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Abstract

Existing NAS methods for dense image prediction tasks

usually compromise on restricted search space or search

on proxy task to meet the achievable computational de-

mands. To allow as wide as possible network architectures

and avoid the gap between realistic and proxy setting, we

propose a novel Densely Connected NAS (DCNAS) frame-

work, which directly searches the optimal network struc-

tures for the multi-scale representations of visual informa-

tion, over a large-scale target dataset without proxy. Specif-

ically, by connecting cells with each other using learnable

weights, we introduce a densely connected search space to

cover an abundance of mainstream network designs. More-

over, by combining both path-level and channel-level sam-

pling strategies, we design a fusion module and mixture

layer to reduce the memory consumption of ample search

space, hence favoring the proxyless searching. Compared

with contemporary works, experiments reveal that the prox-

yless searching scheme is capable of bridging the gap be-

tween searching and training environments. Further, DC-

NAS achieves new state-of-the-art performances on public

semantic image segmentation benchmarks, including 84.3%

on Cityscapes, and 86.9% on PASCAL VOC 2012. We

also retain leading performances when evaluating the ar-

chitecture on the more challenging ADE20K and PASCAL-

Context dataset.

1. Introduction

The heavy computation overheads of early Neural Ar-

chitecture Search (NAS) methods [81] hinder their appli-

cations in real-world problems. Recently, limited search

space strategies [82, 37, 38] significantly shorten the search-

ing time of NAS algorithms, which make NAS approaches

achieve superhuman performance in image classification

task. However, to meet the low consumption of searching

time, NAS methods with a constrained search space throw

down the multi-scale representation of high-resolution im-
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Method Proxyless GPU Days FLOPs(G) ρ ↑ τ ↑ mIoU(%) ↑

DPC [3] ✗ 2600 684.0 0.46 0.37 82.7

Auto-DeepLab [36] ✗ 3 695.0 0.31 0.21 82.1

CAS [73] - - - - - 72.3

GAS [35] - 6.7 - - - 73.5

FasterSeg [8] ✗ 2 28.2 0.35 0.25 71.5

Fast-NAS [44] ✗ 8 435.7 0.42 0.33 78.9

SparseMask [59] ✗ 4.2 36.4 0.49 0.38 68.6

Ours (DCNAS) ✓ 5.6 294.6 0.73 0.55 84.3

Table 1. Comparisons with state of the arts. The table presents

the comparison results of [3, 36, 73, 35, 8, 66, 59] and our DC-

NAS comprehensively. In which, ρ and τ represent the Pear-

son Correlation Coefficient and the Kendall Rank Correlation Co-

efficient, respectively, both of which are measured according to

the performances of the super-net and the fine-tuned stand-alone

model, Proxyless applies a proxyless searching paradigm, GPU

Days presents the searching cost, mIoU(%) and FLOPs(G) re-

port the accuracy and the flops of the best model.

age. As a result, those methods are not suitable for dense

image prediction tasks (e.g. semantic image segmentation,

object detection, and monocular depth estimation).

To efficiently search appropriate network structure that

can combine both the local and global clues of the se-

mantic features, researches recently focus on improving

NAS frameworks by designing new search spaces to han-

dle multi-scale features. For instance, DPC [3] introduces a

recursive search space, and Auto-DeepLab [36] proposes a

hierarchical search space. However, designing new search

space for dense image prediction tasks proves challenging:

one has to delicately compose a flexible search space that

covers as much as possible optimal network architectures.

Meanwhile, efficiently address memory consumption and

the heavy computation problems accompanied with ample

search space for the high-resolution imagery.

