
Attention-guided Image Compression by Deep Reconstruction of

Compressive Sensed Saliency Skeleton

Xi Zhang

Shanghai Jiao Tong University

zhangxi 19930818@sjtu.edu.cn

Xiaolin Wu†

McMaster Univeristy

xwu@ece.mcmaster.ca

Abstract

We propose a deep learning system for attention-guided

dual-layer image compression (AGDL). In the AGDL com-

pression system, an image is encoded into two layers, a base

layer and an attention-guided refinement layer. Unlike the

existing ROI image compression methods that spend an ex-

tra bit budget equally on all pixels in ROI, AGDL employs a

CNN module to predict those pixels on and near a saliency

sketch within ROI that are critical to perceptual quality.

Only the critical pixels are further sampled by compressive

sensing (CS) to form a very compact refinement layer. An-

other novel CNN method is developed to jointly decode the

two compression layers for a much refined reconstruction,

while strictly satisfying the transmitted CS constraints on

perceptually critical pixels. Extensive experiments demon-

strate that the proposed AGDL system advances the state of

the art in perception-aware image compression.

1. Introduction

After decades of intensive research and development,

visual signal compression techniques are approaching the

rate-distortion performance limits. Any further significant

improvements of bandwidth economy in visual communi-

cations have to come from smart human vision driven rep-

resentations. In this direction the methodology of region-

of-interest (ROI) image compression emerged about twenty

years ago [7, 31, 3]. ROI compression is to exploit a well-

known property of human vision: a viewer’s attention is

not evenly distributed in all parts of an image. Instead, our

attentions focus on one or few regions of greater interests

than the rest of the image, which pertain to salient fore-

ground object(s). Background regions are delegated to our

peripheral vision and hence have much lesser acuity. Play-

ing this tapering of visual acuity away from ROIs, a ROI

image compression method allocates a much lower bit bud-
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get to encode pixels outside of ROIs than those inside, and

saves a significant number of bits without materially sacri-

ficing visual quality of compressed images.

In this work, we sharpen the existing tool of ROI im-

age compression and propose a deep learning system of

attention-guided dual-layer image compression (AGDL). In

AGDL image compression, an image is encoded into two

layers, a base layer Ib and an attention-guided refinement

layer Ir. The base layer Ib is a conventional compressed

image of low bit rate (high compression), such as those pro-

duced by JPEG, JPEG 2000, WebP, BPG, etc. The clarity

of the base layer image just suffices to match the reduced

level of acuity of peripheral vision. It is up to the additional

attention-guided refinement layer Ir to boost the perceptual

quality of ROI(s).

In existing ROI image compression methods, an extra

bit budget is allocated to ROI and it is shared equally by

all pixels in ROI. But on a second reflection, we should be

more discriminating than ROI and spend extra bits only on

pixels that can contribute to perceptual quality after being

refined. Instead of a contiguous region of interest, we intro-

duce a much sparser representation called saliency sketch

to highlight semantically significant structures within ROI.

One step further, we define a so-called critical pixel set

that is the intersection of the saliency sketch and the set

of pixels that have large reconstruction errors. The crit-

ical pixel set specifies a skeletal sub-image that needs to

be further sampled and refined. For the saliency-driven

refinement task, we take a more proactive approach than

the straightforward CNN removal of compression artifacts

[26, 15, 49, 44, 16, 14, 56, 58, 52, 54, 13, 17, 9]. In the

AGDL system design, the encoder takes and transmits K

additional samples of the critical pixel set in the form of

compressive sensing (CS). The CS sampling produces novel

critical information for the refinement layer, while having a

very compact encoding of the novel information thanks to

the small size of the critical pixel set.

The proposed AGDL image compression system needs

to solve two key technical problems: 1. Detecting the

saliency sketch and the critical pixels; 2. Refining the base
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layer with the CS measurements of the critical pixel set.

The main technical contributions of this paper, besides the

AGDL methodology, are the CNN solutions to the above

two problems, one recognition and the other restoration.

