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Abstract

The output of text-to-image synthesis systems should be

coherent, clear, photo-realistic scenes with high semantic

fidelity to their conditioned text descriptions. Our Cross-

Modal Contrastive Generative Adversarial Network (XMC-

GAN) addresses this challenge by maximizing the mutual

information between image and text. It does this via mul-

tiple contrastive losses which capture inter-modality and

intra-modality correspondences. XMC-GAN uses an at-

tentional self-modulation generator, which enforces strong

text-image correspondence, and a contrastive discrimina-

tor, which acts as a critic as well as a feature encoder for

contrastive learning. The quality of XMC-GAN’s output is

a major step up from previous models, as we show on three

challenging datasets. On MS-COCO, not only does XMC-

GAN improve state-of-the-art FID from 24.70 to 9.33, but–

more importantly–people prefer XMC-GAN by 77.3% for

image quality and 74.1% for image-text alignment, com-

pared to three other recent models. XMC-GAN also gen-

eralizes to the challenging Localized Narratives dataset

(which has longer, more detailed descriptions), improving

state-of-the-art FID from 48.70 to 14.12. Lastly, we train

and evaluate XMC-GAN on the challenging Open Images

data, establishing a strong benchmark FID score of 26.91.

1. Introduction

Compared to other kinds of inputs (e.g., sketches and ob-

ject masks), descriptive sentences are an intuitive and flex-

ible way to express visual concepts for generating images.

The main challenge for text-to-image synthesis lies in learn-

ing from unstructured description and handling the different

statistical properties between vision and language inputs.

*Equal contribution.
†Work done as a member of the Google AI Residency program.
‡Work performed at Google Research.
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Figure 1: Inter-modal and intra-modal contrastive losses in

our proposed XMC-GAN text-to-image synthesis model.

Generative Adversarial Networks (GANs) [12] have

shown promising results on text-to-image generation [44,

61, 62], using a conditional GAN formulation [11]. At-

tnGAN [58] proposes a multi-stage refinement framework

to generate fine-grained details by attending to relevant

words in the description. These models generate high fi-

delity images on single domain datasets (e.g., birds [56] and

flowers [35]), but struggle on complex scenes with many

objects—such as those in MS-COCO [30]. Recent meth-

ods [18, 27, 16, 22] propose object-driven, hierarchical ap-

proaches that explicitly model object instances within an

image. Given the text description, they first infer a semantic

layout (e.g., object bounding boxes, segmentation masks, or

a combination), and then generate an image from the layout.

These hierarchical methods are cumbersome to apply to

real-world scenarios; generation becomes a multi-step pro-

cess (box-to-mask-to-image), and the model requires much

more fine-grained object labels to train.

We study contrastive learning in the context of text-to-

image synthesis and demonstrate that a simple one-stage

GAN without object-level annotation can outperform prior

object-driven and multi-stage approaches. Besides gener-

ating realistic images, we also hope (1) the image should

holistically match the description; (2) generated images

should match real images when they are conditioned on the
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same description; (3) individual image regions should be

recognizable and consistent with words in the sentence. To

fulfill these desiderata and achieve strong language align-

ment, we propose to maximize the mutual information be-

tween the corresponding pairs through contrastive learning.

Our method, the Cross(X)-Modal Contrastive Generative

Adversarial Network (XMC-GAN), uses image to sentence,

image region to word, and image to image contrastive losses

to enforce alignment between generated images and their

captions (Fig. 1). Our primary contributions include:

• We propose XMC-GAN, a simple one-stage GAN that

employs several contrastive losses. XMC-GAN pro-

duces dramatic improvements over previous models,

e.g. reducing FID [15] from 24.70 to 9.33 on MS-

COCO and from 48.70 to 14.12 on LN-COCO (the

MS-COCO portion of Localized Narratives [40]).

• We conduct thorough human evaluations comparing

XMC-GAN to three recent models. These show that

people prefer XMC-GAN 77.3% of the time for image

realism, and 74.1% for image-text alignment.

• We establish a strong benchmark on the challenging

LN-OpenImages (Open Images subset of Localized

Narratives). To the best of our knowledge, this is the

first text-to-image results training and testing on the

diverse images and descriptions for Open Images.

