
Accurate Few-shot Object Detection with Support-Query

Mutual Guidance and Hybrid Loss

Lu Zhang1 Shuigeng Zhou1* Jihong Guan2 Ji Zhang3

1Shanghai Key Lab of Intelligent Information Processing, and School of

Computer Science, Fudan University, China
2Department of Computer Science & Technology, Tongji University, China

3Zhejiang Laboratory, China

{l zhang19,sgzhou}@fudan.edu.cn, jhguan@tongji.edu.cn, Ji.Zhang@zhejianglab.com

Abstract

Most object detection methods require huge amounts of

annotated data and can detect only the categories that ap-

pear in the training set. However, in reality acquiring mas-

sive annotated training data is both expensive and time-

consuming. In this paper, we propose a novel two-stage

detector for accurate few-shot object detection. In the first

stage, we employ a support-query mutual guidance mech-

anism to generate more support-relevant proposals. Con-

cretely, on the one hand, a query-guided support weighting

module is developed for aggregating different supports to

generate the support feature. On the other hand, a support-

guided query enhancement module is designed by dynamic

kernels. In the second stage, we score and filter proposals

via multi-level feature comparison between each proposal

and the aggregated support feature based on a distance met-

ric learnt by an effective hybrid loss, which makes the em-

bedding space of distance metric more discriminative. Ex-

tensive experiments on benchmark datasets show that our

method substantially outperforms the existing methods and

lifts the SOTA of FSOD task to a higher level.

1. Introduction

Object detection is one of the most fundamental prob-

lems in computer vision. Most existing object detection

methods [23] require huge amounts of annotated training

data, and it is hard to generalize a well-trained model to de-

tect unseen classes. On the contrary, human beings have

strong capability to recognize and locate an object that they

have never seen before, but only if they have a few exam-

ples of such an object. In other words, the visual system of

humans can learn novel concepts and features from a few

*correspondence author

examples quickly and then recognizes objects of the same

kind in other images, even when the objects are under large

variance of view, illumination, and shape, etc.

In real-world scenarios, the number of training samples

could be small, and the cost to label high-quality samples

can be very high. Thus, it is important to study the problem

of few-shot object detection (FSOD) [2, 10]. Specifically,

given a few support images with annotations of some tar-

get classes, FSOD aims to recognize and localize objects

of these classes in some query images. Similar to few-

shot learning, the class space is divided into base (seen)

classes and novel (unseen) classes. During training, only

base classes are used. The inference is conducted on novel

classes, which are different from the base classes.

FSOD is a challenging problem that has not yet been

extensively studied. Among the existing works, some are

based on one-stage detectors, which usually have relatively

low accuracy [10, 28]. In contrast, two-stage detector can

achieve relatively high accuracy [30, 11, 5, 27]. However,

existing two-stage methods still have some obvious draw-

backs: 1) Support information is not fully exploited to guide

bounding boxes generation from the query. 2) In k-shot

scenario, they treat different supports equally and aggregate

their features by simple averaging, which will also seriously

impact detection accuracy. 3) Generally, their detection ac-

curacy is still too low to be applicable in real applications.

To address the problems above, in this paper, we pro-

pose a novel method for accurate few-shot object detection.

Our method is a two-stage detector with multi-level archi-

tecture. In the first stage, we employ a support-query mu-

tual guidance mechanism to generate more support-relevant

proposals. To this end, on the one hand, considering that the

similarities between different supports and the query image

may be quite different, it is natural to think that the sup-

ports contribute differently to detect objects from the query

image. Thus, we design a query-guided support weighting

14424

module to aggregate different supports. On the other hand,

we develop a support-guided query enhancement module.

In particular, we design a kernel generator to dynamically

generate support-specific kernels, which are used to con-

volve the query feature, making the query feature more at-

tentive to the support class.

In the second stage, we filter the proposals with a multi-

level proposal scoring module. Specifically, we perform

dense comparison level-by-level between the feature of

each proposal candidate and the support feature, and ag-

gregate level-wise similarities to get proposal scores. The

feature comparison is done with a learnt distance metric.

To learn a better embedding space for the distance metric,

we design a hybrid loss that skillfully combines the merits

of contrastive loss, adaptive margin loss and focal loss to ef-

fectively discriminate different novel classes and the back-

ground. Our extensive experiments show that the proposed

method outperforms the existing methods.

In summary, our contributions are as follows:

1) We propose a new few-shot object detection method

whose novelty is twofold: a) A support-query mutual guid-

ance mechanism for generating more support-relevant pro-

posals, which is implemented by a support-guided query

enhancement module and a query-guided support weight-

ing module. b) A hybrid loss that combines the merits of

contrastive loss, adaptive margin loss and focal loss to learn

the distance metric for accurately discriminating proposals

of different unseen classes and the background.

2) We conduct extensive experiments on benchmark

datasets. Results show that our method substantially out-

performs the existing methods, and advances the SOTA of

FSOD to a higher level.

