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Abstract

We consider the challenging multi-person 3D body mesh

estimation task in this work. Existing methods are mostly

two-stage based—one stage for person localization and

the other stage for individual body mesh estimation, lead-

ing to redundant pipelines with high computation cost and

degraded performance for complex scenes (e.g., occluded

person instances). In this work, we present a single-

stage model, Body Meshes as Points (BMP), to simplify the

pipeline and lift both efficiency and performance. In par-

ticular, BMP adopts a new method that represents multiple

person instances as points in the spatial-depth space where

each point is associated with one body mesh. Hinging on

such representations, BMP can directly predict body meshes

for multiple persons in a single stage by concurrently local-

izing person instance points and estimating the correspond-

ing body meshes. To better reason about depth ordering

of all the persons within the same scene, BMP designs a

simple yet effective inter-instance ordinal depth loss to ob-

tain depth-coherent body mesh estimation. BMP also in-

troduces a novel keypoint-aware augmentation to enhance

model robustness to occluded person instances. Compre-

hensive experiments on benchmarks Panoptic, MuPoTS-

3D and 3DPW clearly demonstrate the state-of-the-art ef-

ficiency of BMP for multi-person body mesh estimation, to-

gether with outstanding accuracy. Code can be found at:

https://github.com/jfzhang95/BMP.

1. Introduction

3D human body mesh recovery aims to reconstruct the

3D full-body mesh of the person instance from images

or videos. As a fundamental yet challenging task, it has

been widely applied for action recognition [63], virtual try-

on [41], motion retargeting [35], etc. With the recent no-

table progress in single-person based full-body mesh recov-

ery [24, 27, 3, 25], a more realistic and challenging set-

ting has attracted increasing attention, i.e. to estimate body

meshes for multiple persons from a single image.

Existing methods for multi-person mesh recovery are

Figure 1. Our single-stage solution. The proposed model repre-

sents each person instance as the center point of its body. Instance

localization and body mesh recovery are then directly predicted

from the center point features, enabling simultaneous reconstruc-

tion of multiple persons in a single stage. Best viewed in color.

mainly two-stage solutions, including top-down [20] and

bottom-up [69] approaches. The former first localizes per-

son instances via a person detector, based on which it then

recovers the 3D meshes individually; the bottom-up ap-

proach estimates person keypoints at first, and then jointly

reconstructs multiple 3D human bodies in the image via

constrained optimization [69]. Though with notable ac-

curacy, the above paradigms are inefficient with computa-

tional redundancy. For instance, the former one estimates

body mesh for each person separately, and consequently the

total computation cost linearly grows with the number of

persons in the image, while the latter requires grouping the

keypoints into corresponding persons and inferring the body

meshes iteratively, leading to high computational cost.

Targeted at a more efficient and compact pipeline, we

consider exploring a single-stage solution. Despite the re-

cent popularity and promising performance of single-stage

methods on 2D keypoints estimation [43] and object detec-

tion tasks [75, 59], a single-stage pipeline for multi-person

mesh recovery is barely explored as it remains unclear how

to effectively integrate both person localization and mesh

recovery steps within a single stage. In this work, we pro-

pose a new instance representation for multi-person body

mesh recovery that represents multiple person instances as

points in the spatial-depth space where each point is asso-

ciated with one body mesh. Such an representation allows

effective parallelism of person localization and body mesh

recovery. Based on it, we develop a new model architec-

ture that exploits shareable features for both localization

and mesh recovery and thus achieve a single-stage solution.

In particular, the model has two parallel branches, one

546



for instance localization and the other for body mesh recov-

ery. In the localization branch, we model each person in-

stance as a single point in a 3-dimensional space, i.e. spatial

(2D) and depth (1D), where each localized point (detected

person) is associated with a body mesh in the body mesh

branch represented by the SMPL parametric model [36].

This in turn converts the multi-person mesh recovery into

a single-shot regression problem (Fig. 1). Specifically, the

spatial location is represented by discrete coordinates w.r.t.

regular grids over the input image. Similarly, we discretize

depth into several levels to obtain the depth representa-

tion. To learn better feature representation to differentiate

instances at different depth, motivated by the phenomenon

that a person closer to the camera tends to seem larger in the

image, we adopt the feature pyramid network (FPN) [30] to

extract multi-scale features and use features from the lower

scales to represent the closer (and larger) instances. In this

way, each instance is represented as one point, whose as-

sociated features (extracted from its corresponding spatial

location and FPN scale) are used to effectively estimate its

body mesh. We name this Body Meshes as Points (BMP).