• We conduct a thorough analysis of contrastive losses

used in XMC-GAN to provide general modeling in-

sights for contrastive learning in conditional GANs.

XMC-GAN consistently produces images that are more co-

herent and detailed than previous models. In addition to

greater realism (with clearer, more delineated objects), they

better capture the full image description, including the pres-

ence of named objects and background compositions.

2. Related Work

Text-to-image synthesis Generating images from text

descriptions has been quickly improved with deep gen-

erative models, including pixelCNN [55, 45], approxi-

mate Langevin sampling [34], variational autoencoders

(VAEs) [21, 13] and Generative Adversarial Networks

(GANs) [12, 44]. GAN-based models in particular have

shown better sample quality [61, 64, 58, 66, 59, 26, 52, 42,

24]. GAN-INT-CLS [44] was the first to use conditional

GANs for text to image generation. StackGAN [61, 62]

improves this with a coarse-to-fine framework that progres-

sively generates images at different resolutions for high-

resolution synthesis. AttnGAN [58] introduces cross-modal

attention to better capture details. DM-GAN [66] adap-

tively refines generated images with a memory module that

writes and reads text and image features. MirrorGAN [43]

enforces text-image consistency via caption generation on

the generated images. SD-GAN [59] proposes word-level

conditional batch normalization and dual encoder structure

with triplet loss to improve text-image alignment. Com-

pared with the triplet loss, our contrastive loss does not

require mining for informative negatives and thus lowers

training complexity. CP-GAN [28] proposes an object-

aware image encoder and fine-grained discriminator. Its

generated images obtain high Inception Score [46]; how-

ever, we show it performs poorly when evaluated with the

stronger FID [15] metric and in human evaluations (see

Sec. 6.1). To create a final high resolution image, these

approaches rely on multiple generators and discriminators

to generate images at different resolutions. Others have

proposed hierarchical models that explicitly generate dif-

ferent objects after inferring semantic layouts [18, 16, 22].

A drawback of these is that they need fine-grained object la-

bels (e.g., object bounding boxes or segmentation maps), so

generation is a multi-step process. Compared to these multi-

stage and multi-step frameworks, our proposed XMC-GAN

only has a single generator and discriminator trained end-

to-end, and it generates much higher quality images.

Contrastive learning and its use in GANs Contrastive

learning is a powerful scheme for self-supervised repre-

sentation learning [36, 14, 5, 57]. It enforces consis-

tency of image representations under different augmenta-

tions by contrasting positive pairs with negative ones. It

has been explored under several adversarial training sce-

narios [25, 65, 9, 41]. Cntr-GAN [65] uses a contrastive

loss as regularization on image augmentations for uncon-

ditional image generation. ContraGAN [20] explores con-

trastive learning for class-conditional image generation.

DiscoFaceGAN [9] adds contrastive learning to enforce

disentanglement for face generation. CUT [39] proposes

patch-based contrastive learning for image-to-image trans-

lation by using positive pairs from the same image loca-

tion in input and output images. Unlike prior work, we use

intra-modality (image-image) and inter-modality (image-

sentence and region-word) contrastive learning in text-to-

image synthesis (Fig. 1).

3. Preliminaries

3.1. Contrastive Representation Learning

Given two random variables v1 and v2, often known as

views of the data, contrastive learning aims to find useful

representations of v1 and v2 by learning a function that

measures the dependence of two views [53], i.e., whether

samples are from the joint distribution p(v1)p(v2|v1) or the

product of the marginals p(v1)p(v2). The resulting func-

tion is an estimator of the mutual information I(v1; v2).
As directly maximizing the mutual information is challeng-

ing [37, 3, 50], the InfoNCE loss [36] was proposed to max-

imize a lower bound of the mutual information I(v1; v2).
Specifically, given a query sample v1,i, minimizing the In-

foNCE loss is to score the matching positive sample v2,i ∼
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Figure 2: Overview of the proposed XMC-GAN.

p(v2|v1,i) higher than M−1 negative samples v2,j ∼ p(v2).
The overall objective can be summarized as follows:

I(v1; v2) ≥ log(M)− LNCE ,

where LNCE = −E

[

log
exp(S(v1,i, v2,i))

∑M

j=1 exp(S(v1,i, v2,j))

]

.

