed ACRE dataset is built following a sim-

ilar querying manner in the Blicket experiments to study

how well existing visual reasoning systems can learn to de-

rive ample causal information from scarce observation. In

particular, inspired by the recent endeavors of visual rea-

soning in controlled environments [17, 32, 70], we adopt

the CLEVR universe [32] in ACRE’s design and add a

Blicket machine to signal its state of activation, intention-

ally simplifying visual information processing and empha-

sizing causal reasoning. Following attempts made in ab-

stract spatial-temporal reasoning benchmarks [31, 55, 72],

we provide the visual reasoning system with sets of panel

images as context and use image-based queries to ease lan-

guage understanding, echoing the setup and the learning

theories in developmental literature [19, 20, 21, 22, 23].

Specifically, each problem in ACRE consists of 10 pan-

els: 6 for context and 4 for query. The 6 context panels are

divided into two sets, the first of which serves as an intro-

duction to the Blicket mechanism that some objects activate

the machine, and others do not. This simpler set of panels

resembles the introductory trials administered to children in

human experiments [22, 61]. Instead of bringing in the con-

cept of Blicket1, in queries, we only ask a visual reasoning

system to predict the state of the Blicket machine given the

objects in the queries. Half of the queries concern the inde-

1While the notion of “Blicket” is not necessary for a visual reasoning

system to solve the task, we use the term throughout this paper to simplify

expressions and facilitate understanding of the core ideas.

pendent scenarios, wherein a single object is presented, and

the system is challenged to reason about whether this object

is one of the causes that could activate the Blicket machine.

The remaining half of the queries are for interventional sce-

narios, wherein we intervene in an existing context panel

and ask what the state of the Blicket machine would be un-

der the intervention. Each query is independent such that

statistical bias [22, 61] and potential cheating for abstract

reasoning [31, 72] are minimized. In summary, ACRE in-

cludes 30, 000 abstract causal reasoning problems, supports

all 4 types of reasoning queries (direct, indirect, screening-

off, and backward-blocking), and is fully annotated with ob-

ject attributes, bounding boxes, and masks. We further de-

sign two Out-Of-Distribution (O.O.D.) generalization splits

in ACRE to evaluate models’ generalizability.

In experiments, we use the ACRE dataset to analyze cur-

rent visual reasoning systems’ ability in causal induction.

Despite remarkable results in other visual reasoning tasks,

we notice that pure neural networks [8, 28, 55, 68, 77] fa-

vor a covariation-based reasoning strategy and thus can only

achieve performance marginally above the chance level. As

the first attempt in the exploration to empower visual rea-

soning systems for causal induction, we resort to neuro-

symbolic models [26, 39, 43, 50, 51, 70, 71, 74, 76] that

combine neural visual processing [27] and symbolic causal

reasoning [18, 49, 53, 62, 78, 79], which turn out to struggle

in backward-blocking cases in abstract causal reasoning.

To sum up, this paper makes three primary contributions:

• We propose the Abstract Causal REasoning (ACRE)

dataset to probe current visual reasoning systems’ ca-

pacity in causal induction. The dataset is inspired by

the Blicket experiments and contains 30, 000 problems.

ACRE covers all 4 types of causal reasoning queries (di-

rect, indirect, screening-off, and backward-blocking) with

additional O.O.D. generalization splits.

• We benchmark and analyze state-of-the-art visual reason-

ing models in ACRE. Experimental results show that neu-

ral models tend to capture statistical correlations in obser-

vation but fail to induce the underlying causal relation-

ships demonstrated in the trials.

• We propose neuro-symbolic combinations that improve

on pure neural networks. However, our analysis shows

that even with the inductive bias in causality, they still fail

to distinguish a true cause from superficial covariation in

backward-blocking cases. Taken together, these deficien-

cies call for future research in models with a more com-

prehensive capability of causal induction.

2. Related Work

Abstract Visual Reasoning To date, the computer vi-

sion and AI community’s efforts in abstract visual reasoning

primarily focus on the specific task of Raven’s Progressive

Matrices (RPM) [5, 52], commonly known as Intelligence

10644



Context Trials

Independent Queries:

What would be the machine’s state given the object?