Applying the BMP model for estimating multi-person

body mesh simultaneously faces two challenges in realis-

tic scenarios: how to coherently reconstruct instances with

correct depth ordering, and how to handle the common oc-

clusion issue (e.g., overlapping instances and partial obser-

vations). For the first challenge, we consider explicitly us-

ing the ordinal relations among all the persons in the scene

to supervise the model to learn to output body meshes with

correct depth order. However, obtaining such ordinal rela-

tions is non-trivial for the scenes captured in the wild, since

there is no 3D annotation available. Inspired by the recent

success of depth estimation for human body joints [42, 73],

we propose to take the depth of each person (center point)

predicted by a model pre-trained on 3D datasets with depth

annotations as the pseudo ordinal relation for model train-

ing on the in-the-wild data, which is experimentally proved

beneficial to depth-coherent body mesh reconstruction.

Also, to tackle the common occlusion issue, we propose

a novel keypoint-aware occlusion augmentation strategy to

improve the model robustness to occluded person instances.

Different from the previous method [55] that randomly sim-

ulates occlusion in images, we generate synthetic occlusion

based on the position of skeleton keypoints. Such keypoint-

aware occlusion explicitly forces the model to focus on

body structure, making it more robust to occlusion.

Comprehensive experiments on 3D pose benchmarks

Panoptic [23], MuPoTS-3D [38] and 3DPW [64] evidently

demonstrate the high efficiency of the proposed model.

Moreover, it achieves new state-of-the-art on Panoptic and

MuPoTS-3D datasets, and competitive performance on

3DPW dataset. Our contributions are summarized as fol-

lows: 1) To our best knowledge, we are among the first

to explore the single-stage solution to multi-person mesh

recovery. We introduce a new person instance representa-

tion that enables simultaneous person localization and body

mesh recovery for all person instances in an image within a

single stage, and design a novel model architecture accord-

ingly. 2) We propose a simple yet effective inter-instance

ordinal relation supervision to encourage depth-coherent re-

construction. 3) We propose a keypoint-aware occlusion

augmentation strategy that takes body structure into con-

sideration, to improve model robustness to occlusion.

2. Related Work

Single-person 3D pose and shape Previous works estimate

3D poses in the form of body skeleton [37, 40, 60, 74, 49,

47, 58, 71, 15] or non-parametric 3D shape [13, 56, 62].

In this work, we use the 3D mesh to represent the full-body

pose and shape, and adopt the SMPL parametric model [36]

for body mesh recovery. In literature, Bogo et al. [5] pro-

posed SMPLify, the first optimization-based method to fit

SMPL on the detected 2D joints iteratively. Later works ex-

tend SMPLify by either using more dense reference points

to replace sparse keypoints like silhouettes and voxel oc-

cupancy grids for SMPL fitting [28, 62], or fitting a more

expressive model (e.g., SMPL-X) than SMPL [46].

Some recent works directly regress the SMPL parame-

ters from images via deep neural networks in a two-stage

manner. They first estimate the intermediate representation

(e.g., keypoints, silhouettes, etc) from images and then map

it to SMPL parameters [48, 44, 61, 27]. Some others di-

rectly estimate SMPL parameters from images, either us-

ing complex model training strategies [24, 16] or leverag-

ing temporal information [3, 25]. Although high accuracy

is achieved in single-person cases, it remains unclear how

to extend them to the more general multi-person cases.

Multi-person 3D pose and shape For multi-person 3D

pose estimation, most existing methods adopt a top-down

paradigm [53, 9, 54]. They first detect each person instance

and then regress the locations of the body joints. Follow-up

improvements are made by estimating additional absolute

depth [42], considering multi-person interaction [17, 29]

or extending to whole-body pose estimation [66]. Al-

ternatively, some approaches also explore the bottom-up

paradigm. SSMP3D [39] and SMAP [73] estimate 3D

poses from occlusion-aware pose maps and use Part Affin-

ity Fields [7] to infer their association. LoCO [12] maps

the image to the volumetric heatmaps and then estimates

multi-person 3D poses from them by an encoder-decoder

framework. PandaNet [4] is an anchor-based model where

3D poses are regressed for each anchor position.

In contrast to the prosperity of multi-person 3D pose esti-

mation, there is a limited number of works denoted to body

mesh recovery for multiple people. Zanfir et al. [69] first es-

timate 3D joints of persons in the image and then optimize
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their 3D shapes jointly with multiple constraints. They also

propose a two-stage regression-based scheme that first esti-

mates 3D joints for all the persons and then regresses their

3D shapes based on these 3D joints [70]. Instead of regress-

ing SMPL parameters from an intermediate representation

(e.g., 3D joints), Jiang et al. [20] attach an SMPL head to the

Faster R-CNN framework [51] for estimating SMPL param-

eters directly from the input image in a top-down manner.