In this work, we propose an efficient and proxyless NAS

framework to search the optimal model structure for se-

mantic image segmentation. Our approach is based on two

principal considerations. Firstly, the search space should

be comprehensive enough to handle most of the main-

stream architecture designs, even some undiscovered high-

quality model structures. As shown in Figure 1, we design

a reticular-like and fully densely connected search space,

which contains various paths in the search space. Con-
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Figure 1. Framework of DCNAS. Top: The densely connected search space (DCSS) with layer L and max downsampling rate 32. To

stable the searching procedure, we keep the beginning STEM and final Upsample block unchanged. Dashed lines represent candidate

connections in DCSS, to keep clarity, we only demonstrate several connections among all the candidates. Bottom Left: Fusion module

targets at aggregating feature-maps derived by previous layers, and solving the intensive GPU memory requirement problem by sampling a

portion of connections from all possible ones. Bottom Right: Mixture layer may further save GPU memory consumption and accelerating

the searching process by sampling and operating on a portion of features while bypassing the others.

sequently, DCNAS may derive whichever model architec-

ture designs by selecting appropriate paths among the whole

set of these connections. Additionally, DCNAS aggregates

contextual semantics encoded in multi-scale imageries to

derive long-range context information, which has been re-

cently found to be vital in the state-of-the-art manually de-

signed image segmentation models [40, 74, 5, 7, 70]. Sec-

ondly, we observe that previous NAS approaches [3, 36]

heavily rely on the proxy task or proxy dataset to reduce the

cost of GPU hours and to alleviate the high GPU memory

consumption problem. However, architectures optimized

over the proxy are not guaranteed to be suitable in realistic

setting [2], because of the gap between the proxy and the

target configuration. Regarding this concern, we relax the

discrete architectures into continuous representation to save

GPU hours and design a fusion module which applies both

path-level and channel-level sampling strategies during the

searching procedure to reduce memory demand. Based on

that, one may employ the stochastic gradient descent (SGD)

to perform the proxyless searching procedure to select the

optimal architecture from all the candidate models without

the help of proxy datasets or proxy tasks. The searching

procedure takes about 5.6 GPU days on Cityscapes [11].

We apply our approach to semantic image segmentation

tasks on several public benchmarks, our model achieves the

best performance compared with state-of-the-art hand-craft

models [51, 74, 80, 7, 24, 12, 17] and other contempo-

rary NAS approaches [36, 3, 59, 44, 8]. We also evaluate

the optimal model identified by DCNAS on PASCAL VOC

2012 [15], the model outperforms other leading approaches

[26, 17, 74, 68, 69, 27, 70, 21] and advances the state-of-

the-art performance. Transferring the model to ADE20K

[78] and PASCAL-Context [43] datasets, our model obtains

the best result compared with state-of-the-art approaches

[12, 17, 22, 24, 71, 69, 31], according to the correspond-

ing evaluation metrics.

Further, considering NAS methods depend on agent met-

rics to explore promising networks efficiently. If the agent

metric provides a strong relative ranking of models, this en-

ables the discovery of high performing models when trained

to convergence. However, studies about the relative ranking

of models in the searching period are less explored in litera-

ture [44, 59, 8, 3, 36]. In this work, we enrich this field and

investigate most related methods on how well the accuracy

in searching phase for specific architectures correlates with

that of the fine-tuned stand-alone model.

To summarize, our main contributions are as follows:

• We design a novel entirely densely connected search

space, allowing to explore various existing designs and

to cover arbitrary model architecture patterns.

• A novel proxyless searching paradigm is implemented to

efficiently and directly explore the most promising model

among all the candidates encoded in DCNAS, on large-

scale segmentation datasets (e.g., Cityscapes [11]).

• The DCNAS outperforms contemporary NAS methods

[44, 59, 8, 3, 36] and demonstrates new state-of-the-art

performance on Cityscapes [11], PASCAL-VOC 2012

[15], PASCAL-Context [43] and ADE20K [78] datasets.
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• We conduct a large scale experiment to understand the

correlation of model performance between the searching

and training periods for most contemporary works [36, 3,

59, 44, 8] focusing on semantic segmentation task.