Interventional Queries on the Fourth Trial:

What would be the machine’s state given the intervention?

direct 

A: activated

indirect

A: activated

backward-blocking

A: undetermined

screening-off

A: inactivated

Figure 2. A sample problem in ACRE. Of the 6 context trials, we devote the first set of 3 panels for an introduction to the Blicket machinery

and allow more complex configurations in the second set of panels. Queries are either on independent objects or interventional combinations

for an existing trial. In this example, the first query tests causal reasoning from direct evidence, as the gray cube is independently tested

and always associated with an activated machine. The second query requires comparing the fourth and fifth trial to realize that the Blicket

machine is activated by the cube, not the cylinder, based on indirect evidence. As such, we infer that the red and green cylinders in the

sixth trial may not activate the machine because the purple cube can already do so; despite their association with an activated machine

only, their Blicketness is backward-blocked in the interventional trial. The cyan cube is screened-off by the gray cube’s Blicketness from

probabilistically activating the machine. Of note, the screening-off and the backward-blocking case cannot be solved by covariation.

Quotient (IQ) tests, that studies how visual reasoning sys-

tems can induce the hidden spatial-temporal transformation

from limited context and apply it to derive a missing panel.

Santoro et al. [55] extended the relational module [56] to

take panel-based representation and introduced the Wild

Relational Network (WReN). Zhang et al. [72] proposed

to incorporate structural annotations in a neural modular

manner. Methods considering contrast at data-level [29] or

module-level [73] were later shown to improve performance

significantly. Zheng et al. [77] formulated the problem as

teacher-student learning, Wang et al. [68] used a multiplex

graph model to capture the hidden relations, and Spratley

et al. [63] revisited ResNet models combined with unsu-

pervised learning. More recently, Zhang et al. [74] disen-

tangled perception and reasoning from a monolithic model,

wherein the visual perception frontend predicts objects’ at-

tributes, later aggregated by a scene inference engine to pro-

duce a probabilistic scene representation, and the symbolic

logical reasoning backend abduces the hidden rules.

The proposed ACRE dataset complements the spectrum

of abstract visual reasoning tasks by challenging visual rea-

soning systems with causal induction from a limited num-

ber of trials and adding missing dimensions of causal un-

derstanding into the prior spatial-temporal task set.

Causal Reasoning Equipping visual reasoning sys-

tems with causal reasoning capability has been an emerg-

ing topic in computer vision research [12, 41, 46]. Re-

cent causal reasoning datasets [1, 70] established video-

based benchmarks2 for either trajectory prediction in coun-

terfactual scenarios or visual question answering with ex-

planatory, predictive, and counterfactual questions. Never-

theless, causal induction in prior computer vision research

relies heavily on covariation. For instance, psychological re-

search [2, 3, 15, 16, 34] points out that the key to solving

these two problems is intuitive physics, with covariation-

based causal reasoning in associating collision with object

dynamics. Moreover, Edmonds et al. [9, 10, 11] further

demonstrate that covariation would result in catastrophic

failures when the visual features are similar but the under-

lying causal mechanisms dramatically differ. These results

necessitate causal induction beyond covariation: Asymme-

tries in learning under various causal structures [65] refute

parsimonious associative learning [59].

With a particular emphasis on causal induction beyond

the simple causal reasoning strategy of covariation [36], we

design ACRE with diversified causal queries, requiring a

visual reasoning system to induce the hidden causal mecha-

nism from only limited observation. From a cognitive stand-

point, it is argued that Bayesian networks [48, 49] and the

theory-theory [11, 19, 20, 23, 25, 60] play vital roles in ab-

stract causal reasoning. However, how young toddlers in-

duce accurate Bayesian representation and form a correct

theory during such a short exposure remains unclear [14].

2Of note, these prior works do not echo Michotte’s theory of perceived

causality that humans possess a “causal detector” akin to how we perceive

colors [45], as they fail to show humanlike causal perception [57, 80].
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Inactivated
35.94%

Undetermined
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Direct
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Indirect
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Figure 3. Distributions of (a) labels and (b) query types in ACRE.