Despite the encouraging results, these methods are based

on the indirect multi-stage framework and suffer low effi-

ciency. Different from all previous methods that rely on

a multi-stage pipeline with computation redundancy, our

method unifies person localization and body mesh, and en-

ables a box-free and (ad hoc) optimization-free single stage

solution to multi-person body mesh recovery.

Point-based representation The point-based methods [10,

75, 59] represent instances by a single point at their center.

This approach is regarded as a simple replacement of the

anchor-based representation, which has been widely used

in many tasks, including object detection [10, 75, 59], 2D

keypoints estimation [43] and instance segmentation [65].

However, these methods cannot be directly applied to body

mesh recovery. In this work, we extend the point-based rep-

resentation to multi-person body mesh recovery. A concur-

rent work [68] adopts a similar solution to body mesh re-

covery. Our model differs from it in two significant aspects:

1) BMP aims at more coherent reconstruction of persons in

the scenes. It handles challenging spatial arrangement and

occlusion problems by exploiting the ordinal depth loss and

the keypoint-aware augmentation strategy, which are not

considered in [68]. 2) BMP adopts a novel 3D point-based

representation to differentiate instances at different depths,

thus is more robust to overlapped instances; whereas [68]

uses only 2D representation, and would fail in such cases.

3. Body Meshes as Points

3.1. Proposed singlestage solution

Given an image I , multi-person body mesh recovery tar-

gets at recovering body meshes of all the person instances

in I . Existing approaches [70, 69, 20] solve this task via

sequentially localizing and estimating the body mesh in

a multi-stage manner, leading to computation redundancy.

Differently, this work aims to unify the instance localiza-

tion and body mesh recovery into a single-stage solution to

enable a more efficient and concise framework.

We represent each person instance as a single point

(i, j, k) in a 3-dimensional space (spanned by 2D spatial

and 1D depth dimensions). By dividing the input image uni-

formly into G×G grids, its spatial dimension can be easily

represented within such a grid coordinate. If the body center

of a person falls into grid cell (i, j), it is assigned with spa-

tial coordinate (i, j). Similarly, for the depth dimension, we

discretize the depth value to K levels and obtain the k value

for each instance according to its depth. Such discretized

depth value is beneficial for handling occluding instances,

especially when the body centers of multiple instances fall

into the same spatial grid coordinate.

Given this representation, we reformulate multi-person

mesh recovery as two simultaneous prediction tasks: 1) in-

stance localization and 2) body mesh recovery.

Instance localization For the first task, we employ the in-

stance map C = {C1, . . . ,CK}, where Ck ∈ R
G×G×1, to

locate each person instance in the image, where G denotes

the number of grid cells along one side, while K refers to

the number of total depth levels. For each depth level, the

network is trained to regress a scalar indicating the proba-

bility of every grid cell containing a person.

To construct ground truth (GT) for training, we first de-

termine the depth value k for each instance. We observe that

a person tends to seem larger (smaller) in the image when

standing closer to (away from) the camera. In other words,

the depth of an instance is roughly inversely proportional

to its scale. Inspired by it, we employ a Feature Pyramid

Network (FPN) [30] with K pyramid levels to capture K

different scales, each of which is used to represent the in-

stance with the corresponding depth. More specifically, for

each instance, we compute its scale s =
√
hw where (h,w)

denotes the GT body size, and associate it to the correspond-

ing pyramid level k, according to Table 1.

Pyramid P2 P3 P4 P5 P6

Stride 8 8 16 32 32

Grid number G 40 36 24 16 12

Instance scale s <64 32∼128 64∼256 128∼512 ≥256

Table 1. We employ FPN with five pyramid levels. Pk+1 is used to

predict instance Ck and body mesh maps Pk, where k = 1, . . . , 5.

Next, we locate the grid cell (i, j) in Ck where the cen-

tral region of that person lies. Inspired by [75, 10], the cen-

tral region is defined as follows: given the GT body center

(xc, yc), body size (h,w) of each person and a controllable

scale factor ǫ, the position and size of the central region are

defined as (xc, yc, ǫw, ǫh). In this work, we set the position

of pelvis as body center and ǫ = 0.2. Once identified, the

grid cell (i, j) of the k-th pyramid level, i.e., Ck(i, j) is la-

beled as positive (label 1). The above steps are repeated for

all the instances in the image.