Here, S(·, ·) is the score function, which typically has two

parameterized feature encoders for v1 and v2. The encoders

can share parameters if v1 and v2 are from the same domain.

There are many ways to construct v1 and v2: different aug-

mentations of the same image [14, 5]; spatially adjacent im-

age patches [36]; a video as v1 and its aligned audio as v2
for video representation learning [33, 8].

3.2. Generative Adversarial Networks (GANs)

GANs [12] are generative models that employ both a

generator and a discriminator. The generator G maps a la-

tent variable z∼p(z) (usually sampled from a Gaussian dis-

tribution) to a real data distribution pdata. The discriminator

D is trained to distinguish whether inputs are synthesized or

sampled from real data. The generator G is trained to syn-

thesize images that the discriminator will classify as real.

A large amount of work has focused on designing the

adversarial objective to improve training [12, 1, 31, 47, 29,

54]. A notable example is the hinge loss:

LD =− Ex∼pdata
[min(0,−1 +D(x))]

− Ez∼p(z) [min(0,−1−D(G(z)))] ,

LG =− Ez∼p(z) [D(G(z))] .

The hinge loss has been used in state-of-the-art GANs for

image generation [32, 60, 4, 63]. For conditional GANs,

the generator and the discriminator are provided with an

additional condition c, yielding G(z, c) and D(x, c). For

conditional generation, the generated sample should be both

realistic and also match the condition c.

4. Method

We describe the losses and components of XMC-GAN

below. See Fig. 2 for an overview.

4.1. Contrastive Losses for Text­to­Image Synthesis

Text-to-image synthesis is a conditional generation task.

Generated images should both be realistic and well-aligned

with a given description. To achieve this, we propose to

maximize the mutual information between the correspond-

ing pairs: (1) image and sentence, (2) generated image and

real image with the same description, and (3) image regions

and words. Directly maximizing mutual information is dif-

ficult (see Sec. 3.1), so we maximize the lower bound of the

mutual information by optimizing contrastive losses.

Image-text contrastive loss. Given an image x and its

corresponding description s, we define the score function
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following previous work in contrastive learning [14, 5, 36]:

Ssent(x, s) = cos(fimg(x), fsent(s))/τ,

where cos(u, v) = uT v/‖u‖‖v‖ denotes cosine similarity,

and τ denotes a temperature hyper-parameter. fimg is an im-

age encoder to extract the overall image feature vector and

fsent is a sentence encoder to extract the global sentence fea-

ture vector. This maps the image and sentence representa-

tions into a joint embedding space RD. The contrastive loss

between image xi and its paired sentence si is computed as:

Lsent(xi, si) = − log
exp(cos(fimg(xi), fsent(si))/τ)

∑M

j=1 exp(cos(fimg(xi), fsent(sj))/τ)
.

This form of contrastive loss is also known as the normal-

ized temperature-scaled cross entropy loss (NT-Xent) [5].

Contrastive loss between fake and real images with

shared description. This contrastive loss is also defined

with NT-Xent. The main difference is that a shared image

encoder f ′
img extracts features for both real and fake images.

The score function between two images is Simg(x, x̃) =
cos(f ′

img(x), f
′
img(x̃))/τ . The image-image contrastive loss

between real image xi and generated image G(zi, si) is:

Limg(xi, G(zi, si)) = − log
exp(Simg(xi, G(zi, si)))

∑M

j=1 exp(Simg(xi, G(zj , sj)))
.

Contrastive loss between image regions and words. In-

dividual image regions should be consistent with corre-

sponding words in an input description. We use atten-

tion [58] to learn connections between regions in image x
and words in sentence s, without requiring fine-grained an-

notations that align words and regions. We first compute the

pairwise cosine similarity matrix between all words in the

sentence and all regions in the image; then, we compute the

soft attention αi,j for word wi to region rj as:

αi,j =
exp(ρ1 cos(fword(wi), fregion(rj)))

∑R

h=1 exp(ρ1 cos(fword(wi), fregion(rh)))
,

where fword and fregion represent word and region feature
encoders respectively, R is the total number of regions in
the image and ρ1 is a sharpening hyper-parameter to reduce
the entropy of the soft attention. The aligned region feature

for the ith word is defined as ci =
∑R

j=1 αi,jfregion(rj).
The score function between all the regions in image x and
all words in sentence s can then be defined as:

Sword(x, s) = log
(

T
∑

h=1

exp(ρ2 cos(fword(wh), ch))
) 1

ρ2 /τ,

where T is the total number of words in the sentence. ρ2
is a hyper-parameter that determines the weight of the most

Algorithm 1 XMC-GAN Training Algorithm.