2. Related Work

2.1. Neural Architecture Search Space

Early NAS works [81, 49] directly search the whole net-

work architecture. Although those works achieve impres-

sive results, their expensive computation overheads (e.g.

thousands of GPU days) hinder their applications in real-

world scenarios. To alleviate this situation, researchers pro-

posed restricted search spaces. NASNet [82] first proposed

a cell-based search space. Concretely, NASet searches the

fundamental cell structure, which is easier than searches the

whole network architectures on a small proxy dataset. Af-

ter that, many works [38, 47, 2, 56, 58] adopt the cell-based

search space design and make improvements in several

ways. One line of works [2, 56, 58] attempt to search high-

efficiency network architectures for resource-constrained

platforms, such as mobile phones. Another line of works

[9, 16] try to improve previous cell-based NAS methods. P-

DRATS [9] first bridge the depth gap between search and

evaluation phases. Fang et al.[16] proposes the routing

blocks to determine the number of blocks automatically.

Despite the success of repeated cell-based methods for

image classification tasks, other dense image prediction

tasks, such as semantic image segmentation and object de-

tection, demand more delicate and complicated network ar-

chitectures to capture multi-scale information of the image.

Therefore, researchers begin to explore more flexible search

space for dense image prediction tasks. For instance, DPC

[3] proposes a recursive search space to build a multi-scale

representation of a high-resolution image. Auto-DeepLab

[36] introduces a hierarchical search space to exhibit multi-

level representations of the image.

2.2. Semantic Image Segmentation

The pioneer work FCN [42] makes great progress in se-

mantic segmentation with a fully convolutional network.

Afterwards, researchers devote enormous efforts to explore

the tremendous potentials of convolutional neural networks

(CNNs) on dense image prediction tasks. Several kinds of

research works [74, 34, 6, 14, 4, 50, 46, 33, 48, 7, 18] focus

on how to efficiently utilize multi-scale context information

to improve the performance of semantic segmentation sys-

tems. Some works [34, 6, 14] takes an image pyramid as in-

put to capture larger objects in down-sampled input image.

Some other works try to make use of multi-scale context in-

formation. PSPNet [74] uses spatial pyramid pooling at dif-

ferent manually set scales. Deeplab [4] performs multiple

rates atrous convolution operations. Also, there are some

works [50, 46, 33, 48, 7, 18] that employ encoder-decoder

structure to captures long-range context information.

Recent works [3, 36, 44, 52, 59, 8, 30, 73, 72, 60, 41]

shift to automatically design network architectures. Re-

search works, such as [44, 52, 59, 8, 30, 73], target to search

network structures that are friendly to resource-constrained

devices for semantic segmentation task. Other works, such

as DPC [3] and Auto-DeepLab [36], intent to directly search

the highest-performance network architecture for semantic

segmentation without considering computation overheads.

Most of those works [36, 44, 52, 59, 8, 30, 73] suffer from

limited search space and search on proxy tasks, because of

high GPU memory consumption and expensive computa-

tional burden. Yet the optimal network structures for multi-

scale feature representations require ample search space.

The most similar works to ours are DPC [3], Auto-

DeepLab [36], and DenseNAS [16]. [3] proposes an am-

ple search space but requires thousands of GPU days for

searching, whereas we can efficiently search over at least

the same search space using only 5.6 GPU days. [36]

achieves comparable searching time like ours, yet contains a

much smaller search space than DCNAS. [16] places candi-

date connections between adjacent M cells only, while DC-

NAS comprises a wholly densely connected search space.

Besides, both [3, 36, 16] search on a proxy dataset, whereas

DCNAS directly search on the target dataset.

3. Methodology

In this section, we introduce several vital components

that constitute DCNAS in detail, including a densely con-

nected search space that is general enough to cover enor-

mous network design, the derived continuously differen-

tiable representation of the search space, and the approach

that can save the cost of GPU hours and reduce excessive

memory footprint, which favors proxyless searching.

3.1. Densely Connected Search Space

The densely connected search space ( DCSS ) involves

two primitives, the mixture layer, and the fusion module.

The mixture layer is defined as a mixture of the candidate

operators, and the fusion module aims at aggregating se-

mantic features from preceding fusion modules. A range of

reticular-like and densely connected fusion modules consti-

tute the architecture of DCSS, as shown in Figure 1.