For better understanding the difference between our

method and the latest existing FSOD models, in Table 1

we present a qualitative comparison from three perspec-

tives: support fusion method, support-query mutual guid-

ance mechanism and loss function. We can see that 1)

only our method adopts weighted averaging over different

supports with their similarities to the query, while existing

methods all use simple averaging, i.e., they treat all supports

equally. 2) Our method is the only one that uses support-

query mutual guidance, i.e., using query to weight supports

(Q → S) meanwhile using support feature to enhance query

(S → Q). 3) Our method employs a powerful hybrid loss

that is different from that of the existing models.

2. Related Work

Few-shot Learning. Few-shot classification can be

roughly divided into two main streams: metric-based meth-

ods and optimization-based methods. Optimization-based

methods [20, 1, 7, 25, 32] aim to train models that can gen-

eralize well to the new tasks with model parameters fine-

tuning. Our method is more related to metric-based meth-

Method
Supports

fusion

S-Q mutual

guidance
Loss

LSTD*[2] Simple avg. None CE

RepMat[11] Simple avg. None CE+Emb

MetaYOLO[10] Simple avg. S → Q CE

MetaRCNN[30] Simple avg. S → Q Meta loss

TFA*[27] Simple avg. None CE

A-RPN[5] Simple avg. S → Q CE

Ours Weighted avg. S ↔ Q Hybrid loss

Table 1. A qualitative comparison of our method with existing

ones. Method with ‘*’ means the method is based on finetuning.

‘S’: Support. ‘Q’: Query. RPN and regression loss are omitted.

ods [13, 26, 12, 14, 9], which aim to represent samples in

a feature space where data from different categories can be

distinguished by distance metrics.

Few-shot Object Detection (FSOD). Different from

few-shot classification, FSOD is more challenging. Up to

now, there are only several works in this area, which can be

divided into finetuning-based methods and finetuning-free

methods. Finetuning-based methods [2, 31, 27] formulate

this problem in a transfer learning setting. They finetune

the pre-trained model from source domain to target domain.

Most recent works do not require finetuning. Among them,

methods based on one-stage detectors [10, 22, 28] use sup-

port information to perform feature fusion with query fea-

tures, in order to locate the support category. These methods

usually have low accuracy due to the lack of full utilization

of support information. Methods based on two-stage detec-

tors [11, 30, 6, 5, 29] usually use metric learning to address

the FSOD task. Proposals are filtered according to the dis-

tance between support and proposal features. Nevertheless,

existing two-stage methods have various drawbacks, which

limits their performance.

Different from the methods above, our method uses a

support-query mutual guidance mechanism to obtain more

support-relevant proposals. Furthermore, we propose a hy-

brid loss function to learn distance metric for better few-

shot object detection.

3. Method

3.1. Problem Definition

Similar to few-shot learning, we align training and test-

ing with the episodic paradigm. In each episode, we first

randomly select a class c and k supports of class c. Here,

the k supports are k objects possibly from multiple support

images. Then, we train a detector by episodic meta-training

with the input k supports to detect all objects of class c in

a query image Q. The difference between meta-testing and

meta-training lies in that the ground-truth bounding boxes

of class c in Q are available only during meta-training.

14425

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐼𝑚𝑎𝑔𝑒 𝑆

𝑄𝑢𝑒𝑟𝑦 𝐼𝑚𝑎𝑔𝑒 𝑄

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 /𝜙 (𝑆)

𝑄𝑢𝑒𝑟𝑦 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝜙(𝑄)

F
P
N

B
a
c
k
b
o
n
e

F
P
N

B
a
c
k
b
o
n
e

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟

𝐶𝑜𝑛𝑣

𝐾𝑒𝑟𝑛𝑒𝑙𝑠 ℱ! 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠

𝒟"

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑢𝑙𝑡

𝑅𝐴

Kernel

Generator

𝒢#

RPN + CAR

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 D𝜙 (𝑄)

𝑃!

𝑃"
𝑃#

𝑅𝐴
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 − 𝑔𝑢𝑖𝑑𝑒𝑑

𝑄𝑢𝑒𝑟𝑦 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡

𝑀𝑢𝑙𝑡𝑖 − 𝐿𝑒𝑣𝑒𝑙 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑆𝑐𝑜𝑟𝑖𝑛𝑔

Figure 1. The framework of our method in 1-shot setting.

Classes used in training are disjoint with those in testing.

3.2. Framework

We present the framework of our method in 1-shot set-

ting without loss of generality in Fig. 1. Here, there are two

major modules: support-guided proposal generation (SPG)

and multi-level proposal scoring (MPS). In SPG, the feature

extractor first extracts the features of support and query,

then the support-guided query enhancement module en-

hances the query feature by dynamic kernel convolution,

and finally more support-relevant proposals are generated.

After that, the MPS module filters proposals by dense fea-

ture comparison using a distance metric, which is learnt us-

ing the proposed hybrid loss. For k-shot setting, a query-

guided support weighting (QSW) module is used to auto-

matically aggregate the k supports.