Input: generator and discriminator parameters θG, θD,

contrastive loss coefficients λ1, λ2, λ3, Adam hyperpa-

rameters β1, β2, generator and discriminator learning

rate lrG, lrD, batch size M , number of discriminator

iterations per generator iteration ND

1: for number of training iterations do

2: for t = 1, ..., ND do

3: Sample {zi}
M
i=1 ∼ p(z)

4: Sample {(xi, si)}
M
i=1 ∼ pdata(x, s)

5: Lr
sent ←

1
M

∑M

i=1 Lsent(xi, si)

6: Lr
word ←

1
M

∑M

i=1 Lword(xi, si)

7: LD
GAN ← −

1
M

∑M

i=1 min(0,−1+D(xi, si))−
1
M

∑M

i=1 min(0,−1−D(G(zi, si), si))
8: LD ← L

D
GAN + λ1L

r
sent + λ2L

r
word

9: θD ← Adam(LD, lrD, β1, β2)
10: end for

11: Sample {zi}
M
i=1 ∼ p(z), {(xi, si)}

M
i=1 ∼ pdata(x, s)

12: Lf
sent ←

1
M

∑M

i=1 Lsent(G(zi, si), si)

13: Lf
word ←

1
M

∑M

i=1 Lword(G(zi, si), si)

14: Limg ←
1
M

∑M

i=1 Limg(G(zi, si), xi)

15: LG
GAN ←

1
M

∑M

i=1−(D(G(zi, si), si))
16: LG ← L

G
GAN + λ1L

f
sent + λ2L

f
word + λ3Limg

17: θG ← Adam(LG, lrG, β1, β2)
18: end for

aligned word-region pair, e.g., as ρ2 → ∞, the score func-

tion approximates to maxTh=1 cos(fword(wh), ch). Finally

the contrastive loss between the words and regions in image

xi and its aligned sentence si can be defined as:

Lword(xi, si) = − log
exp(Sword(xi, si))

∑M

j=1 exp(Sword(xi, sj))
.

4.2. Attentional Self­Modulation Generator

We propose a one-stage generator to directly generate the

image at the desired resolution. This is much simpler than

previous multi-stage generators that create images at mul-

tiple, different resolutions. We first sample noise z from a

standard Gaussian distribution. We obtain the global sen-

tence embedding es and the word embeddings ew from a

pretrained BERT [10] module. es and z are concatenated to

form the global condition, which is passed through several

up-sampling blocks (see appendix for details) to generate a

16 × 16 feature map. The global condition is also used as

the condition to calculate scale parameter γ and shift pa-

rameter β in conditional batch normalization layers. This

formulation is also known as self-modulation [6].
The self-modulation layer improves consistency of the

hidden feature with the conditional inputs, but it lacks finer
details for each sub-region. To generate fine-grained, recog-
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nizable regions, we propose the attentional self-modulation
layer. Specifically, besides random noise z and global
sentence embedding es, we modify the attention mecha-
nism [58] to calculate the word-context vector as the ad-
ditional modulation parameter for each sub-region. For the
jth region with feature hj , the word-context vector cj is:

cj =

T
∑

i=1

α̃j,iewi ,where α̃j,i =
exp(ρ0 cos(ewi , hj))

∑T

k=1
exp(ρ0 cos(ewk

, hj))
,

where T is the total number of words in the sentence and
ρ0 is a sharpening hyper-parameter. Then, the modulated
feature h′

j for the jth region can be defined as:

h′

j = γj(concat(z, es, cj))⊙
hj − µ

σ
+ βj(concat(z, es, cj)),

where µ and σ are the estimated mean and standard devi-

ation from aggregating both batch and spatial dimensions.