Mixture Layer. The mixture layer is the elementary

structure in search space represents a collection of available

operations. Similar to [2], we construct the operator space

O with various configurations of mobileNet-v3 [23], i.e.,

kernel sizes k ∈ {3, 5, 7}, expansion ratios r ∈ {3, 6}. Due

to the dense connections contained in the search space, the

DCSS inherently supports the zero operation and identity

mapping. Hence O does not contain the above operators
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Figure 2. Mainstream Network Designs in DCNAS. The figure

demonstrates several mainstream network design patterns [42, 46,

5, 54] that embedded in our Densely Connected Search Space.

explicitly. Similarly, considering the search space inher-

ently favors the multi-scale semantic features aggregation,

which increases the receptive field, therefore, the mixture

layer does not support atrous convolution explicitly.

Fusion Module. To explore various paths in DCSS, we

introduce the fusion module with the ability of aggregating

semantic features from preceding fusion modules besides

the feature pyramids and attaching transformed semantic

features to succeeding ones. As illustrated by the bottom-

left part in Figure 1, the fusion module consists of the

shape-alignment layer besides the mixture layer. The shape-

alignment layer is in a multi-branch parallel form. Given

an array of feature-maps with different shapes (e.g., spatial

resolutions and channel widths), the shape-alignment layer

dispatches each feature-map to the corresponding branches

to align them to the target shape. Semantic features are

well-aligned and fully aggregated, then feed into the mix-

ture layer to perform efficient multi-scale features fusion.

Search Space. Benefiting from the sophisticated de-

sign of the fusion module, we introduce a set of reticular-

arranged fusion modules and place dense connections be-

tween them to form a search space that supports more flex-

ible architecture configurations than similar works [36, 8].

The search algorithm is admitted to select a subset of the

fusion models together with the appropriate connections be-

tween them to derive whatever model architecture (see Fig-

ure 2 for instance), hence enables a general architecture

search. Specifically, we construct the super network with

an array of fusion modules {M(s,l)}, where s indicates the

spatial configuration and l refers to the layer index, which is

demonstrated in Figure 1, in which, each M(s,l) aggregates

the semantic features coming from {M(s′,l′)}l′<l.

3.2. Differentiable Representation

Reinforcement learning representations in [1, 81] and

evolutionary representations in [53, 49] both tend to be

computationally intensive, hence probably not suitable for

semantic image segmentation task. Regarding this con-

cern, we draw on the experience of continuous relaxation

in [38, 62] and relax the discrete architectures into continu-

ous representation. Notably, we derive a continuous repre-

sentation for both the mixture layer and the fusion mod-

ule, hence leading to a fully differentiable search space,

based on which one can apply the stochastic gradient de-

scent method to search promising architectures.

Mixture Layer. We assign an architecture parameter

αo
(s,l) to each operator o in mixture layer ℓ(s,l) contained

in fusion module M(s,l), and derive the continuously rep-

resentation of the mixture layer by defining it as a weighted

sum of outputs from all candidate operations. The architec-

ture weight of the operation is computed as a soft-max over

all architecture parameters in mixture layer ℓ(s,l),

wo
(s,l) =

exp{αo
(s,l)}

∑

o′∈O exp{αo′

(s,l)}
, (1)

and the output of mixture layer ℓ(s,l) can be estimated as,

O(s,l) =
∑

o∈O

wo
(s,l)o

(

I(s,l)
)

, (2)

where I(s,l) refers to the input feature-maps of ℓ(s,l).
Fusion Module. Similar to the relaxation paradigm

adopted in the mixture layer, to relax the connections as a

continuous representation, we assign an architecture param-

eter β(s′,l′)→(s,l) for the path from M(s′,l′) to M(s,l). Since

the M(s,l) aggregates all semantic features {I(s′,l′)}l′<l,

we estimate the transmission probability of each path using

a soft-max function over all available connections,

p(s′,l′)→(s,l) =
exp

{

β(s′,l′)→(s,l)

}

∑

s′′∈S, l′′ < l exp
{

β(s′′,l′′)→(s,l)

} , (3)

and the aggregating process can be formalized as,

I(s,l) =
∑

s′∈S,l′<l

p(s′,l′)→(s,l)H(s′,l′)→(s,l)(O(s′,l′)), (4)

where H(s′,l′→(s,l) denotes the corresponding transforma-

tion branch in shape-alignment layer of fusion module

M(s,l), which transforms the semantic features produced

by mixture layer ℓ(s′,l′) to the shape specified by M(s,l).
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3.3. Reducing Memory Footprint