3. Building ACRE

The ACRE dataset is designed to be light in visual

recognition and heavy in causal induction. Specifically, we

ground every panel in a fully-controlled synthetic environ-

ment by adopting the CLEVR universe [32] where all ob-

jects, including the Blicket machine, are placed on a table-

top with three-point lighting. All potential Blicket objects

are of the same size and come with 3 possible shapes (cube,

sphere, or cylinder), 2 possible materials (metal or rubber),

and 8 possible colors (gray, red, blue, green, brown, cyan,

purple, or yellow). For the context panels, we set all ob-

jects on a pink Blicket machine at the center of the scene

and signal its state of activation by lighting it up. For the

query panels, we directly put all objects on the tabletop.

In both cases, objects are randomly distributed across the

scenes. To avoid confusion during reference, every object is

uniquely identifiable by its shape, material, and color. Other

than the constraints, every object’s attributes are randomly

sampled from the aforementioned space. Collectively, ev-

ery ACRE problem contains 5 to 8 unique objects. We keep

other scene configurations the same as the original setup in

CLEVR [32] and generate images by Blender [6]. Every im-

age is also fully-annotated with object attributes, bounding

boxes, and masks; see Fig. 2 for a sample problem in ACRE

and refer to the supplementary for more examples.

ACRE Context Every ACRE problem contains 10
panels, of which 6 serve as context panels. Following the

original design [22, 61], we further divide the 6 panels into

2 sets and use the first simpler set as the familiarization set.

Specifically, for the first set of 3 panels, we randomly sam-

ple 2 objects and assign one to be a Blicket and another to

be a non-Blicket. Both objects are independently tested on

the Blicket machine and then placed together on it. These

3 simple trials reveal the nature of a Blicket detector: The

machine will be activated when a Blicket is placed on it.

For the second set of panels, we allow more random sam-

pling; in particular, we sample another group of objects that

is disjoint with the first one and partition it into 3 potentially

overlapping subgroups, corresponding to the configurations

for each of the rest panels. Either one or two of them are

associated with an activated Blicket machine.

ACRE Query The Blicket machine’s activation pat-

tern in context panels supports all 4 types of queries (direct,

indirect, screening-off, and backward-blocking) and pro-

vide sufficient clues for determining Blicketness for each

object; see illustrations in Figs. 1 and 2. Based on expla-

nations of the Blicket mechanism [20, 22, 23, 61], we de-

tail query categorization in the following. Intuitively, an ob-

ject is a Blicket if it is independently and always associated

with an activated machine, which can be determined based

on direct evidence; the same reasoning strategy is applica-

ble to resolve non-Blickets. An object is also considered a

Blicket if the machine activates when we place it together

with other objects but not alone, and the other objects fail to

activate the machine. In these cases, the Blicketness is re-

solved by indirect evidence; no direct observation is avail-

able. An object is considered a non-Blicket when putting it

with other potential Blickets together will activate the ma-

chine, but it fails to do so by itself; this derivation is referred

to as screening-off reasoning. In addition to being a Blicket

or non-Blicket, an object’s Blicketness could also be un-

determined, which occurs when the object is not directly

tested, but can activate the machine together with other po-

tential Blickets; this is referred to as backward-blocking

reasoning. Note that the Blicketness of an individual object

may be undetermined, but together with other undetermined

ones, they can form a set that activates the machine; as such

queries happen in the indirect setting, we also refer to them

as indirect reasoning.

The rich causal relations embedded in the context pan-

els afford us to probe a reasoning system’s causal induction

capability. In particular, we design 4 queries in each ACRE

problem, 2 for independent scenarios and another 2 for in-

terventional scenarios, similar to the questions administered

in human experiments [22, 61]. In the independent scenario,

we randomly sample one object from those tested in the tri-

als. In the interventional scenario, we pick a trial with an in-

activated machine and add a set of objects randomly picked

from those in the context panels. The reasoning system is

then asked to tell the status of the Blicket machine after

placing the objects on it, either inactivated, undetermined,

or activated. To avoid statistical bias [22, 61] or potential

cheating [31, 72], all queries in a problem are independent.