3.3. Support­guided Proposal Generation (SPG)

3.3.1 Feature Extractor

As we begin with 1-shot setting, only one support image S

with one annotated bounding box ys(c) of class c is avail-

able during an episode. We use siamese backbone with

feature pyramid network (FPN) φ(·) to extract multi-level

features from support image S and query image Q. We de-

note image feature of support and query at the ith level as

φi(S) ∈ R
Hi

S×W i
S×C1 and φi(Q) ∈ R

Hi
Q×W i

Q×C1 respec-

tively. Here, i ∈ [1, L], L is the number of FPN levels, C1

is the number of channels. Considering that the support ob-

ject is only a small patch of the image S, we get a size-fixed

feature φi(S) ∈ R
a×a×C1 of the support object with ROI

Align (RA) operation, i.e., φi(S) = RA(φi(S), ys(c)),
where a is the output size of RA.

3.3.2 Support-guided Query Enhancement by Dy-

namic Kernel Convolution

Some existing methods [11, 2, 27] do not use support to

enhance the query, thus generate a large number of support-

irrelevant proposals, and have to filter them in the subse-

quent steps. SiamRPN++ [15], MetaYOLO [10], Attention-

RPN [5] and MetaRCNN [30] perform channel-wise mul-

tiplication to reweight the feature by depth-wise cross cor-

relation, while [6] uses pixel-wise weighting to calculate

pixel-wise weights for feature map with non-local opera-

tion. Here, we choose to enhance query by support fea-

ture with dynamic convolution [3, 16, 8]. Convolution op-

eration performs feature fusion between convolution ker-

nels and features. However, traditional convolution ker-

nels stay fixed after training. Inspired by dynamic net-

work [3, 16, 8], we use a kernel generator Gη to dynami-

cally generate support-specific kernels Fθ
i conditioned on

the support feature φi(S),

Fθ
i = Gη(φi(S)) (1)

where θ ∈ R
b×b×C1×C2 indicates parameters, b is the ker-

nel size, C1 is the number of channels in φi(S), C2 is the

number of kernels.

Then, to highlight the regions containing the target ob-

jects, we use the generated kernels to enhance the query

feature as follows:

φ̃i(Q) = Fθ
i ⊙ φi(Q) ∈ R

(
Hi

Q
−b

r
+1)×(

Wi
Q

−b

r
+1)×C2 (2)

where ⊙ is convolutional operation, φ̃i(Q) is the enhanced

query feature, and r is the stride of convolution. With the

guidance of support information, objects of support class in

the generated query feature are enhanced. The operations

of Eq. (1) and Eq. (2) are performed at each level i.

In our experiments, we implement Gη with C2 convolu-

tion subnetworks, whose kernel size are a − b + 1, input

14426

𝒢!
𝑐𝑜𝑛𝑣

𝑠𝑢𝑏𝑛𝑒𝑡

𝑘𝑒𝑟𝑛𝑒𝑙

𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑐𝑜𝑛𝑣

𝑠𝑢𝑏𝑛𝑒𝑡

𝑘𝑒𝑟𝑛𝑒𝑙

𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑐𝑜𝑛𝑣

𝑠𝑢𝑏𝑛𝑒𝑡

𝑘𝑒𝑟𝑛𝑒𝑙

𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑐𝑜𝑛𝑣

𝑠𝑢𝑏𝑛𝑒𝑡

𝑘𝑒𝑟𝑛𝑒𝑙

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ℱ"

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ,𝜙 (𝑆)

𝑄𝑢𝑒𝑟𝑦 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝜙(𝑄) 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 7𝜙 (𝑄)

Figure 2. The structure of kernel generator Gη .

channel C1, output channel C1, indicating generating C2

kernels and each with C1 channels. The parameters η of Gη

are shared across all levels. The structure of kernel genera-

tor Gη is shown in Fig. 2.

3.3.3 Proposal Generation and Refinement

φ̃i(Q) is fed into RPN head to propose potential boxes that

contain objects of class c with high probability. To further

boost the accuracy of generated proposals, we add a class-

agnostic regressor (CAR) module after RPN to refine the

positions and sizes of proposals, which is implemented in

a fully connected network. CAR takes the features of pro-

posals as input and outputs the coordinate adjustment val-

ues (dx, dy, dh, dw) where dx and dy are used to adjust the

top-left coordinates of the proposals, dh and dw are used to

adjust the height and width. The refined proposals are used

in the following steps.

3.4. Multi­Level Proposal Scoring (MPS)

To filter out the low-quality proposals, we develop the

MPS module to rank the generated proposals and output the

top ranked proposals as the final detection result.

To rank the jth proposal Pj , we first project Pj into all

FPN levels and use ROI Align to get its features at all L

levels, which are denoted as {P i
j}

L
i=1. Then, we perform

dense feature comparison between support and proposal Pj

level-by-level using a learnt distance metric Dϕ(·, ·) and get

the similarity score sim(S, Pj) as follows:

sim(S, Pj) =
1

L

L∑

i=1

Dϕ(φi(S), P i
j) (3)

In our experiments, we implement Dϕ(·, ·) with relation

network [26] without the last sigmoid activation and its pa-

rameters ϕ is learnable during the training phase.