γj(·) and βj(·) represent any function approximators; in our

work we simply use linear projection layers. Further details

of the generator can be found in the appendix.

4.3. Contrastive Discriminator

Our proposed discriminator has two roles: (1) to act

as a critic to determine whether an input image is real or

fake, and (2) to act as an encoder to compute global image

and region features for the contrastive loss. The image is

passed through several down-sampling blocks until its spa-

tial dimensions are reduced to 16×16 (see Fig. 2, bottom

left). Then, a 1×1 convolution is applied to obtain region

features, where the feature dimensions are consistent with

the dimensions of the word embedding. The original im-

age feature is fed through two more down-sampling blocks

and a global pooling layer. Finally, a projection head com-

putes the logit for the adversarial loss, and a separate projec-

tion head computes image features for the image-sentence

and image-image contrastive loss. Note that it is impor-

tant to only use the real images and their descriptions to

train these discriminator projection heads. The reason is

that the generated images are sometimes not recognizable,

especially at the start of training. Using such generated im-

age and sentence pairs hurts the training of the image fea-

ture encoder projection heads. Therefore, the contrastive

losses from fake images are only applied to the generator.

In addition to the discriminator projection layers, we use

a pretrained VGG network [49] as an image encoder for

an additional supervisory image-image contrastive loss (see

Sec. 6.2). Algorithm 1 summarizes the XMC-GAN training

procedure. For simplicity, we set all contrastive loss coeffi-

cients (λ1, λ2, λ3 in Algorithm 1) to 1.0 in our experiments.

5. Evaluation

5.1. Data

We perform a comprehensive evaluation of XMC-GAN

on three challenging datasets (summarized in Table 1).

Dataset
COCO-14 LN-COCO LN-OpenImages

train val train val train val

#samples 82k 40k 134k 8k 507k 41k

caption/image 5 1 1

avg. caption length 10.5 42.1 35.6

Table 1: Statistics of datasets.

MS-COCO [30] is commonly used for text-to-image

synthesis. Each image is paired with 5 short captions. We

follow most prior work to use the 2014 split (COCO-14) for

evaluation.

Localized Narratives [40] contains long form image de-

scriptions for several image collections. We benchmark re-

sults on LN-COCO, which contains narratives for images

in the 2017 split of MS-COCO (COCO-17). Narratives are

four times longer than MS-COCO captions on average and

they are much more descriptive (see Figure 4). Narratives

also contain disfluencies since they are spoken and then

transcribed. These factors make text-to-image synthesis for

LN-COCO much more challenging than MS-COCO.

We also train and evaluate using LN-OpenImages, the

Open Images [23] split of Localized Narratives. Its images

are both diverse and complex (8.4 objects on average). LN-

OpenImages is also much larger than MS-COCO and LN-

COCO (see Table 1). To the best of our knowledge, we

are the first to train and evaluate a text-to-image generation

model for Open Images. XMC-GAN is able to generate

high quality results, and sets a strong benchmark for this

very challenging task.

5.2. Evaluation Metrics

Following previous work, we report validation results by

generating images for 30,000 random captions1. We evalu-

ate comprehensively using several measures.

Image quality. We use standard automated metrics for

assessing image quality. Inception Score (IS) [46] calcu-

lates KL-divergence between the conditional class distribu-

tion and the marginal class distribution given a pre-trained

image classifier. Fréchet Inception Distance (FID) [15] is

the Fréchet distance between two multivariate Gaussians

fit to Inception [51] features of generated and real images.

While IS and FID have both been shown to correlate with

human judgements of generated image quality, IS is likely

less informative as it overfits easily and can be manipulated

to achieve much higher scores using simple tricks [2, 17].

This is further emphasized by our results (Sec. 6.1) showing

that FID correlates better with human judgments of realism.

Text-Image Alignment. Following previous work [58,

27], we use R-precision to assess whether a generated image

can be used to retrieve its conditioning description. How-

ever, we notice that previous work computes R-precision

1We oversample the images and captions if there are less than 30,000

samples in the validation set.