Generalization Splits ACRE comes with additional

O.O.D. splits to measure model generalization in causal

induction; we focus on compositionality and systematicity

in systematic generalization [13, 24, 38, 69]. In the com-

positionality split, we assign different shape-material-color

combinations to the training and test set and ensure the

training set contains every shape, material, and color, sim-

ilar to the Compositional Generalization Test (CoGenT) in

CLEVR [32]. In the systematicity split, we vary the distri-

bution of an activated Blicket detector in the context panels,

with the machine lighting up 3 times in the training set and 4
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times during testing. Note the strategy for causal induction

remains the same irrespective of the distribution change.

In total, ACRE contains 30, 000 problems, evenly par-

titioned into an Independent and Identically Distributed

(I.I.D.) split, a compositionality split, and a systematicity

split. The dataset covers all 4 types of queries, and the la-

bel distribution is adjusted to be roughly uniform; see Fig. 3

for the label distribution and query type distribution in the

dataset. Please refer to the supplementary for detailed dis-

tributions of labels and query types for each split.

4. Reasoning Systems on ACRE

This section details the deep neural models adopted

to benchmark the proposed ACRE dataset and the neuro-

symbolic combinations explicitly designed to incorporate

inductive bias for causal induction.

4.1. Deep Neural Models

As ACRE shares the inductive nature with RPM, we test

several established models designed for it [55, 68, 77]. We

also test methods commonly used for linguistic or visual

modeling [8, 28]. Each context-query pair is independently

fed into the network and treated as a classification problem.

CNN-MLP We concatenate context panels with the

query panel in the channel dimension and use a 4-layer stan-

dard CNN architecture to extract features. The CNN archi-

tecture interleaves batch normalization and ReLU activation

between convolution layers. The final convolved features

are passed to a 2-layer Multilayer Perceptron (MLP) with

a dropout layer with a rate of 0.5 in between the two layers.

ResNet-MLP In this model, we replace the CNN

backbone in CNN-MLP with ResNet-18 [28].

CNN-LSTM We use a standard LSTM model [30] to

further process visual features. Specifically, we indepen-

dently extract image features of each panel using a CNN,

append a one-hot position tag to each feature map, and pass

them sequentially into the LSTM module. The final hidden

state is further processed by a linear layer to produce logits.

CNN-BERT A visual BERT [8] model is also tested.

We compute image features using a CNN and follow prac-

tices in BERT: For the sequence of image features, we

prepend <CLS>, separate the context panels and the query

panel with <SEP>, and add position and segment embed-

dings. Output from <CLS> is then used for classification.

WReN We adopt the WReN model proposed by San-

toro et al. [55], which applies the relational module [56] on

panel-based image representations.

LEN LEN [77] stems from WReN but takes into ac-

count the row-wise and column-wise compositions in RPM,

deeper features, and the multi-choice setting. We adapt the

original LEN design to the proposed ACRE by removing

branches for the column-wise composition and making the

prediction on each query independent.

MXGNet A similar strategy in LEN is used to make

MXGNet [68] compatible with ACRE. The two sets of con-

text trials are treated as rows in the model.

4.2. Neuro­Symbolic Models

In preliminary experiments, we notice that pure neural

models tend to capture statistical correlation rather than

modeling the hidden causal relations out of the context tri-

als. To overcome this issue, we propose neuro-symbolic

combinations and explicitly incorporate various forms of

causal inductive bias for the abstract causal reasoning task.

Specifically, we draw inspirations from recent advances

in neuro-symbolic literature [26, 39, 43, 50, 51, 70, 71, 74,

76] and decompose our model into a neural perception fron-

tend and a causal reasoning backend. By design, the fron-

tend is responsible for parsing each context trial to form an

object-based representation, whereas the backend takes the

symbolic output from the frontend and performs causal in-

duction; see an overview of the method in Fig. 4.

Neural Perception Frontend As the first attempt to

solve ACRE problems, we disentangle our neural percep-

tion frontend and independently pretrain the model to parse

each scene. Specifically, we use Mask-RCNN [27] with

ResNet-50 FPN [28, 40] backbone. The perception model

is tasked with predicting the Blicket machine’s state, object

masks, and object attributes (shape, material, and color) for

each object in the scene. Both context and query panels in

the training set of each split are used to train the frontend.