By ranking the M candidate proposals {Pj}
M
j=1, we out-

put the final proposals according to a prespecified score

threshold and non maximum suppression.

3.5. Query­guided Support Weighting (QSW)

For k-shot setting, we propose the QSW module to

weight different support objects. Fig. 3 illustrates the QSW

architecture of 3-shot setting.

𝑆
𝑢
𝑝
𝑝
𝑜
𝑟
𝑡
𝐹
𝑒
𝑎
𝑡𝑢
𝑟
𝑒
𝑠
𝜙
!
(𝑆
)

𝑄𝑢𝑒𝑟𝑦 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝜙! (𝑄)

𝒟"

𝒟"

𝒟"

𝑎!

𝑎"

𝑎#

⊗

sum⊗

⊗

softmax

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑠ℎ𝑎𝑟𝑒𝑑

𝐹𝑖𝑛𝑎𝑙

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒

C
o
n
v

Figure 3. The QSW architecture of 3-shot setting.

As different support objects may differ in view, shape

and illumination etc., their relevance to the query image

may be quite different. Different from previous weighting

scheme [33], we weight each support object according to

its similarity with the query image using an attention mech-

anism. Taking the ith level for example, given the k sup-

port features {φi
j(S)}

k
j=1 and the original size query feature

φi(Q) at level i, we get the size-fixed query feature φi(Q)
with RA operation. Then, the attention scores {aij}

k
j=1 to

weight different supports are as follows:

cij = Dϕ(φi
j(S), Conv(φi(Q))), (4)

aij =
ec

i
j

k∑
j=1

ec
i
j

(5)

where Dϕ(·, ·) is the distance metric in MPS, Conv(·) is a

convolution operation to extract semantic feature and com-

press the feature into a uniform space with the proposals.

The parameters ϕ for Dϕ(·, ·) are shared between MPS and

QSW. The final support feature at level i is the weighted

sum of {φi
j(S)}

k
j=1.

3.6. Hybrid Loss

In FSOD, we often face two problems: 1) False posi-

tives. For example, given a support object of class c, and

a query image Q, even though Q does not contain any ob-

ject of class c, the detector may still output some bound-

ing boxes, which are false positives. This is because the

learnt metric space tends to focus on separating foreground

and background, ignoring different classes of foreground

objects. 2) Foreground-background imbalance. Most pro-

posals Pj are from background, leading to an extreme im-

balance between foreground and background classes during

training the distance metric Dϕ(·, ·). Here, we address these

two problems by introducing a hybrid loss that combines

the merits of contrastive loss, adaptive margin loss and fo-

cal loss.

14427

3.6.1 Basic Contrastive Loss

We first solve the false positive problem mentioned above.
A basic idea is to treat proposals of other foreground classes
as negative samples, i.e. comparison targets. For joint train-
ing, similar to 2-way training strategy in [5], we try to make
the model learn to compare foreground and background
proposals, and different foreground classes. Let {Pc} and
{Pnc} be the sets of foreground proposals of class c and the
other classes respectively, and {Pback} be the set of propos-
als from the background, we formulate our basic contrastive
loss as follows:

Lcontra = −
1

|{Pc}|
log

N (C)

N (C) +N (NC,Back)contra
(6)

where

N (C) =
∑

P∈{Pc}

e
sim(S,P)

N (NC,Back)contra =
∑

P∈{Pnc,Pback}

e
sim(S,P)

(7)

With Lcontra, we can separate different foreground classes.

3.6.2 Adaptive Margin

An shortcoming of Lcontra is that different classes in the
embedding space are not separated by a proper distance.
An intuitive idea is to add margin between different classes.
Inspired by [14], we introduce the adaptive margin mech-
anism to Lcontra by rewriting N (NC,Back)contra as fol-
lows:

N (NC,Back)margin =
∑

P∈{Pnc}

e
sim(S,P)+MS,P

+
∑

P∈{Pback}

e
sim(S,P)+MS,P

(8)

where MS,P is the adaptive margin generated according to

the semantic similarity between classes as follows:

MS,P = µ · Dτ (vS , vP) + ν (9)

where vS and vP are semantic vectors of support and pro-

posals classes extracted by a word embedding model. Dτ

is a metric to measure the semantic similarity between

classes. In our experiments, we get semantic vectors from

Glove [21] and implement Dτ by cosine similarity. Param-

eters µ, ν are learnable during the training. Similarity be-

tween support and background proposals Dτ (vS , vback) is a

hyperparameter.

3.6.3 Imposing Focal Loss to Background

Here we address the foreground-background imbalance
problem. A simple solution is to downsample {Pback}
randomly or using OHEM [24], which can be considered
as hard-weighting to {Pback}, i.e., assigning weights of

-1.5 -1 -0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

Well-separated
samples

-1.5 -1 -0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

Well-separated
samples

Figure 4. Plots of Jfoc(x) with different α and β values.