2. Related Works

2.1. Endtoend optimized image compression

Toderici et al. [39] exploited recurrent neural networks

for learned image compression. Some works [4, 38, 1] are

proposed to approximate the non-differential quantization

by a differentiable process to make the network end-to-end

trainable. Toderici et al. [40] used recurrent neural net-

works (RNNs) to compress the residual information recur-

sively. Rippel et al. [34, 2] proposed to learn the distri-

bution of images using adversarial training to achieve bet-

ter perceptual quality at extremely low bit rate. Li et al.

[20] developed a method to allocate the content-aware bit

rate under the guidance of a content-weighted importance

map. [29, 5, 30, 19, 53] focused on investigating the adap-

tive context model for entropy estimation to achieve a bet-

ter trade-off between reconstruction errors and required bits

(entropy), among which the CNN methods of [30, 19] are

the first to outperform BPG in PSNR.

2.2. ROI image compression

In the AGDL image compression system outlined above,

the first step is to understand the image semantic compo-

sition and segment salient foreground objects. Detecting

salient objects is a research topic in its own right. Recently,

good progress has been made on this topic thanks to ad-

vances of deep learning research in computer vision, with

a number of CNN segmentation methods published to ex-

tract salient objects from the background [24, 51, 42, 50,

10, 21, 33, 23, 46, 12, 43, 57, 27, 47, 11, 48, 45, 32]; they

can be applied to compute ROIs. But for the purpose of im-

age compression, we need to push further and seek for the

shortest description of salient objects.

ROI based image compression, which is less discrim-

inative than AGDL in selecting critical pixels for refine-

ment, was an active research topic at the time of JPEG

2000 standard development [7, 31, 3]. Unlike JPEG that

uses block DCT of very low spatial resolution (8× 8 super-

pixel), JPEG 2000 is a two-dimensional wavelet representa-

tion and it can operate on images in good spatial resolution.

This property makes ROI image compression possible. In

conventional ROI coding, extra bits are spent to encode the

ROI segment. As the ROI shape is determined by the con-

tours of foreground objects, a flexible spatial descriptor in-

evitably consumes a significant amount of extra bandwidth.

This cost of side information on ROI geometry could off-

set any rate-distortion performance gain made by ROI com-

pression. This dilemma can be overcome by deep learn-

ing, as we demonstrate in the subsequent development of

AGDL system and methods. By training a CNN to satisfac-

torily predict the saliency skeleton within ROI, AGDL com-

pression strategy can enjoy the benefits of attention-guided

compression free of side information.

Very recently, a CNN based ROI image compression

method was published [6]. This is a pure CNN compres-

sion system of the standard auto-encoder architecture. The

authors proposed the idea of extracting some CNN features

specifically for the ROI. As explained in the introduction,

the saliency sketch of AGDL is far more discriminative than

a contiguous ROI; therefore it leads to more efficient use of

extra refinement bits. Furthermore, we use CS measure-

ments of critical pixels to exert input-specific constraints on

the solution space of the underlying inverse problem, rather

than solely relying on the statistics of the training set as in

[6]. Finally, there is a drastic difference in encoder through-

put between the method of [6] and our method. The base

layer encoder of the proposed AGDL system can be any

conventional image compressor (e.g. JPEG, JPEG 2000,

WebP, BPG, etc.), which has a complexity orders of magni-

tude lower than CNN auto-encoder.

3. AGDL Compression System

In this section, we will introduce the design of the pro-

posed AGDL image compression system, and two key tech-

nical contributions: 1. detecting saliency sketch and critical

pixel set from the compressed base layer image; 2. Refin-

ing the base layer image with the CS measurements of the

critical pixel set.

3.1. Overview

The overall framework of the proposed AGDL image

compression system is shown in Fig. 1. It consists of a

two-stage encoder and a joint decoder. Given an image I

to be compressed, AGDL compression system first encodes

I to a base layer Ib using a traditional image compressor,

and then predicts the critical pixel mask C from the base

layer Ib using a deep neural network F . The resulting crit-

ical pixel mask C is used to extract the set of critical pixels

c. After that, AGDL system performs compressive sensing

(CS) on the detected critical pixel set and transmits the CS

measurements y along with the base layer Ib. The decoder

takes the base layer Ib and the CS measurements y of the

critical pixel set as input to produce a refined image Î with

highlighted semantic structures by a restoration network G
and a CS refining module R.