Continuous representation of network architectures can

largely reduce the cost of GPU hours, while the memory

footprint grows linearly w.r.t. the size of candidate oper-

ation set and the number of connections, hence suffering

from the high GPU memory consumption problem. While

image segmentation intrinsically requires high-resolution

semantic features, which may lead to even more GPU mem-

ory consumption. To resolve the excessive memory con-

sumption problem, we apply the sampling strategy both in

the fusion module and the mixture layer to solve the exces-

sive memory footprint problem and further reduce the cost

of GPU hours. Taking the above tactics, one can proxylessly

search the model over large-scale dataset, hence avoiding

the gap between target and proxy dataset.

Fusion Module. The DCSS comprises 8L(L + 1) con-

nections in total, where L is layer number, thus making

it impossible to optimize the whole set of candidate con-

nections in each iteration because of the extravagant GPU

memory demand. Therefore, in each iteration during the

search, for each fusion module, we sample several con-

nections among the corresponding potential connections.

Concretely, taking fusion module M(s,l) for instance, all

the preceding fusion modules {M(s′,l′)}l′<l are associated

with it, in each search iteration, we perform sampling with-

out replacement to activate several transmission paths, and

the probability distribution is defined as:

p(s′,l′)→(s,l) =
exp

{

β(s′,l′)→(s,l)/τ
}

∑

s′′∈S,l′′<l exp
{

β(s′′,l′′)→(s,l)/τ
} , (5)

where β(s′′,l′′)→(s,l) share the same definition in Equation

3, and the temperature variable τ starts from a high tem-

perature then anneal to a small but non-zero value. As-

sume there are n fusion modules {Msi,li}i<n selected from

{M(s′,l′)}l′<l, then we may approximate Equation 4 with:

I(s,l) =
∑

k<n

w(sk,lk)→(s,l)H(sk,lk)→(s,l)(O(sk,lk)), (6)

where w(sk,lk)→(s,l) refers to the normalized blending

weight, H and O shares the same definition in Equation 4.

Mixture Layer. A typical way to apply the sampling

trick is to sample the operator o from the candidate oper-

ator space O in each mixture layer. While in practice, we

find that the naive sampling strategy makes the searching

process unstable and sometime does not convergence. In-

spired by [64], a portion of channels are sampled among

the input features, then the lucky ones are sent into the

mixed transformation of |O| operators while bypasses the

others. Specifically, for each ℓ(s,l), we assign a random vari-

able S(s,l) that control the ratio of sampled channels, which

trades off the search accuracy and efficiency, and we may

estimate O(s,l) in Equation 2 as:

∑

o∈O

wo
(s,l)o

(

S(s,l)I(s,l)
)

+ (1− S(s,l))I(s,l), (7)

where wo
(s,l) indicates the normalized blending weight de-

fined by Equation 1. While different to [64], the edge

normalization layers are removed and the feature masks

S(s,l) remain unchanged in the searching procedure, and

experimental result demonstrates that this simplified variant

proves more suitable for semantic image segmentation. Re-

garding the sampling ratio, we do not tune the sampling ra-

tio and fix it to be 1/4, empirically, our experiments demon-

strate that it works well. With this scheme, one shall gain

4× acceleration of the searching process, and save about

75% GPU memory consumption.

3.4. Search Procedure

Benefiting from the fully differentiable representation

of the search space and the sampling strategies mentioned

above, one may apply the stochastic gradient descent al-

gorithm to search for appropriate models by optimizing ar-

chitecture parameters {α, β} on the target dataset without

proxy. Similar to previous works [38, 3, 36, 8], we partition

the training data into two parts trainA and trainB, which are

used for updating the convolutional weights w and archi-

tecture parameters {α, β} respectively. We solve this opti-

mization problem alternatively:

• update weights w by ∇w LtrainA(w,α, β),

• update parameters {α, β} by ∇α,β LtrainB(w,α, β),

in which the loss function L mainly consists of the classical

cross entropy calculated on each mini-batch.