1 (chosen) or 0 (ignored) to the proposals. Inspired by focal
loss [18], we adaptively down-weight the easy-separating
Pback and focus on the hard negative samples by reshaping
N (NC,Back)margin to

N (NC,Back)margin+focal =
∑

P∈{Pnc}

e
sim(S,P)+MS,P

+γ
∑

P∈{Pback}

Jfoc(sim(S, P) +MS,P)

(10)

where γ is a hyperparameter that balances the sum of nega-

tive sample terms. Jfoc(x) is a function defined as follows:

Jfoc(x) = fm(x)ex. (11)

Above, fm(x) is a modulating factor as follows:

fm(x) =
1

α+ e−βx
. (12)

We implement fm(x) with a parameterized sigmoid func-

tion. Fig. 4 illustrates Jfoc(x) with different α and β val-

ues. When α = 0, β = 0, Jfoc(x) degenerates to ex. In

this case, even well-separable proposals contribute much to

the loss, and the contribution from {Pback} can overwhelm

that from {Pc} and {Pnc}. We can see that a large α slows

down the growth of Jfoc(x), so as to prevent the negative

proposals from dominating the gradient. And a large β sub-

stantially restrains the values for well-separable proposals,

allowing the model to pay more attention to proposals that

are difficult to distinguish.

By replacing N (NC,Back)contra in Eq. (6) with

N (NC,Back)margin+focal in Eq. (10), we get a hybrid

loss LHY that combines the merits of contrastive loss, adap-

tive margin loss and focal loss to effectively learn the metric

distance of FSOD.

3.6.4 Total Loss Function

Finally, the total loss of our model is as follows:

L = LRPNCls
+ LRPNReg

+ λ1LCAR + λ2LHY (13)

14428

where the first two terms are the cross entropy and regres-

sion loss of RPN respectively. LCAR is the loss of the class-

agnostic regressor, which is in the form of smooth L1 loss.

LHY is the hybrid loss.

4. Experiments

4.1. Datasets

Following the settings of existing works, the datasets and

splits are as follows:

MS COCO dataset [19]. It is a benchmark dataset for

object detection. There are 80 categories in COCO, 20 of

which also appear in PASCAL VOC. We select the 20 com-

mon categories with VOC as novel classes for evaluation,

and the remaining 60 classes as base classes for training.

Training is performed on the base classes with 80k training

images and a 35k subset of val images, and evaluation is on

the remaining 5k val images.

PASCAL VOC dataset [4]. VOC 2007 and 2012 are

divided into training set, validation set and test set. We uti-

lize 2007 and 2012 train/val images for training, and 2007

test set for evaluation. There are totally 20 categories of an-

notated objects and we follow previous works to take three

different base/novel classes splits. In each split, there are 15

base classes for training and 5 novel classes for evaluation.

4.2. Implementation Details

We report results with ResNet-50/101 as backbone and

the number of FPN levels is set to 5. We train our model on

4 NVIDIA TITAN RTX in parallel. The model is trained

in an end-to-end manner for totally 60000 episodes. We

employ SGD with a weight decay of 0.0001 and a momen-

tum of 0.9 as optimizer. For the first 40000 episodes, the

learning rate is 0.002, and we multiply it by 0.1 for the next

20000 episodes. The short side of each image is resized to

800 pixels, and the longer side is capped at 1333. C1 and

C2 are set to 256. The output size a of ROI Align is set to

7. In SPG, the kernel size b of Fθ and the stride r in Eq. (2)

are set to 1. For the hybrid loss, when P is background,

Dτ (vS , vback) in Eq. (9) is set to 0.3, γ in Eq. (10) is set to

0.25, α and β in Eq. (12) are set to 1.5, λ1 and λ2 in Eq. (13)

are set to 0.01 and 1 respectively.

4.3. Comparison with Existing Methods

COCO dataset. The results on COCO are given in Ta-

ble 2. Since previous works used different backbones, for

fair comparison we report our results of two backbones.

We can see that even with ResNet-50 as backbone, our

method exceeds all the existing SOTAs by a large margin.

With ResNet-101 as backbone, our method further brings

a 1.3%AP improvement over ResNet-50 and outperforms

SOTAs by 2.8%, 9.1% and 1.1% in terms of AP , AP50,

AP75 respectively. This shows the generalization power

Method Bb AP AP50AP75APSAPM APL

LSTD[2] SSD 3.2 8.1 2.1 0.9 2.0 6.5

Incremental[22] H104 5.1 – – – – –

MetaYOLO[10] D19 5.6 12.3 4.6 0.9 3.5 10.5

MetaDet[28] V16 7.1 14.6 6.1 1.0 4.1 12.2

MetaRCNN[30] R101 8.7 19.1 6.6 2.3 7.7 14.0

TFA w/cos[27] R101 10.0 – 9.3 – – –

MPSR[29] R101 9.8 17.9 9.7 3.3 9.2 16.1

A-RPN[5] R50 11.1 20.4 10.6 – – –

Ours R50 12.6 27.0 10.9 7.3 13.4 17.8

Ours R101 13.9 29.5 11.7 7.6 15.2 19.0

Table 2. Results on the COCO minival set for 20 novel classes

under 10-shot. ‘–’: No reported results. ‘Bb’: Backbone; ‘SSD’:

the models use backbone of SSD; ‘H104’: Hourglass-104; ‘D19’:

DarkNet-19; ‘V16’: VGG16; ‘R101/50’: ResNet101/50.

of our approach to novel classes. Furthermore, we can

see that our method performs more excellently in terms of

APS than the existing methods, almost doubles the APS

of MPSR [29], which demonstrates the superiority of our

method in detecting small-size objects. Results under 30-

shot are in the supplementary file.

VOC dataset. Table 3 presents the results on VOC

dataset, we can see that our method performs best in most

cases. Especially, when there are fewer supports, our

method performs much better than the existing methods. In

1-shot case, our method with ResNet-101 as backbone ex-

ceeds SOTA (MPSR [29]) by 11.5% mAP on average over

3 splits. Furthermore, to measure the overall performance

of different methods, we take the average of 5 shots over

3 splits and present the results in the last column. For fair

comparison, methods that do not disclose all shot results are

ignored and are replaced with ’-’. As we can see, the im-

provement on average score is up to 10 points, much larger

than the gap among previous approaches, demonstrating the

effectiveness of our approach.

4.4. Ablation Study

We analyze the effects of various components in our sys-

tem. Unless otherwise specified, the experiments are carried

out on COCO under 10-shot with ResNet-50 as backbone.

Effects of Different Modules. Here we investigate the

effects of different modules and summarize the results in

Table 4. The implementation details are: 1) For models

without kernel generator Gη , we directly feed the origin

query feature φ(Q) into RPN. 2) For models without CAR,

we use the proposals from RPN without location refine-

ment. 3) For models without MPS, we perform feature com-

parison only at the top level of FPN. 4) For models without

the hybrid loss (HY loss in short), we use binary cross en-

tropy loss instead. 5) For models without QSW, all supports

have the same weights.

14429

Method / Shot
Back Novel Set 1 Novel Set 2 Novel Set 3

Avg
bone 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD[2] SSD 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3 17.1

MetaYOLO[10] D19 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3 27.3

MetaDet[28] V16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1 31.0

MetaRCNN[30] R101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1 31.1

Context-Trans[31] SSD 34.2 – – 44.2 – 26.0 – – 36.3 – 29.3 – – 40.8 – –

TFA w/cos[27] R101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 39.9

MPSR[29] R101 41.7 – 51.4 55.2 61.8 24.4 – 39.2 39.9 47.8 35.6 – 42.3 48.0 49.7 –

Ours R50 46.8 49.2 50.2 52.0 52.4 39.4 43.1 43.6 44.1 45.7 44.1 49.8 50.5 52.3 52.8 47.7

Ours R101 48.6 51.1 52.0 53.7 54.3 41.6 45.4 45.8 46.3 48.0 46.1 51.7 52.6 54.1 55.0 49.8

Table 3. mAP on the PASCAL VOC dataset. The evaluation is performed over 3 different splits. ’–’: No reported results or missing data.

Gη CAR MPS HY loss QSW AP50 AP75

15.6 3.2

X 18.8 4.0

X X 19.3 7.4

X X X 23.1 9.1

X X X X 26.5 10.7

X X X X X 27.0 10.9

Table 4. Effects of different modules.

We can see that models removing any module we de-

sign get worse performance. With the kernel generator

Gη , performance gets 3.2%/0.8% improvement in terms of

AP50/AP75, which shows that it is helpful to introduce sup-

port information to guide the generation of proposals. Ap-

plying CAR can increase AP75 up to 3.4%, due to more ac-

curate positions of predicted boxes. The MPS module can

increase AP50 and AP75 by 3.8% and 1.7% respectively,

which means the feature comparison at all levels is neces-

sary. As for the hybrid loss, it boosts the performance by

3.4%/1.6% in terms of AP50/AP75, which means our hy-

brid loss is helpful for learning desirable distance metric.

The QSW module brings a slight performance lift, but when

the number of supports is small, the effect is obvious, which

will be analyzed later.