Causal Reasoning Backend Due to its efficiency and

accuracy, we use a score-based continuous optimization

method, denoted as NS-Opt, to simultaneously learn a gen-

eralized Structural Equation Model (SEM) and derive the

hidden causal relations [78, 79]. In particular, denoting the

existence of object j in panel i as Xi,j ∈ {0, 1}, we can

arrange the symbolic parsing results from the neural per-

ception frontend into a data matrix X ∈ {0, 1}6×n, where

n equals the number of unique objects in all context panels

plus the Blicket machine. A generalized SEM assumes that

the state of object j is related to states of its parents via a

function and can be represented as

Xj = fj(Xpa(j)) = gj(X), (1)

where X = [X1|X2| . . . |Xj | . . .], and pa(j) denotes the

parents of object j. The parent finding process is further

generalized in gj(·) and put into optimization constraints.

Following [79], we formulate causal discovery as an op-

timization problem

minimize
g:gj ,∀j∈[n]

1
n

∑

j ℓ(Xj , gj(X))

subject to h(W (g)) = 0,
(2)

where W (g)k,j = ‖∂kgj‖ ∀k, j ∈ [n], and h(W ) =
Tr(eW◦W − I). We use [n] to denote an integer set from
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Figure 4. An illustration of the proposed neuro-symbolic combination (NS-Opt) for ACRE. The neural frontend is responsible for scene

parsing. In particular, we use a Mask RCNN to detect objects and classify their attributes as well as the Blicket machine’s state. The parsed

results are arranged into data matrices and sent into the causal reasoning backend for optimization. A generalized SEM is learned from

context trials during reasoning, which is further used to infer the state of the Blicket machine for each query.

1 to n, ‖·‖ the L2 function norm, and ◦ the Hadamart prod-

uct. Using the binary cross entropy loss as ℓ(·, ·) for each

object j, the optimization problem regularizes the general-

ized SEM to reconstruct the observation, while constraining

the relations among the variables to be a causal Directed

Acyclic Graph (DAG): W (g) can be regarded as the adja-

cency matrix among variables, and h(·) a metric for acyclic-

ity. We use an MLP for each gj(·) and optimize the problem

by Augmented Lagrangian; see [78, 79] for details.

With a learned generalized SEM representing the hidden

causal relations in the context trials, we treat each query as

another optimization problem. Specifically, we construct a

partial data vector for each panel from the symbolic repre-

sentation parsed by the neural perception frontend. Denot-

ing the Blicket machine as object n, the query vector can

be represented as X1:n−1. Treating Xn as the probability of

the Blicket machine being activated, the query optimization

is formulated as

minimize
Xn

1
n

∑
j ℓ(Xj , gj([X1:n−1|Xn]))

subject to 0 � Xn � 1.
(3)

We solve it using L-BFGS-B [4] and set thresholds on Xn

to predict the final state of the Blicket machine.

We also test a constraint-based method [18, 62] and

the well-known Rescorla–Wagner (RW) model [53] for

the causal reasoning backend. The constraint-based method

(denoted as NS-PC) first uses the state-of-the-art PC algo-

rithm [62] to test conditional independence and search for

an underlying causal DAG among objects and the Blicket

machine. It then finds the parent nodes for the Blicket ma-

chine and estimates its conditional probability table, which

can be directly read out for each query configuration. For

the RW model (denoted as NS-RW), we simply treat co-

occurrence of an object with an activated Blicket machine

as its Blicketness. A query configuration’s state is predicted

based on the maximum Blicketness of all objects in it.

5. Experiments

5.1. Experimental Setup

ACRE is equally partitioned into 3 splits, i.e., the I.I.D.

split, the compositionality (comp) split, and the systematic-

ity (sys) split. Each of the splits contains 10, 000 problems.