We shall point out that, in practice, L comprises of

several practical regularization terms in addition to cross-

entropy, experiments reveal the regularization terms yield a

faster convergence rate of the searching procedure and lead

to a better searching accuracy (see supplementary material).

3.5. Decoding Network Structure

Once the search procedure terminates, one may de-

rive the suitable operator for each mixture layer and the

optimal architecture based on the architecture parameters

α and β. For mixture layer ℓ(s,l), we select the candi-

date operation that has maximum operation weight, i.e.,

argmaxo∈O αo
(s,l). In terms of the network architecture,

we use Breadth-First Search algorithm (see supplemental

material) to derive the network architecture.

4. Experiments

To evaluate DCNAS comprehensively, we first verify the

effect of the proxyless searching paradigm by measuring the
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Figure 3. Correlation of Performance. The figures present the performance of the state of the art methods [44, 59, 8, 3, 36] and our

DCNAS. For each method, we plot the validation performance for both the searching and training stages. Further, we report the Pearson

Correlation Coefficient (ρ) and the Kendall Rank Correlation Coefficient (τ ), which measured according to pairs of the performances.

correlation of the performance between the searching and

training environments. Secondly, we quantitatively demon-

strate the superiority of DCNAS on several broadly used

benchmarks according to corresponding evaluation metrics.

Finally, we perform ablation studies to better understand the

impact of different designs on the segmentation tasks.

4.1. Architecture Search Implementation Details

We first search suitable model structure on Cityscapes

[11] dataset and then evaluate this derived model on other

benchmarks. In our experiments, for the shape of feature-

maps, we set the spatial resolution space S to be {1/4,
1/8, 1/16, 1/32}, and the corresponding widths are set to

F, 2F, 4F, 8F , where we set F to be 64 for our best model.

Regarding the DCSS, we set the hyper-parameter L to be

14 and the sampling ratio r to be 1/4. To deliver end-to-

end searching, we hand-craft a stem module that aims to

extract feature-pyramids for DCSS, and we also design a

simple head block for aggregating all of the feature-maps

from DCSS to make the final prediction ( We refer the sup-

plemental materials for more implementation details ).

4.2. Correlation of Performance

In this section, we quantify the association of the model’s

performance during searching and training configurations.

In practice, we take the Pearson Correlation Coefficient (ρ)

Method Backbone Validation Coarse ImageNet mIoU(%)