Body mesh representation In parallel with the instance lo-

calization, we use the body mesh map P = {P1, . . . ,PK},

for body mesh recovery, where Pk ∈ R
G×G×S and S is the

dimension of body mesh representation. Concretely, given

a positive response in C that indicates the presence of a per-

son, we regress the body mesh representation using the fea-

tures from the corresponding grid cell, as shown in Fig. 2.

In this work, we use the SMPL parametric model [36] for

body mesh representation, which renders a body mesh us-

ing the pose parameters θ ∈ R
72 and shape parameters

β ∈ R
10. To improve the training stability, we adopt the
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Figure 2. Illustration of our BMP framework. An input image is uniformly divided into G×G grids with G = 5 in this example. The

model adopts an FPN with K levels (K = 4 here). Each person instance is thus represented by its residing grid cell and its associated FPN

level (according to its depth). BMP uses the features from the grid cell and FPN level to localize the contained person (top) and estimate

the body mesh (bottom) simultaneously.

6D rotation representation [76] for the pose parameters with

θ ∈ R
144. The body mesh map also predicts a camera pa-

rameter π = {s, tx, ty} ∈ R
3 for projecting body joints

from 3D back to 2D space, which enables training on in-the-

wild 2D pose datasets [21, 32, 2] to improve model general-

ization [24]. We further introduce a scalar confidence score

c defined as the OKS [14] between the projected and GT

2D keypoints, to reflect the confidence level of the SMPL

prediction; and we also propose an absolute depth variable

d for the corresponding person instance that will be used for

penalizing body mesh estimations with incoherent depth or-

dering (see Sec. 3.2 for details). Therefore, the total channel

number of the body mesh map S is 159.

Network architecture We employ ResNet-50 [18] as our

backbone. FPN is built on top of the backbone to extract

a pyramid of feature maps (256-d). To perform body mesh

recovery, we attach two task-specific heads to each level of

the feature pyramid, one for instance localization and the

other for the corresponding body mesh recovery, responsi-

ble for obtaining the instance map Ck ∈ R
G×G×1 and the

body mesh map Pk ∈ R
G×G×159, respectively. As shown

in Fig. 2, each head consists of 7 stacked 3×3 convolutions

and one task-specific prediction layer. However, directly

estimating the camera parameter from the whole image is

non-trivial since it is sensitive to instance position. Inspired

by CoordConv [34], we concatenate normalized pixel co-

ordinates to the input feature map at the beginning of the

mesh recovery head to encode position information into the

network for better estimating camera parameter. Addition-

ally, Group Normalization [67] is used in both prediction

heads for facilitating model training. In order to match the

features of size H×W to G×G, we apply bilinear interpo-

lation before the instance and body-mesh recovery branch.

3.2. Interinstance ordinal depth supervision

Multi-person body mesh recovery is inherently ill-posed

as multiple 3D predictions can correspond to the same 2D

projection. Therefore, the trained model would produce am-

biguous body mesh estimations with incorrect depth order

due to lack of priors. To alleviate such a problem, we use

ordinal depth relations among all the persons in the input

as supervision to guide reasoning about the depth ordering

during the training process.

More concretely, given any two persons (pm, pn) in the

image, we define the ordinal depth relation between them

as R(pm, pn), taking the value:

R(pm, pn) =















+1, if dn − dm > T,

−1, if dm − dn > T,

0, if |dm − dn| ≤ T,

(1)

where dm ∈ R
1 denotes the depth of the person pm and T

is a pre-defined threshold to determine the ordinal relation.

The ordinal relation R(pm, pn) = 0 means both instances

are at roughly the same depth; otherwise one of them is

closer to the camera than the other. With the ordinal relation

of (pm, pn), we define the ordinal depth loss for this pair as

L(pm,pn) =















log(1 + exp (zm − zn)), if R = +1,

log(1 + exp (zn − zm)), if R = −1,

(zm − zn)
2, if R = 0,

(2)

where zm = 2f
szα

denotes m-th person’s body mesh depth

calculated from the predicted camera parameter with focal

length f , scale sm and images’s long edge width α. The

ordinal depth loss enforces a large margin between zm and

zn if R(pm, pn) 6= 0, i.e., one of them measured as closer

than the other, and otherwise enforces them to be equal.