We further divide each split into 10 folds, with 6 folds

for training, 2 folds for validation, and 2 folds for test-

ing. All models are trained on the training sets, with hyper-

parameters tuned on the validation sets. Results are reported

for the best models on the test sets. In particular, we report

two metrics: query accuracy and problem accuracy. The for-

mer measures how a model performs on each query, and

the later whether a model correctly answers all 4 queries in

a problem instance. Note that based on the label distribu-

tion shown in Fig. 3, a simple strategy of always predict-

ing activation will yield around 37.3% query accuracy and

1.87% problem accuracy, and a completely random guess

would yield 33.3% query accuracy and 1.19% problem ac-

curacy. All neural models, including the neural perception

frontend in the neuro-symbolic models, are implemented in

PyTorch [47] and optimized using Adam [33]. All experi-

ments were run on an Nvidia Titan XP GPU.

5.2. Performance on the I.I.D. Setting

The first portion of Table 1 reports how various mod-

els perform under the I.I.D. setting of ACRE. Surprisingly,

existing state-of-the-art methods for the abstract spatial-

temporal reasoning task [68, 77] do not fare much bet-

ter (even worse in certain cases) than a simple CNN-MLP

model. In particular, MXGNet performs slightly worse than

a random guess, only correctly answering 1% of problems.

With a relational module, WReN is on par with the CNN-

MLP model. CNN-LSTM and ResNet-MLP achieve similar

performance, with the LSTM-based reasoning model per-

forming better in problem accuracy. Of all pure neural mod-
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Method MXGNet LEN CNN-MLP WReN CNN-LSTM ResNet-MLP CNN-BERT NS-RW NS-PC NS-Opt

I.I.D.
Qry. 33.01% 38.08% 40.86% 40.39% 41.91% 42.00% 43.56% 46.61% 59.26% 66.29%
Pro. 1.00% 2.05% 3.25% 2.30% 3.60% 3.35% 3.50% 6.45% 21.15% 27.00%

Comp.
Qry. 35.56% 38.45% 41.97% 41.90% 42.80% 42.80% 43.79% 50.69% 61.83% 69.04%
Pro. 1.55% 2.10% 2.90% 2.65% 2.80% 2.60% 2.40% 8.10% 22.00% 31.20%

Sys.
Qry. 33.43% 36.11% 37.45% 39.60% 37.19% 37.71% 39.93% 42.18% 62.63% 67.44%
Pro. 0.60% 1.90% 2.55% 1.90% 1.85% 1.75% 1.90% 4.00% 29.20% 29.55%

Table 1. Performances of models on the I.I.D. split, the compositionality split (Comp.), and the systematicity split (Sys.) in ACRE. We

report 2 evaluation metrics: query accuracy (Qry.) and problem accuracy (Pro.). Please refer to the experimental setup for details.

els, the BERT model achieves the best in query accuracy,

slightly overtaken by CNN-LSTM in problem accuracy.

Among the 3 neuro-symbolic models tested, NS-RW

strictly follows the covariation strategy in solving the causal

discovery problems. We notice that such a simple causal

reasoning method can only handle less than half of ACRE

queries and less than 10% of ACRE problems, verifying

and necessitating our efforts to create a benchmark for

causal induction beyond covariation. NS-PC serves as an

oracle model for causal discovery as it adopts independence

tests and search methods. However, our experiments show

that NS-PC is inferior to the optimization-based NS-Opt

method. We believe such a result is due to the sparse and

limited observation in ACRE problems, making it difficult

to perform reliable independence tests. This challenge fur-

ther perplexes the underlying mechanisms on how humans,

even toddlers, derive the hidden relations so quickly and

accurately from scarce observation. The proposed NS-Opt

method successfully handles two-thirds of the queries but

still has much room to improve on problem accuracy.

5.3. Performance on the O.O.D. Settings

The second and third portions of Table 1 depict the mod-

els’ performance on the O.O.D. settings, i.e., composition-

ality and systematicity. Comparing both query accuracy and

problem accuracy in the compositionality split with those in

the I.I.D. setting, we notice that models’ performances have

no significant changes. Considering the fact that the train-

ing set and the test set in the compositionality split con-

tain completely different object attribute combinations, it

is likely that neural models indeed have emerged a certain

level of causal reasoning, though not perfect, to solve the

problems, rather than entirely relying on statistical visual

features from the training set. However, their underlying

representation of causal knowledge is still elusive; future

work is in need to discover their precise mechanisms.