3.2. Saliency sketch and critical pixels

Existing ROI image compression methods, including the

recently proposed pure CNN ROI compression system [6],

weigh all pixels in ROI equally. However, not all pixels in
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Figure 1: The overall framework of the proposed AGDL image compression system.

ROI carry the same significance to visual quality. For ex-

ample in Fig 2b, the featureless power portions of the three

baskets matter much less to visual perception than the tex-

tured upper portions. A rate-distortion more efficient way of

coding is to allocate more bits only to pixel structures that

contribute the most to improving perceptual quality, such

as edges and textures. To this end, we introduce a much

sparser presentation than ROI, called saliency sketch, which

is defined as the edge map of the object(s) in ROI, as shown

in Fig. 2c.

In fact, we can be even more selective than saliency

sketch, if considering the recent progresses made on CNN

based compression artifact removal (CAR) techniques [49,

44, 56, 9]. These learning methods can restore many pixels

belonging to saliency sketch, and the CNN recoverable pix-

els need not be additionally sampled and transmitted. Thus

the AGDL encoder only needs to send new information on

the pixels that belong to saliency sketch and but also have

large reconstruction error. We define these pixels critical

pixels.

Denoting the edge skeleton of I by Ωs, the ROI of I by

Ωi, the set of pixels of large reconstruction errors after CAR

by Ωe, then the critical pixel mask C can be represented as:

C = Ωs ∩ Ωi ∩ Ωe (1)

In Fig. 2d, the critical pixel mask indicates the locations of

the critical pixels. The critical pixel set specifies a skeletal

sub-image that needs to be further sampled and refined.

3.3. Detecting critical pixel set

In traditional ROI image coding, the ROI geometry is ex-

plicitly encoded and therefore is a part of compression code

stream. The extra bits required to transmit the ROI shape

could offset any rate-distortion performance gain made by

ROI compression. This dilemma can be overcome by deep

learning if a CNN can learn to predict the ROI mask from

(a) Image (b) ROI

(c) Saliency sketch (d) Critical pixel mask

Figure 2: Examples of the natural image, ROI map, and the

proposed saliency sketch and critical pixel mask.

the base layer image Ib. This eliminates the need to trans-

mit the ROI shape because the decoder can make the same

ROI prediction as the encoder.

In the AGDL image compression system, we push fur-

ther and drive a CNN F to predict the critical pixel mask C

that is a subset of ROI from the base layer Ib. This learn-

ing task is more demanding, but it is nevertheless feasible

because the critical pixel mask C of an image can be com-

puted to generate paired data for supervised learning. This

is a strategy of squeezing out coding gains by computation

power and big data.

Specifically, we adopt an existing CAR network called

DnCNN [49] to initially restore base layer Ib and then iden-

tify the set Ωe of those pixels that still have large restoration

errors. In addition, we use a salient object network BAS-

Net [33] to calculate the ROI region Ωi, and detect the edge

skeleton Ωs using Canny operator.
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Figure 3: Architecture of the proposed critical pixel mask

prediction network F .

Given Ωi, Ωs and Ωe, the critical pixel mask C is deter-

mined. So we can build paired data (baser layer images Ib
and the corresponding critical pixel masks C) to train the

prediction network F . Let F be the prediction network:

C = F(Ib) (2)

The architecture of the proposed prediction network F is

revised from BASNet [33], a network designed for salient

object detection. As shown in Fig. 3, the prediction network

F is a U-Net-like Encoder-Decoder network [35], which

learns to predict critical pixel mask from base layer image.