PSPNet [74] Dilated-ResNet-101 ✗ ✗ ✓ 78.4

PSANet [75] Dilated-ResNet-101 ✓ ✗ ✓ 80.1

PADNet [63] Dilated-ResNet-101 ✓ ✗ ✓ 80.3

Auto-DeepLab [36] - ✓ ✗ ✗ 80.4

DenseASPP [65] WDenseNet-161 ✓ ✗ ✓ 80.6

SVCNet [12] ResNet-101 ✓ ✗ ✓ 81.0

PSPNet [74] Dilated-ResNet-101 ✓ ✓ ✓ 81.2

CPNet101 [67] ResNet-101 ✓ ✗ ✓ 81.3

DeepLabv3 [5] ResNet-101 ✓ ✓ ✓ 81.3

CCNet [24] ResNet-101 ✓ ✗ ✓ 81.4

DANet [17] Dilated-ResNet-101 ✓ ✗ ✓ 81.5

SpyGR [29] ResNet-101 ✓ ✓ ✓ 81.6

RPCNet [76] ResNet-101 ✓ ✗ ✓ 81.8

Mapillary† [51] ResNeXt-101 ✓ ✓ ✓ 82.0

HANet† [10] ResNet-101 ✓ ✗ ✓ 83.2

DeepLabv3+ [7] Dilated-ResNet-101 ✓ ✓ ✓ 82.1

Auto-DeepLab [36] - ✓ ✓ ✗ 82.1

HRNetV2 + OCR† [57] HRNetV2 ✓ ✗ ✓ 83.9

DPC [3] Dilated-Xception-71 ✓ ✗ ✓ 82.7

DRN [80] ResNet-101 ✓ ✓ ✓ 82.8

GSCNN† [55] Wide-ResNet ✓ ✗ ✓ 82.8

DecoupleSegNets† [28] Wide-ResNet ✓ ✗ ✓ 83.7

DCNAS† - ✗ ✗ ✗ 82.8

DCNAS† - ✓ ✗ ✗ 83.1

DCNAS† - ✓ ✓ ✗ 83.6

DCNAS + ASPP† - ✓ ✓ ✗ 84.3

Table 2. Performance on Cityscapes. The table summarizes the

performance on Cityscapes testing dataset. Validation: Models

trained with both train-fine and val-fine parts. ImageNet: The

backbones of model trained on ImageNet. Coarse: Models that

exploit extra datas in Cityscapes with coarse annotation. †: Adopts

the well labeled Mapillary Vistas [45] dataset.

and Kendall Rank Correlation (τ ) Coefficient as the evalu-

ation metric and compare our approach with contemporary

works [44, 59, 8, 3, 36].
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant ṡheep sofa train tv mIoU(%)

AAF [26] 91.2 72.9 90.7 68.2 77.7 95.6 90.7 94.7 40.9 89.5 72.6 91.6 94.1 88.3 88.8 67.3 92.9 62.6 85.2 74.0 82.2

ResNet38 [61] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

DANet [17] - - - - - - - - - - - - - - - - - - - - 82.6

PSPNet [74] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

DFN [68] - - - - - - - - - - - - - - - - - - - - 82.7

EncNet [69] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9

PAN [27] 95.7 75.2 94.0 73.8 79.6 96.5 93.7 94.1 40.5 93.3 72.4 89.1 94.1 91.6 89.5 73.6 93.2 62.8 87.3 78.6 84.0

CFNet [70] 95.7 71.9 95.0 76.3 82.8 94.8 90.0 95.9 37.1 92.6 73.0 93.4 94.6 89.6 88.4 74.9 95.2 63.2 89.7 78.2 84.2

APCNet [22] 95.8 75.8 84.5 76.0 80.6 96.9 90.0 96.0 42.0 93.7 75.4 91.6 95.0 90.5 89.3 75.8 92.8 61.9 88.9 79.6 84.2

DMNet [21] 96.1 77.3 94.1 72.8 78.1 97.1 92.7 96.4 39.8 91.4 75.5 92.7 95.8 91.0 90.3 76.6 94.1 62.1 85.5 77.6 84.3

SANet [77] 95.1 65.9 95.4 72.0 80.5 93.5 86.8 94.5 40.5 93.3 74.6 94.1 - - - - - - - - 83.2

SpyGR [29] - - - - - - - - - - - - - - - - - - - - 84.2

CaC-Net[39] 96.3 76.2 95.3 78.1 80.8 96.5 91.8 96.9 40.7 96.3 76.4 94.3 95.8 91.3 89.1 73.1 93.3 62.2 86.7 80.2 85.1

DCNAS (Ours) 96.5 75.2 96.1 80.7 85.2 97.0 93.8 96.6 49.5 94.0 77.6 95.1 95.7 93.9 89.7 76.1 94.7 70.9 89.7 79.4 86.9

Table 3. Performance on PASCAL VOC 2012. The table presents per-class semantic segmentation results on the PASCAL VOC 2012

test dataset. Our method advances the new state-of-the-art with mIoU 86.9%.

To make a fair comparison, we conduct the experiment

about 40 times for each method. For each experiment,

we run the exploration algorithm on the training dataset

of Cityscapes for 80 epochs. As the searching procedure

convergences, we train the derived model for 120 epochs

on the training dataset. We report the accuracy of both

stages on the validation part in each experiment for quan-

titative comparisons. We shall point out that we reproduce

[44, 59, 8, 36] based on the officially released code. As to

[3], we refer the announced results from the published pa-

per rather than reproduce the method from scratch due to

the intensive computation resource requirements.