Even if neural models emerged a causal reasoning strat-

egy, such a strategy is not systematic, as demonstrated in the

comparison between the systematicity split and the I.I.D.

split. Note that only the distributions of an activated ma-

chine are different in the training set and the test set of the

systematicity split, while the solutions can be derived in

the same way. We note that except for the NS-PC model

and the NS-Opt model, all other models experience per-

formance drop; some of them are even worse than always

predicting “activated”. This observation echoes the recent

empirical results that pure neural models still struggle to

systematically generalize [13, 37, 54].

Across the 3 splits, we also notice the conspicuously

large gap between the query accuracy and problem accu-

racy. We hypothesize that the result indicates the existence

of the bucket effect, which we verify in the next section.

5.4. A Closer Look at Queries

The drastic difference between query accuracy and prob-

lem accuracy motivates us to perform a closer inspection on

how models perform on each type of queries; see Table 2

for a summary of our experimental results.

In general, we notice that neural models tend to cap-

ture causal relations by covariation. Most of them excel

in query types directly solvable by this strategy, achiev-

ing the best performance in direct queries or indirect

queries or both across the different splits. This effect is

particularly significant in CNN-based reasoning models

(CNN-MLP and ResNet-MLP) that even reach 87% accu-

racy for indirect queries by learning from only target la-

bels. However, in contrast to the satisfactory performance

on covariation-based reasoning, they are unable to han-

dle the screening-off queries and the backward-blocking

queries, which go beyond co-occurrence. Specifically, the

best-performing neural model (CNN-BERT) embarrass-

ingly fails on screening-off queries in the systematicity

split, while CNN-based reasoning models also struggle in

these settings. Among the relation-module-based models

(MXGNet, LEN, and WReN), LEN and WReN are rel-

atively stable across the different types of queries. How-

ever, with a multiplex graph, MXGNet shows different dy-

namics, learning best in the backward-blocking queries but

counter-intuitively underperforming in the direct and in-

direct queries. It is also worth noting that causal reason-

ing that supports backward-blocking for MXGNet does not

consistently enable screening-off reasoning. A converse ob-

servation is found in CNN-LSTM: The model shines in

screening-off reasoning but fades in backward-blocking in

2 of the splits. Taking these results together, we hypothesize

that pure neural visual reasoning systems have not yet mas-

tered causal induction to a comparable level humans dis-

played in the developmental studies [22, 61].

Performance differences in queries among the neuro-
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Method MXGNet LEN CNN-MLP WReN CNN-LSTM ResNet-MLP CNN-BERT NS-RW NS-PC NS-Opt

I.I.D.

D.R. 27.73% 49.07% 55.56% 51.04% 48.20% 54.87% 52.24% 88.88% 84.46% 91.64%
I.D. 29.63% 45.11% 56.31% 41.04% 36.76% 48.37% 44.50% 99.29% 29.33% 69.25%
S.O. 14.88% 33.68% 44.88% 29.75% 53.23% 42.29% 42.59% 7.21% 78.31% 85.37%
B.B. 59.09% 23.91% 9.71% 35.61% 24.91% 21.12% 32.15% 1.66% 20.50% 11.98%

Comp.

D.R. 36.93% 47.58% 57.59% 55.29% 56.58% 62.79% 54.07% 91.74% 89.50% 92.50%
I.D. 55.99% 52.51% 64.38% 66.94% 65.10% 70.01% 46.88% 99.80% 28.66% 76.05%
S.O. 0.00% 18.01% 31.66% 8.44% 19.69% 30.52% 40.57% 4.07% 85.28% 88.33%
B.B. 52.35% 33.63% 15.26% 35.99% 29.27% 8.54% 28.79% 0.67% 15.21% 13.48%

Sys.