Effect of the Hybrid Loss. We compare our hybrid loss

with some streamlined versions to evaluate the effective-

ness of the key components of our loss. Results are pre-

sented in Table 5. We can see that: 1) Basic contrastive loss

has poor performance since the negative proposals domi-

nate the gradient. 2) Adaptive margin can improve basic

contrastive loss moderately due to a better embedding space

with adaptive inter-class distance. Moreover, we observe

that the learnt coefficient µ in Eq. (9) is positive, showing

that the margin between similar classes should be larger

than that between dissimilar classes. 3) Hard-weighting

methods such as downsampling and OHEM [24] can solve

the imbalance problem to some extent, there is still room

for performance improvement. 5) By considering the inter-

Loss AP50 AP75

Basic Contrastive Loss 18.0 8.5

Basic Loss + AM 18.7 8.7

Basic Loss + AM + Downsampling 24.4 9.5

Basic Loss + AM + OHEM 25.1 9.8

Hybrid Loss (Ours) 27.0 10.9

Table 5. Effect of hybrid loss. ’AM’: Adaptive Margin.

class distance of different foreground classes and the easy-

hard negative proposals, our hybrid loss outperforms all the

other loss functions.

Moreover, we compare visualization of embedding space

between BCE loss and hybrid loss (HY loss). Fig. 5 shows

the visualization results of the first 5 novel class features

obtained by tSNE. Our hybrid loss has better separation

among novel classes. In BCE, intra-class distance is mini-

mized but inter-class distance is not considered. It works

well for separating base classes, but is not satisfactory

for novel classes, because inter-class distance must be in-

creased to ensure unseen class separability.

(𝒂)𝑩𝑪𝑬 𝒍𝒐𝒔𝒔 𝒃 𝑯𝒀 𝒍𝒐𝒔𝒔

Figure 5. tSNE plots of visual features for the first 5 novel classes

in COCO. (a) BCE loss pushes the visual features to their ground-

truth, which leads to the minimizing of intra-class distance, but

ignoring of inter-classes distance. (b) Our HY loss considers both

to ensure novel classes separability.

Hyperparameter Analysis. We perform analysis on 4

important hyperparameters: α, β, γ and b. We vary α with

14430

a fixed β = 0. Then, with the optimal α, we vary β from

0 to 3. Similarly, we study the influence of γ and b. The

results are shown in Fig. 6, with which we have the settings

in implementation details.

0 0.5 1 1.5 2 2.5 3

0

5

10

15

0 0.5 1 1.5 2 2.5 3

0

5

10

15

0.1 0.25 0.5 0.75 1

0

5

10

15

1 3 5

0

5

10

15

Figure 6. Hyperparameter analysis.

Will Gη and CAR Improve Recall of Proposals? To

verify that RPN can generate more support-relevant pro-

posals when the query feature is convolved by the support-

specific kernel Fθ, we check the recall with/without kernel

generator Gη . Meanwhile, to verify that CAR can further

improve the accuracy of the bounding box location, we also

check the recall with/without CAR. The results are shown

in the left part of Fig. 7. We can see that the recall when

Gη and CAR are used is much better than the other settings.

Without Gη , the recall curve starts from a relatively small

value when IoU = 0.5 (up to 10%). For models without

CAR, the recall curve drops sharply as IoU increases, in-

dicating that the positions of the proposals are not accurate

enough. In addition, we compare our kernel generator with

other query feature enhancement methods, depth-wise cross

correlation (DCC) [15, 10, 5, 30] and pixel-wise weight-

ing [6]. The results are in the right part of Fig. 7. For fair

comparison, CAR is used in all methods. As we can see, our

query feature enhancement scheme outperforms the others

and can effectively improve recall, and better recall of pro-

posals subsequently makes higher AP possible.

Does Multi-Level Scoring with FPN Help? In addi-

tion to our method, we consider two additional schemes for

proposals scoring conducted on only one feature level, they

are: a) Top-Level: Feature comparison is done only at the

top level of FPN. In this case, FPN is removed and feature

aggregation is only performed at the top level. b) Optimal-

Level: It also compare feature in one level, but the level

is selected according to the size of the proposals. The se-

lection method is the same as that in [17]. The results are

summarized in Table 6. We can see that our method outper-

forms the other two, which indicates the feature comparison

level-by-level is useful and necessary, especially for small-

size objects.

Effect of QSW. To verify the effectiveness of the QSW

module, we compare QSW with feature averaging, which

is used in some existing methods [30, 11, 10, 5]. Results

are shown in Table 7. As we can see, QSW can boost

the performance, especially when the number of supports

is small. Since the smaller the support number, the eas-

ier it is for some randomly selected low-quality supports or

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
a
ll
@
1
0
0

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
a
ll
@
1
0
0

Figure 7. Left: Recall of proposals with/without kernel generator

Gη and CAR. Right: Comparison of different query feature en-

hancement schemes. We keep top-100 proposals per image.

Method AP APS APL

Top-Level 10.3 4.0 16.7

Optimal-Level 11.5 5.9 17.0

MPS (Ours) 12.6 7.3 17.8

Table 6. Ablation study for MPS with FPN. MPS has a better im-

provement for APS (AP of small size objects) than APL(large).

query-irrelevant supports to impact on the results. QSW can

measure the contribution from each support to get a better

support feature for the current query.

Method/Shot(k) 2 3 4 5 10

Feature Averaging 22.7 23.4 24.8 25.6 26.5

QSW(Ours) 23.6 25.2 25.9 26.2 27.0

Table 7. AP50 comparison between feature averaging and QSW.