We design the critical pixel mask prediction network as an

Encoder-Decoder architecture because it is able to capture

high level global contexts and low level details at the same

time [35, 28]. The encoder part has an input convolution

layer and five stages comprised of residual blocks. The in-

put layer has 64 convolution filters with size of 3×3 and

stride of 1. The first stage is size-invariant and the other four

stages gradually reduce the feature map resolution by down-

sampling resblocks to obtain a larger receptive field. The

decoder is almost symmetrical to the encoder. Each stage

consists of three convolution layers followed by a batch

normalization and a ReLU activation function. The input

of each layer is the concatenated feature maps of the up-

sampled output from its previous layer and its correspond-

ing layer in the encoder.

The critical pixel set c can be extracted based on the

predicted critical pixel mask C, and then rearranged into a

column vector. After that, AGDL compression system per-

forms Compressed sensing on the critical pixel set c with

a full row rank, fat CS sampling matrix H (far fewer rows

than columns):

y = H · c (3)

where y is the CS measurements of the critical pixel set.

The CS measurements y and base layer Ib will be transmit-

ted to the decoder end.

3.4. Duallayer joint decoding

The most important and technically involved component

of the AGDL image compression system is its CNN de-

coder. The task of AGDL decoding is to refine the JPEG-

coded base layer Ib, aided by the CS-coded side informa-

tion on saliency skeleton. Specifically, the AGDL decoder

receives the base layer Ib and refinement layer Ir (CS mea-

surements of critical pixels), and then jointly decodes the

two layers to produce a refined image Î which strictly satis-

fies the CS constraints. In essence, the AGDL decoder is a

heavy-duty CNN that removes the compression artifacts of

the base layer image Ib with encoder-supplied strong priors

on ROI.

By satisfying the CS constraints we mean that after the

critical pixel set ĉ in the CNN refined image Î is sampled by

the CS sampling matrix H , the resulting CS measurements

ŷ equal to the received measurements y, that is

H · ĉ = y (4)

To the best of our knowledge, we are the first to impose

such constraints on CNN outputs. This way of confining

the solution space of an inverse problem in CNNs poses a

technical challenge. We overcome the difficulty by cascad-

ing a restoration network G and a CS refining module R,

in which the latter constrains the output of the former by

the CS measurements. The joint decoding process can be

formulate as:

Ig = G(Ib) (5)

Î = R(Ig,y) (6)

where Ib is the decoded result of a traditional image com-

pressor (decompressed image); the restoration network G
performs a post-processing on Ib, called soft decoding, aim-

ing to remove compression artifacts in Ib. The result of

soft decoding is a restored image Ig . The final step of the

AGDL system is to adjust the set of critical pixels in Ig , de-

noted by cg , so that their values strictly satisfy the set of K

CS measurements. Among all possible such K-dimensional

adjustment vectors δ, the one δ∗ of the minimum ℓ2 norm

generates the final refinement image Î = Ig + δ∗.

Next we develop the CS refining module R that imposes

constraints on the final output of the AGDL system. Firstly,

Ig must not satisfy the CS constraint, that is

H · cg 6= y (7)

where cg is the critical pixel set in the restored image Ig . We

hope to make the minimum adjustment to the output image
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Figure 4: Architecture of the decoder, including the restora-

tion network G and the CS refining module R.

Ig (or to the critical pixel set cg) so that the adjusted im-

age can satisfy the CS constraint. This forms the following

optimization problem:

minimize ||δ|| (8)

subject to H · (cg + δ) = y (9)

Since the CS sampling matrix H is full row rank, so the

above optimization problem has the solution that is:

δ∗ = HT (HHT )−1 · (y −H · cg) (10)

This is the classical least-norm solution of undetermined

equations. Detailed solving steps will be given in the sup-

plementary material. Let ĉ = cg + δ∗, so the adjusted crit-

ical pixel set ĉ satisfies the CS constraint. It is noteworthy

that the adjustment is linear, so it can participate in the back

propagation.

In the design of the restoration network G, we adopt a

dual-domain (pixel domain and transform domain) network

to take full advantage of redundancies in both pixel and

transform domains [56, 55]. In most traditional image com-

pression methods, images are converted to a transform do-

main (e.g., DCT, wavelet, etc.) and then quantized. The en-

coder prior information contained in the transform domain

can help improve the performance of soft-decoding.