D.R. 15.24% 46.22% 70.79% 53.56% 42.57% 65.19% 55.97% 92.44% 89.76% 94.73%
I.D. 5.42% 47.90% 87.61% 71.35% 37.61% 85.07% 68.25% 99.89% 57.08% 88.38%
S.O. 42.58% 30.91% 11.57% 16.80% 63.28% 9.57% 0.00% 0.20% 73.93% 82.76%
B.B. 56.38% 24.89% 3.60% 31.62% 8.70% 13.38% 45.59% 0.46% 24.88% 16.06%

Table 2. A closer look at how models perform on each type of queries on different splits of ACRE: direct (D.R.), indirect (I.D.), screening-

off (S.O.), and backward-blocking (B.B.).

symbolic models potentially point out an Achilles’ heel for

solving abstract causal reasoning problems. NS-RW’s in-

ferior performance is expected as the model only consid-

ers covariation and will surely fail the screening-off and

backward-blocking queries, despite its success in direct and

indirect queries. NS-RW’s results also serve as a sanity

check for queries in ACRE that nearly all of the direct and

indirect queries can be solved by covariation (except for a

minimum number of interventional cases) and nearly none

of the screening-off and backward-blocking queries can

(except for a minimum number of coincidences). Compar-

ing NS-PC and NS-Opt, we notice that both models achieve

fair performance on direct queries and the screening-off

queries. However, the latter fares significantly better in in-

direct queries. We argue that the strict independence tests

and search methods used in PC make the model less robust

against noise, especially under the sparse-and-limited-data

scenario. What is evident in both models, and more signif-

icant in NS-Opt, is their inability in differentiating the su-

perficial correlation with an activated machine and the un-

determined Blicketness within. This close inspection also

indicates that adequately addressing the issue can further

improve the general causal reasoning performance. By com-

paring the low accuracy of NS-Opt and pure neural net-

works in backward-blocking, we hypothesize that a poten-

tial solution to causal reasoning would be to combine the

best of both worlds in learning and symbolic reasoning,

keeping both the learnability of neural methods and the in-

terpretability of symbolic methods.

6. Conclusion

In this work, we present a new dataset for Abstract

Causal REasoning (ACRE), aiming to measure and improve

causal induction in visual reasoning systems. Apart from

the inductive reasoning nature, the defining feature of the

ACRE dataset is the requirement to perform causal reason-

ing beyond covariation. Inspired by the established stream

of research on Blicket experiments, the ACRE dataset is

grounded on a similar setting using the synthetic CLEVR

universe [32]. To measure causal induction beyond covari-

ation, we challenge a visual reasoning system with 4 types

of queries in either independent scenarios or interventional

scenarios: direct, indirect, screening-off, and backward-

blocking. The first 2 types of queries can be answered by

counting co-occurrence, while the last 2 types require in-

depth causal representation. To better measure generaliza-

tion in causal discovery, we further propose the composi-

tionality and the systematicity O.O.D. split.

We devise an optimization-based neuro-symbolic

method to equip a visual reasoning system with the causal

discovery ability. In particular, we decompose the model

into a neural perception frontend and a causal reasoning

backend. The neural perception frontend parses a given trial

using a Mask RCNN [27], whereas the causal reasoning

backend performs continuous optimization for causal

discovery [78, 79]. The context trials are leveraged to

learn a generalized SEM, and the answer to a query trial is

solved by finding the best value to fit the SEM. As the first

attempt, we separately train the two components, leaving

the problem of closing the loop between visual perception

and causal discovery for future work [39, 74, 75].

Existing visual reasoning systems’ causal induction ca-

pability has been benchmarked on ACRE. Specifically, we

notice that pure neural models tend to perform causal rea-

soning by capturing the statistical correlation, achieving sat-

isfactory results on direct and indirect queries but failing

on screening-off and backward-blocking ones. For neuro-

symbolic models, we notice that all of them struggle on

backward-blocking and that the sparse and limited observa-

tion further adds to the complexity of the problem. Com-

paring performances of these 2 types of models on vari-

ous queries, we hypothesize that further combining learning

and symbolic reasoning would be a promising direction for

causal induction and broader causal reasoning problems.

At length, we hope challenges in this causal reason-

ing task would call for attention into visual systems with

human-level spatial, temporal, and causal reasoning ability.
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