However in practice, such ordinal depth relations are

rarely available for the scenes captured in the wild due to

lack of 3D annotations. To solve this issue, we propose to

use pseudo ordinal relations for model training on the in-

the-wild data. Specifically, we first train the model on 3D

datasets [19, 38] with depth annotations to learn to estimate
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the depth of each person in the images. We define the depth

d of each person as the depth of body center (i.e., pelvis

joint). The model is trained by minimizing a depth loss

Ldepth, which is defined as the mean square errors (MSE)

between the predicted and GT depths. After that, given an

unlabeled data, we first leverage the pre-trained model to

estimate the depth which is then used to obtain the pseudo

ordinal relations for all the people in the image. Finally,

given the pseudo ordinal relations, we adopt an OKS score-

weighted ordinal depth loss to supervise the model training

for images in the wild. The total loss for image I is com-

puted as the average loss of all instances pairs:

Lrank =
1

N

∑

(pm,pn)

cmcnL(pm,pn), (3)

where N denotes the number of paired instances in the im-

age, cm denotes OKS-score of the m-th person. Intuitively,

training the model with such inter-instance ordinal depth su-

pervision can help the model build a global understanding

of the depth layout in the input scene and thus ensure more

coherent reconstructions.

3.3. Keypointaware occlusion augmentation

SMPL-based body mesh recovery is highly sensitive

to (partial) occlusion (e.g., overlapping persons, trunca-

tion) [72, 52]. To improve model robustness to occlusion

without requiring extra training data and annotations, we

propose a keypoint-aware occlusion augmentation strategy

during the training process. The proposed augmentation

strategy aims to generate synthetic occlusion to synthesize

real challenging cases such as partial observation for model

training. Compared with previous work [55] that randomly

simulates occlusion on the images, which may produce easy

training samples that are less helpful for boosting model

performance, our method directly generates synthetic oc-

clusion based on the positions of skeleton keypoints, which

can force the model to pay more attention to the body struc-

ture, leading to notable enhancement. More concretely,

given a set of J keypoints {j1, . . . , jJ} of a person in the

image, we first randomly choose a keypoint ji. Then we

randomly sample a non-human object from the PASCAL

VOC [11] dataset and composite it at the location of the se-

lected keypoint ji. We randomly resize the sampled object

to the range of [0.1 ∗A, 0.2 ∗A] before compositing, where

A = wh denotes the area of that person. Additionally, we

randomly shift the keypoint position by an offset δ to avoid

over-fitting. During training, we set the probability of the

occlusion augmentation as 0.5.

3.4. Training and inference

Training For training our proposed BMP model, we define

the loss function L as follows:

L = Linst + Lmesh + Ldepth + 0.1 ∗ Lrank, (4)

where Linst is a modified two-class Focal Loss [31] for

instance localization; Ldepth is the depth loss (Sec. 3.2);

Lmesh is the loss for body mesh estimation. The train-

ing details of the body-mesh branch are similar to those in

HMR [24]. Specifically, we formulate Lmesh as

Lmesh = Lpose + Lvert + λ3DL3D + λ2DL2D

+ λshapeLshape + λconfLconf + λadvLadv.
(5)

Here Lpose, Lshape, L3D, Lvert denote MSE between the

predicted and GT pose and shape parameters as well as 3D

keypoints and vertices, respectively. L2D is the 2D key-

points loss that minimizes the distance between the 2D pro-

jection from 3D keypoints and GT 2D keypoints. Lconf is

the MSE of the predicted and GT confidences, where the GT

confidence is computed as the OKS [14] between the pro-

jected and GT 2D keypoints. Moreover, we use a discrim-

inator and apply an adversarial loss Ladv on the regressed

pose and shape parameters, to encourage the outputs to lie

on the distributions of real human bodies. λ3D = 4, λ2D =
4, λshape = 0.01, λconf = 1 and λadv = 0.01 are the

weights of the corresponding loss terms. The loss Lmesh is

applied independently to each positive grid cell. The ordi-

nal depth loss Lrank illustrated in Eqn. (3) is adopted when

the image contains more than one instance.

Inference The overall inference procedure for BMP is il-

lustrated in Fig. 2. Given an image, BMP first obtains the

instance map C and the body mesh map P from the predic-

tion heads. Then it performs max pooling operation to find

the local maximum on C to obtain center point positions

{(xc
i , y

c
i , k

c
i )}N̂i=1, where kci and (xc

i , y
c
i ) denote the pyramid

level and body center location for i-th person, respectively,

and N̂ is the number of estimated persons. After that, BMP

extracts the body mesh parameters of each person pi via

Pkc

i
(xc

i , y
c
i ). Finally, BMP outputs body mesh estimations

by deforming the SMPL model using the predicted param-

eters. A keypoint-based NMS [14] is applied to remove the

redundant predictions if they exist. We take the multiplica-

tion of the predicted OKS score and the probability score

from the instance map as the confidence score for NMS.