The base layer of the AGDL system can be any of exist-

ing image compression methods. In this paper, we choose

JPEG as the base layer to develop the restoration network

G, as it is the most common compression method. As

shown in Fig. 4, the proposed restoration network G has

two branches, one operating in pixel-domain and the other

in DCT domain. The pixel-domain branch is to restore the

pixel values directly, while the DCT-domain branch aims to

recover the DCT coefficients of the ground truth. The fu-

sion network combines these two branches to produce the

restored image Ig . After CS refinement, Î is used to calcu-

late loss to optimize the network G.

Now we are at the point to present the overall pipeline of

AGDL compression system in Algorithm. 1.

Algorithm 1 Framework of AGDL compression system.

Input: The original image, I;

Output: The decoded image, Î;

Encoding:

1: Encoding I into a base layer Ib using JPEG;

2: Predicting critical pixel mask C from the base layer Ib
by the prediction network F , C = F(Ib);

3: Extracting critical pixel set c based on C;

4: Applying compressive sensing on c, y = H · c;

5: Transmitting Ib and y;

Decoding:

1: Soft-decoding Ib by the network G, Ig = G(Ib);
2: Calculating the minimum adjustment to satisfy the CS

constraint, δ∗ = HT (HHT )−1 · (y −H · cg);

3: Applying the adjustment, Î = Ig + δ∗;

4: Output the final refinement image Î;

4. Experiments

In this section, we introduce the implementation details

of the proposed AGDL image compression system. To sys-

tematically evaluate and analyze the performance of the

AGDL compression system, we conduct extensive experi-

ments on two scenarios: portrait and general objects, and

compare our results with several stat-of-the-art methods.

4.1. Dataset

Portrait. We adopt the portrait dataset provided by Shen

et al. [37] for training and evaluation. It contains 2000 im-

ages of 600 × 800 resolution where 1700 and 300 images

are split as training and testing set respectively. To over-

come the lack of training data, we augment images by uti-

lizing rotation and left-right flip, as suggested in [36]. Each

training image is rotated by [−15◦, 15◦] in steps of 5◦ and

left-right flipped, which means that a total of 23800 training

images are obtained.

General objects. In the scenario for general objects, we

adopt the DUTS dataset [41] for training and testing. Cur-

rently, DUTS is the largest and most frequently used dataset

for salient object detection. DUTS dataset consists of two

parts: DUTS-TR and DUTS-TE. DUTS-TR contains 10553

images in total. We augment this dataset by horizontal flip-

ping to obtain 21106 training images. DUTS-TE, which

contains 5019 images, is selected as our evaluation dataset.

All these images are resized to 300 × 400 resolution

for training and evaluation. We choose JPEG as the tra-

ditional image compressor of the AGDL system, as JPEG is

the most widely used image compression method. For both

scenarios, we compress the images using JPEG with quality

factor in [10, 100] in steps of 10 to form a multi-rate training

set. All training and evaluation processes are performed on

the luminance channel (in YCbCr color space).
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Figure 5: ROI RD curves of the competing methods on Portrait and DUTS-TE datasets.

4.2. Training details

Totally, we have two networks to train, a prediction net-

work F and a restoration network G. Next, we introduce

the training details of the two networks separately.

Prediction network F . To train the network F for pre-

dicting critical pixel mask, we first adopt DnCNN [49] to

initially restore the JPEG-coded images and then identify

the set Ωe of those pixels that still have large restoration

errors (error > 8). In addition, we use a salient object net-

work BASNet [33] to calculate the ROI region Ωi, and de-

tect the edge skeleton Ωs using Canny operator. Then, we

get the critical pixel mask C according to Eq. 1. The crit-

ical pixel mask C is a binary mask, in which 1 means the

current location is critical pixel and 0 vice versa. The pre-

diction network F takes JPEG-coded images as input and

outputs the corresponding critical pixel masks, so it solves a

binary classification problem for each pixel location. To this

end, we train F using the Binary Cross Entropy (BCE) loss

function. When inferring, prediction network F outputs a

probability value in [0, 1] for each pixel location, indicating

the probability of being a critical pixel. Top K pixels ranked

by probability form the critical pixel set to be further sam-

pled and transmitted. More details about the CS sampling

matrix H are given in the supplementary material.