QSW can significantly improve performance when k is small.

5. Conclusion

In this work, we propose a novel method for few-shot

object detection based on support-query mutual guidance

ana hybrid loss. On the one hand, support is used to guide

the enhancement of query. On the other hand, query is used

to guide the weighting of multiple supports in few-shot set-

ting. Furthermore, we adopt multi-level proposal scoring

based on a skillfully designed hybrid loss. Our method

can effectively overcome the drawbacks of existing works,

and achieves the state of the art performance. As for fu-

ture work, we will focus on improving the efficiency of our

model and further boosting its performance by new mecha-

nisms and network structures.

Acknowledgement. This work was supported by Zhe-

jiang Lab (No. 2019KB0AB05), partially by Science and

Technology Commission of Shanghai Municipality Project

(No. 19511120700), and Shanghai Artificial Intelligence

Innovation and Development Projects funded by Shanghai

Municipal Commission of Economy and Informatization.

Jihong Guan was supported by NSFC (No. U1936205).

14431

References

[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey.

How to train your MAML. In ICLR, 2019. 2

[2] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. Lstd:

A low-shot transfer detector for object detection. In AAAI,

2018. 1, 2, 3, 6, 7

[3] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong

Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution: At-

tention over convolution kernels. In CVPR, 2020. 3

[4] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 6

[5] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-

shot object detection with attention-rpn and multi-relation

detector. In CVPR, 2020. 1, 2, 3, 5, 6, 8

[6] Ting-I Hsieh, Yi-Chen Lo, Hwann-Tzong Chen, and Tyng-

Luh Liu. One-shot object detection with co-attention and

co-excitation. In NIPS, 2019. 2, 3, 8

[7] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic

meta-learning for few-shot learning. In CVPR, 2019. 2

[8] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V

Gool. Dynamic filter networks. In NIPS. 2016. 3

[9] Liang Song Jinlu Liu and Yongqiang Qin. Prototype rectifi-

cation for few-shot learning. In ECCV, 2020. 2

[10] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,

and Trevor Darrell. Few-shot object detection via feature

reweighting. In ICCV, 2019. 1, 2, 3, 6, 7, 8

[11] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,

Amit Aides, Rogerio Feris, Raja Giryes, and Alex M. Bron-

stein. Repmet: Representative-based metric learning for

classification and few-shot object detection. In CVPR, 2019.

1, 2, 3, 8

[12] Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, and In So

Kweon. Variational prototyping-encoder: One-shot learning

with prototypical images. In CVPR, 2019. 2

[13] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML Workshop, 2015. 2

[14] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li,

and Liwei Wang. Boosting few-shot learning with adaptive

margin loss. In CVPR, 2020. 2, 5

[15] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019. 3, 8

[16] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In NIPS. 2017. 3

[17] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 8

[18] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

39:2999–3007, 2018. 5

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 6

[20] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani

Raiko. Scalable gradient-based tuning of continuous regu-

larization hyperparameters. In ICML, 2016. 2

[21] Jeffrey Pennington, Richard Socher, and Christopher Man-

ning. Glove: Global vectors for word representation. In

EMNLP, 2014. 5

[22] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M.

Hospedales, and Tao Xiang. Incremental few-shot ob-

ject detection. In CVPR, 2020. 2, 6

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015. 1

[24] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.

Training region-based object detectors with online hard ex-

ample mining. In CVPR, 2016. 5, 7

[25] Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof

Choromanski, Aldo Pacchiano, and Yunhao Tang. Es-maml:

Simple hessian-free meta learning. In ICLR, 2020. 2

[26] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,

Philip H.S. Torr, and Timothy M. Hospedales. Learning to

compare: Relation network for few-shot learning. In CVPR,

2018. 2, 4

[27] Xin Wang, Thomas Huang, Joseph Gonzalez, Trevor Darrell,

and Fisher Yu. Frustratingly simple few-shot object detec-

tion. In ICML, 2020. 1, 2, 3, 6, 7

[28] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-

learning to detect rare objects. In ICCV, 2019. 1, 2, 6, 7

[29] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.

Multi-scale positive sample refinement for few-shot object

detection. In ECCV, 2020. 2, 6, 7

[30] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-

aodan Liang, and Liang Lin. Meta r-cnn : Towards general

solver for instance-level low-shot learning. In ICCV, 2019.

1, 2, 3, 6, 7, 8

[31] Ze Yang, Yali Wang, Xianyu Chen, Jianzhuang Liu, and Yu

Qiao. Context-transformer: Tackling object confusion for

few-shot detection. In AAAI, 2020. 2, 7

[32] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin

Ding, Ruirui Li, and Zhenhui Li. Automated relational meta-

learning. In ICLR, 2020. 2

[33] Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, and Chunhua

Shen. Canet: Class-agnostic segmentation networks with it-

erative refinement and attentive few-shot learning. In CVPR,

2019. 4

14432