3.5. Implementation details

We implement BMP with PyTorch [45] and mmdetection

library [8] and utilize Rectified Adam [33] as the optimizer

with an initial learning rate of 1e−4. We resize all images

to 832×512 while keeping the same aspect ratio following

the original COCO training scheme [57, 65, 20]. During

training, we augment the samples with horizontally flip and

keypoints-aware occlusion (Sec. 3.3). Flip augmentation is

conducted during testing. Moreover, since the BMP model

directly extracts image-level features for estimations instead

of features from cropped bounding boxes, it can take im-

ages with smaller resolution (512×512) as inputs. We de-

note such a setting as BMP-Lite. Other training and testing
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settings are the same between BMP-Lite and BMP. Please

refer to supplementary for more details.

4. Experiments

In this section, we aim to answer following questions. 1)

Can BMP provide both efficient and accurate multi-person

mesh recovery? 2) Is BMP able to give coherent meshes for

multiple persons with correct depth ordering? 3) Is BMP

robust to cases where person instances are occluded or par-

tially observed? To this end, we conduct extensive experi-

ments on several large-scale benchmarks.

4.1. Datasets

Human3.6M [19] is the most widely used single-person 3D

pose benchmark collected in an indoor environment. It con-

tains 3.6 million 3D poses and corresponding videos for 15

subjects. Due to its high-quality annotations, we use it fol-

lowing [20] for both training and testing.

Panoptic [23] is a large-scale dataset captured in the Panop-

tic studio, offering 3D pose annotations for multiple people

engaging in diverse social activities. We use this dataset for

evaluation with the same protocol as [69].

MuPoTS-3D [38] is a multi-person dataset with 3D pose

annotations for both indoor and in-the-wild scenes. We fol-

low [38] and use it for evaluation.

3DPW [64] is a multi-person in-the-wild dataset, which

features diverse motions and scenes. It contains 60 video

sequences (24 train, 24 test, 12 validation) with full-body

mesh annotations. To verify generalizability of the pro-

posed model to challenging in-the-wild scenarios, we use its

test set for evaluation, following the same protocol as [25].

MPI-INF-3DHP [40] is a single-person multi-view 3D

pose dataset. It contains 8 actors performing 8 activities,

captured from 14 cameras. Mehta et al., [38] generate a

multi-person dataset called MuCo-3DHP, from MPI-INF-

3DHP via mixing up segmented foreground human appear-

ance. We use both datasets for training.

COCO [32], LSP [21], LSP Extended [22], Pose-

Track [1], MPII [2] are in-the-wild datasets with anno-

tations for 2D joints. We use them for training with the

weakly-supervised training strategy [24] (Eqn. (5)).

4.2. Comparison with stateofthearts

Single-person setting We first evaluate our proposed BMP

model on the single-person setting to validate the strategy

of BMP on factorizing the instance localization and mesh

recovery does not sacrifice on the performance. Concretely,

we evaluate and compare the performance of BMP on the

large-scale Human3.6M dataset with most competitive ap-

proaches [24, 20] sharing the similar regression target and

learning strategy. The results are shown in Table 2. We can

observe BMP outperforms all these methods.

Method HMR [24] CRMH [20] BMP

PA-MPJPE 56.8 52.7 51.3

Table 2. Results on Human3.6M. We use mean per joint position

errors in mm after Procrustes alignment (PA-MPJPE) as metric.

Multi-person settings Then we evaluate our BMP model

for multi-person body mesh recovery. We first evaluate it

on the multi-person dataset captured in the indoor Panop-

tic Studio [23] and compare with the most competitive ap-

proaches [69, 70, 20]. As shown in Table 3, our BMP

model achieves the best performance in all scenarios. Over-

all, it improves upon the state-of-the-art top-down model

CRMH [20] by 5.4% (135.4 mm vs. 143.2 mm in MPJPE),

while offering a faster inference speed1. Moreover, it sig-

nificantly outperforms CRMH for Ultimatum and Pizza sce-

narios with crowded scenes and severe occlusion, verifying

its robustness to occlusion cases. In addition, its lite ver-

sion, BMP-Lite, is even faster, which only requires 0.038s

to process an image, about 2× faster than CRMH while

achieving comparable performance. These results demon-

strate both effectiveness and efficiency of BMP for estimat-

ing body meshes of multiple persons in a single stage.