837



Model IS ↑ FID ↓ R-prec (CC) ↑ SOA-C ↑ SOA-I ↑
Real Images 34.88 6.09 69.36 74.97 80.84

AttnGAN [58] 23.61 33.10 - 25.88 39.01

Obj-GAN [27] 24.09 36.52 - 27.14 41.24

DM-GAN [66] 32.32 27.34 - 33.44 48.03

OP-GAN [17] 27.88 24.70 49.80 35.85 50.47

SD-GAN [59] 35.69 29.35† 51.68 - -

CP-GAN [28] 52.73 55.82‡ 59.05 77.02 84.55

XMC-GAN (ours) 30.45 9.33 71.00 50.94 71.33

Table 2: Comparison of XMC-GAN with previous models on COCO-14. R-prec (CC) are R-precision scores computed from

a model trained on Conceptual Captions (see Sec. 5.2). † indicates scores computed from images shared by the original paper

authors, and ‡ indicates scores computed from images generated from the open-sourced models.

using image-text encoders from AttnGAN [58], and many

others use these encoders as part of their optimization func-

tion during training. This skews results: many generated

models report R-precision scores significantly higher than

real images. To alleviate this, we use an image-text dual-

encoder2 [38] pretrained on real images in the Conceptual

Captions dataset [48], which is disjoint from MS-COCO.

We find that computing R-precision with independent en-

coders better correlates with human judgments.

Caption retrieval metrics assess whether the entire image

matches the caption. In contrast, Semantic Object Accuracy

(SOA) [17] evaluates the quality of individual regions and

objects within an image. Like previous work, we report

SOA-C (i.e., the percentage of images per class in which a

desired object is detected) and SOA-I (i.e., the percentage

of images in which a desired object is detected). Further de-

tails of SOA can be found in [17]. SOA was originally de-

signed for COCO-14, and can take very long to compute as

it requires generating multiple samples for each MS-COCO

class label. We use the official code to compute the metrics

reported in Table 2, but approximate results for LN-COCO

and other ablation experiments where we compute results

over 30,000 random samples.

Human evaluation. Automated metrics are useful while

iterating on models during experimentation, but they are no

substitute for human eyes. We conduct thorough human

evaluations on generated images from 1000 randomly se-

lected captions. For each caption, we request 5 independent

human annotators to rank the generated images from best to

worst based on (1) realism, and (2) language alignment.

6. Experiments

6.1. Results

COCO-14. Figure 3 shows human evaluations com-

paring XMC-GAN to three recent strong models: CP-

GAN [28], SD-GAN [59], and OP-GAN [17]. Given im-

ages (anonymized and randomly ordered) generated from

the same caption by the four models, annotators are asked

2This model will be publicly released to facilitate future evaluations.
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Figure 3: Human evaluation on COCO-14 for image qual-

ity and text alignment. Annotators rank (anonymized and

order-randomized) generated images from best to worst.

Model IS ↑ FID ↓ R-prec ↑ SOA-C ↑ SOA-I ↑
Real Images 34.40 8.01 61.52 66.08 67.39

AttnGAN [58] 20.80 51.80 43.88 - -

TRECS [22] 21.30 48.70 37.88 - -

XMC-GAN (ours) 28.37 14.12 66.92 36.76 48.14

Table 3: Comparison of XMC-GAN on LN-COCO. SOA

metrics together with others are computed from 30,000 ran-

dom examples.

to rank them from best to worst. Realism and text align-

ment judgments are collected independently. XMC-GAN is

the clear winner on both: its output is ranked best in 77.3%

of realism comparisons, and 74.1% of text alignment ones.

OP-GAN is a distant second, at 9.90% and 9.70%, respec-

tively. XMC-GAN achieves this while being a simpler, one-

stage model, whereas OP-GAN is multi-stage and needs ob-

ject bounding boxes. Visual inspection of selected images

(Fig. 4) convincingly shows the large quality improvement.

XMC-GAN’s images are much higher fidelity compared to

others, and depict clearer objects and more coherent scenes.

This also holds for more random samples (see appendix).

Table 2 provides comprehensive COCO-14 results for

automated metrics. XMC-GAN dramatically improves FID

from 24.70 to 9.33, a 62.2% relative improvement over the

next best model, OP-GAN [17]. XMC-GAN also outper-

forms others (71% vs. 59%) for R-precision computed with

our independently trained encoders, indicating a large im-

838



MS-COCO

Caption
OP-GAN SD-GAN CP-GAN XMC-GAN LN-COCO Caption AttnGAN TReCS XMC-GAN

a green train is

coming down the

tracks

There is a group of people. They

are standing on ski board. They are

smiling. They are holding a sticks.