Restoration network G. To reduce the risk of over-

fitting, the restoration network G is pretrained using the

DIV2K [22] and Flikr2K [22] datasets. After pretrained, the

restoration network G is fine-tuned on portrait dataset [37]

and DUTS-TR [41] separately, under the constraints of

the CS measurements. L1 loss is adopted to optimize the

restoration network G.

All training processes use the Adam [18] optimizer by

setting β1 = 0.9 and β2 = 0.999, with a batch size of 16.

The network is trained with 100 epochs at the learning rate

of 10−4 and other epochs with learning rate of 10−5. The

algorithms are implemented in the MindSpore framework.

4.3. Comparison with stateoftheart methods

To demonstrate the advantages of the proposed AGDL

compression system, we compare AGDL with several other

compression systems, in which JPEG is also used as the

compressor and several deep-learning based compression

artifact reduction methods ARCNN [8], MWCNN [25],

IDCN [58], DMCNN [56], QGAC [9] are used as the soft

decoder. In order to factor out the effects of different train-

ing sets and conduct a fair comparison, we fine-tune all

CNN networks in the comparison group using the same

datasets (Portrait and DUTS) in our experiments. We also

compare AGDL with JPEG2000’s ROI coding which is im-

plemented in Kakadu JPEG2000 software. In the AGDL

system, the total bit rates need to be transmitted are the sum

of the rates of JPEG-coded base layer and the CS-coded side

information. To facilitate fair rate-distortion performance

evaluations, for each test image, the rates of the competing

compression systems are adjusted to match or be slightly

higher than that of the AGDL compression system.

Quantitative results. We present rate distortion (RD)

curves of ROI in Fig. 5. The rate is calculated by bits con-

sumed to encode the entire image averaged per pixel (bpp),

and the distortion is measured by the PSNR of the ROI area.

For AGDL, the rate is the sum of the bits consumed by the

JPEG-coded base layer and the CS-coded side information.

As shown in Fig. 5, the proposed AGDL compression sys-

tem outperforms all the competing methods by a large mar-

gin, on both portrait images and general object images. For

portrait images, the PSNR gain obtained by AGDL is rela-

tively uniform in bit rate. However, for general objects, the

PSNR gain is unevenly distributed. Specifically, the more

extreme the bit rate, the greater the PSNR gain.

Qualitative results. In addition to the quantitative re-

sults of RD curves, we also present the visual comparisons

of different methods, as shown in Fig. 6 and 7. QGAC [9]

is the state-of-the-art CNN method for compression artifacts
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Figure 6: Visual comparisons of different methods on portraits.

reduction, so we only show QGAC’s results for visual com-

parison due to page limit. The complete visual comparisons

of all competing methods will be given in the supplemen-

tary material. In the visual comparisons, we add the color

channels (CbCr) back for the best visual quality. In Fig. 6,

we can see that the AGDL compression system can pre-

serve facial features better than the state-of-the-art QGAC

method and J2K ROI compression (note clearer eyes and

hair, sharper muscle contours). For general objects, Fig. 7

shows us that the AGDL system is able to preserve the small

structures with the help of CS constraints, such as the spots

on the sika deer and the lines on the butterfly. In addition,

AGDL can make animal hair more realistic, while QGAC

makes the hair look too smooth.
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Figure 7: Visual comparisons of different methods on general objects.

5. Conclusion

We present a deep learning system AGDL for attention-

guided dual-layer image compression. AGDL employs a

CNN module to predict those pixels on and near a saliency

sketch within ROI that are critical to perceptual quality.

Only the critical pixels are further sampled by compres-

sive sensing. In addition, AGDL jointly decodes the two

compression code layers for a much refined reconstruction,

while strictly satisfying the transmitted CS constraints on

perceptually critical pixels.
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