Method Haggl. Mafia Ultim. Pizza Mean Time[s]

Zanfir et al. [69] 140.0 165.9 150.7 156.0 153.4 -

MubyNet [70] 141.4 152.3 145.0 162.5 150.3 -

CRMH [20] 129.6 133.5 153.0 156.7 143.2 0.077

BMP-Lite 124.2 138.1 155.2 157.3 143.7 0.038

BMP 120.4 132.7 140.9 147.5 135.4 0.056

Table 3. Results on the Panoptic. We use MPJPE as evaluation

metric. The lower the better. Best in bold.

Another popular 3D pose estimation benchmark is the

MuPoTS-3D dataset [40]. We compare our method against

two strong baselines, 1) the combination of OpenPose [6]

with single-person mesh recovery methods (SMPLify-

X [46] and HMR [24]), and 2) the state-of-the-art top-down

approach CRMH [20]. We report the results in Table 4. As

we can see, BMP outperforms significantly previous meth-

ods on both evaluation protocols.

Method All Matched Time[s]

SMPLify-X [46] 62.84 68.04 6.4

HMR [24] 66.09 70.90 0.26

CRMH [20] 69.12 72.22 0.083

BMP-Lite 68.63 71.92 0.038

BMP 73.83 75.34 0.056

Table 4. Results on MuPoTS-3D. The numbers are 3DPCK. We

report the overall accuracy (All), and the accuracy only for person

annotations matched to a prediction (Matched). Best in bold.

Lastly, we compare our BMP model with state-of-

the-art approaches on the challenging in-the-wild 3DPW

dataset. Some approaches use the self-training strategy

1We count per-image inference time in seconds. For all methods,

the time is counted on GPU Tesla P100 and CPU Intel E5-2650 v2 @

2.60GHz, without using test-time augmentation.
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(i.e., SPIN [26]) or temporal information (i.e., VIBE [25]),

and they rely on off-the-shelf person detectors [6, 50]. As

shown in Table 5, our BMP outperforms CRMH [20] and

SPIN [26] in terms of 3DPCK while maintaining an at-

tractive efficiency, and achieves comparable results with

VIBE [25] without relying on any temporal information.

Additionally, BMP-Lite obtains roughly the same perfor-

mance as the state-of-the-art CRMH model while achieving

2.1× faster inference speed. There results further confirm

the effectiveness of our single-stage solution over existing

multi-stage strategies, with very competitive efficiency.

Method PCK AUC MPJPE PA-MPJPE PVE Time[s]

SPIN [26] 30.8 53.4 99.4 68.1 - 0.31

VIBE [25] 33.9 56.6 94.7 66.1 112.7 -

CRMH [20] 25.8 51.6 105.3 62.3 122.2 0.09

BMP-Lite 26.2 51.3 108.5 64.0 126.2 0.038

BMP 32.1 54.5 104.1 63.8 119.3 0.056

Table 5. Results on 3DPW. We use 3DPCK, AUC, MPJPE, PA-

MPJPE and per-vertex error (PVE) as evaluation metrics.

Qualitative results We visualize some body mesh recon-

structions of BMP on the challenging PoseTrack, MPII and

COCO datasets, as shown in Fig. 3. It can be observed that

BMP is robust to severe occlusion and crowded scenes and

can reconstruct human bodies with correct depth ordering.

4.3. Ablative studies

We conduct ablation analysis on Panoptic, 3DPW and

MuPoTS-3D datasets both qualitatively and quantitatively

to justify our design choices. The qualitative analysis of the

proposed method is illustrated in Fig. 4.

Person instance representation We first evaluate the pro-

posed 3D point-based representation for person instances.

The main difference between the proposed representation

and previous 2D spatial representation [43, 75, 68] is that

we use an additional depth dimension to differentiate person

instances in the discretized depth space through FPN. We

then compare BMP with a baseline model (i.e., BMP using

2D spatial representation). For fair comparison, we aggre-

gate features from all levels of FPN pyramid in the baseline

model to obtain a single output for both instance localiza-

tion and body mesh recovery. Specifically, we study three

methods for the aggregation: we resize all feature pyra-

mids to 1/8 scale and then aggregate them by 1) element-

wise addition (Baseline-Add), 2) concatenation (Baseline-

Concat), or 3) adopting a convolutional layer after concate-

nating them (Baseline-Conv). Results are shown in Table 6.

We can see our BMP model improves upon the baseline

models by a large margin on all datasets, proving its efficacy

for body mesh recovery. Additionally, from Fig. 4 (1st row),

we observe BMP with the proposed representation is more

robust in handling occluding instances, especially when the

body centers of multiple instances fall at the same spatial

grid coordinate, while the 2D based representation would

usually fail. Please refer to supplementary for the analysis

on the pyramid level K.