In the center of the person is wear-

ing a helmet. On the right side ...

A group of skiers

are preparing to

ski down a moun-

tain.

In this image I can see people are

sitting on chairs. I can also see few

of them are wearing shades. Here I

can see few more chairs and tables.

On this table I can see food ...

A small kitchen

with low a ceiling

This picture shows an inner view of

a restroom we see a wash basin with

tap and a mirror on the wall and we

see a light on it and we see a toilet

seat and a frame on the wall and ...

A child eating

a birthday cake

near some

balloons.

In this image we can see a red color

train on the railway track. Here we

can see platform

A living area with

a television and a

table

In this picture there are two mem-

bers lying on the beach in the sand

under an umbrella. There are some

people standing here. In the back-

ground there is water

Figure 4: Generated images for selected examples from COCO-14 and LN-COCO. XMC-GAN generated images are gener-

ally of much higher quality and depict clearer scenes. More random samples are available in the appendix.

provement in fidelity of generated images to the captions

they are conditioned on—and consistent with human judg-

ments. Although CP-GAN achieves higher IS and SOA

scores, both our human evaluations and visual inspection

of randomly selected images indicates XMC-GAN’s image

quality is much higher than CP-GAN’s. This may be due

to the issue that IS and SOA do not penalize intra-class

mode dropping (low diversity within a class)—a model that

generates one “perfect” sample for each class can achieve

good scores on IS and SOA. Our findings are consistent

with other works [27, 2], which suggest that FID may be

a more reliable metric for measuring text-to-image synthe-

sis quality.

LN-COCO. Localized Narratives [40] contains much

longer descriptions, which increases the difficulty of text-

to-image synthesis (see Sec. 5.1). Table 3 shows that XMC-

GAN provides massive improvements over prior work.

Compared to TReCS [22], XMC-GAN improves IS and

FID, by 7.07 and 34.58 (absolute), respectively. It also im-

proves R-precision by 23.04% absolute over AttnGAN [58],

indicating much better text alignment. This is supported

by qualitative comparison of randomly selected outputs:

XMC-GAN’s images are decisively clearer and more coher-

ent (see Fig. 4). We stress that TReCS exploits LN-COCO’s

mouse trace annotations—incorporating this training signal

in XMC-GAN in future should further boost performance.

S W I IS ↑ FID ↓ R-prec ↑ SOA-C ↑ SOA-I ↑
Real Images [17] 34.88 6.09 69.36 76.17 80.12

15.89 39.28 21.41 8.99 25.72

X 23.50 19.25 53.57 24.57 45.41

X 20.72 24.38 44.42 20.50 39.12

D 18.90 29.71 31.16 12.73 30.89

VGG 21.54 39.58 35.89 17.41 35.08

D + VGG 23.61 21.14 47.04 23.87 44.41

X X 26.02 14.25 64.94 30.49 51.60

X X D 28.06 12.96 65.36 34.21 54.23

X X VGG 30.55 11.12 70.98 39.36 59.10

X X D + VGG 30.66 11.93 69.86 39.85 59.78

Table 4: Ablation results with different contrastive losses

on COCO-14. S indicates the sentence-image loss. W in-

dicates the region-word loss. I indicates the image-image

loss, where D represents using the discriminator to extract

image features, and VGG represents using a pre-trained

VGG network to extract image features.

LN-OpenImages. We train XMC-GAN on Open Images

dataset, which is much more challenging than MS-COCO

due to greater diversity in images and descriptions. XMC-

GAN achieves an IS of 24.90, FID of 26.91, and R-precision

of 57.55, and manages to generate high quality images (see

appendix). To the best of our knowledge, XMC-GAN is the

first text-to-image model trained and evaluated on Open Im-

ages. Its strong automated scores establish strong bench-

mark results on this challenging dataset.

6.2. Ablations

We thoroughly evaluate the different components of

XMC-GAN and analyze their impact. Table 4 summarizes
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