Method Panoptic (↓) 3DPW (↓) MuPoTS-3D (↑)

Baseline-Add 159.1 120.4 68.03

Baseline-Concat 150.3 114.6 68.52

Baseline-Conv 145.6 110.8 69.34

BMP 135.4 104.1 73.83

Table 6. Ablation for person instance representation. We report

MPJPE for Panoptic and 3DPW, and 3DPCK for MuPoTS-3D.

Ordinal depth loss To investigate whether the ordinal depth

loss Lrank can help produce more coherent results with

correct depth ordering, we conduct experiments on the

MuPoTS-3D dataset. Specifically, we evaluate the ordinal

depth relations of all instance pairs in the scene and report

the percentage of correctly estimated ordinal depth relations

in Table 7. The model trained with Lrank significantly im-

proves upon the baseline (BMP trained w/o Lrank) (from

91.42% to 94.50%). Such improvements can also be ob-

served from Fig. 4 (2nd row). Additionally, by compar-

ing our method with Moon et al. [42] and CRMH [20], we

observe BMP achieves higher accuracy w.r.t. relative depth

ordering than CRMH that only considers ordinal loss for

overlapped pairs (94.50% vs. 93.68%). This demonstrates

our full pair-wise ordinal loss can provide a more compre-

hensive supervision on the depth layout of the scene and

thus train the model to give more coherent results.

Method Moon [42] CRMH [20] BMP w/o Lrank BMP

Accuracy 90.85% 93.68% 91.42% 94.50%

Table 7. Ablation for ordinal depth loss. Relative depth ordering

results on MuPoTS-3D are shown. We evaluate the ordinal depth

relations of all instance pairs in the scene and report the percentage

of correctly estimated ordinal depth relations.

Keypoint-aware occlusion augmentation Finally, we

study the impact of the proposed keypoint-aware occlu-

sion augmentation strategy. We compare our BMP model

with the models trained without occlusion augmentation

(BMP-NoAug) and trained using randomly Synthetic Oc-

clusion [55] (BMP-RandOcc) in Table 8. We can see BMP

outperforms both of them by a large margin on all datasets.

Notably, it respectively brings 9.1% and 17.3% improve-

ments over BMP-NoAug on Panoptic and 3DPW datasets,

which feature crowded scenes with severe overlap and par-

tial observation. In contrast, the random augmentation hurts

model performance on MuPoTS-3D (71.71 vs. 70.78). This

verifies that our proposed occlusion augmentation can force

the model to focus on body structure and thus improve its

robustness to occlusion.

5. Conclusions

In this work, we present the first single-stage model,

Body Meshes as Points (BMP), for multi-person body mesh
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Figure 3. Qualitative results. We visualize the reconstructions of our approach on PoseTrack (1st row), MPII (2nd row) and COCO (3rd

row) from different viewpoints: front (green background), top (blue background) and side (red background), respectively. Please refer to

supplementary for more qualitative results.

Input image Baseline Ours

Figure 4. Qualitative effect of proposed method. Results of baseline 1 (BMP using 2D representation) (middle 1st row), baseline 2 (BMP

trained w/o Lrank) (middle 2rd row) and BMP (right). Errors are highlighted by black arrows. As expected, the proposed methods take

effect on producing better results (i.e., robust to overlapping instances, more consistent depth ordering for estimated body meshes).

Method Panoptic (↓) 3DPW (↓) MuPoTS-3D (↑)

BMP-NoAug 148.9 125.9 71.71

BMP-RandOcc 144.6 110.3 70.78

BMP 135.4 104.1 73.83

Table 8. Ablation for occlusion augmentation. We use MPJPE

for the first two, and 3DPCK for the last one datasets as metrics.

recovery. BMP introduces a new representation method to

enable such a compact pipeline: each person instance is

represented as a point in the spatial-depth space which is

associated with a parameterized body mesh. With such a

representation, BMP can fully exploit shared features and

perform person localization and body mesh recovery simul-

taneously. BMP significantly improves upon conventional

two-stage paradigms, and offers outstanding efficiency and

accuracy, as validated by extensive experiments on multi-

ple benchmarks. Besides, BMP develops several new tech-

niques to further improve the coherence and robustness of

recovered body meshes, which are of broad interest for

other applications like human pose estimation and detec-

tion. In future, we will explore how to make the model

more compact and further improve its efficiency, as well as

extend to inter-person interactions modeling.
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