As shown in Figure 3, one can observe that our method

obtains a higher validation accuracy in the searching phase

compared with [44, 59, 8, 3, 36]. This is reasonable be-

cause our method does not depend on a proxy dataset, which

alleviates the gap between searching and validation data,

hence leading to a better performance. Regarding the per-

formance when fine-tuning the derived model, our approach

still achieves the best result. This is consistent with our ex-

pectation because our search space (DCSS) is more general

than [36, 59, 8] and our gradient-based framework is easier

to train compared to [3, 44] that rely on reinforcement learn-

ing. In terms of the correlation coefficient, our approach

outperforms other contemporary methods. It is not aston-

ishing because [44, 59, 8, 3, 36] perform the searching with

proxy, yet architectures optimized with proxy are not guar-

anteed to be optimal on the target task [2]. In our case,

searching and training environments share a similar proto-

col. Consequently, the paired validation performances shall

be approximately linear to a certain extent.

4.3. Semantic Segmentation Results

In this section, we evaluate our optimal model structure

on Cityscapes [11], PASCAL VOC 2012 [15], ADE20K

[78], and PASCAL-Context [43] datasets.

Cityscapes [11] is a large-scale and challenging dataset,

following the conventional evaluation protocol [11], we

evaluate our model on 19 semantic labels without consider-

ing the void label. Table 2 presents the comparison results

of our method and several state-of-the-art methods. Without

Methods
ADE20K Pascal Context

mIoU Pix-Acc mIoU 59-cls mIoU 60-cls

DeepLabv2 [4] - - - 45.7

GCPNet [25] 38.37 77.76 - 46.5

RefineNet [33] 40.70 - - 47.3

MSCI [32] - - - 50.3

PSANet [75] 43.77 81.51 - -

PSPNet [74] 44.94 81.69 47.8 -

SAC [71] 44.30 - - -

CCL [13] - - - 51.6

EncNet [69] 44.65 81.69 52.6 51.7

DSSPN [31] 43.68 - - -

CFNet [70] 44.89 - 54.0 -

CCNet [24] 45.22 - - -

DeepLabv3+ [7] 45.65 82.52 - -

Auto-DeepLab [36] 43.98 81.72 - -

APCNet [22] 45.38 - 55.6 54.7

DANet [17] - - - 52.6

SVCNet [12] - - 53.2 -

DRN [80] - - 49.0 -

SANet [77] - - 55.3 54.4

SpyGR [29] - - - 52.8

CPNet [67] 46.27 81.85 - 53.9

HRNetV2 + OCR [57] 45.66 - - 56.2

CaC-Net [39] 46.12 - - 55.4

DCNAS (Ours) 47.12 84.31 57.1 55.6

Table 4. Performance on ADE20K and PASCAL-Context. The

table presents the semantic segmentation performance on the val-

idation part of ADE20K and PASCAL-Context according to vari-

ous evaluation metrics.

any pre-training, our base model achieves the performance

with 83.1% mIoU on test dataset, which outperforms most

state-of-the-art methods. In addition, we can further im-

prove the test mIoU to 83.6% when pre-training our model

with the coarse data. Exploiting ASPP [5] as the prediction

head, our method outperforms all state of the art methods

with 84.3% mIoU, including [36, 28] that also utilize ASPP.

PASCAL VOC 2012 [15] is another gold-standard

benchmark for object segmentation, which contains 20 fore-

ground object classes and one background class. Follow-

ing conventional [4, 74, 69, 70, 36], we exploit the aug-

mented set [20] by pre-training our model on the train +

val parts on the augmented set, then fine-tune the model

on the original PASCAL VOC 2012 benchmark. As a re-

sult, our model advances the new state-of-the-art result to

86.9% mIoU, which largely outperforms the state-of-the-

art ( absolute 2.5% mIoU improvement ). We also report

the per-class comparisons with state-of-the-art mtehods in
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Search Scheme L = 8 L = 10 L = 12 L = 14

ProxlessNAS [2] 64.3 68.1 73.7 77.5

PC-DARTs [64] 70.8 72.4 76.2 80.6

P-DARTs [9] 68.5 70.4 76.9 79.4

SPOS [19] 65.2 68.5 73.2 77.4

DCNAS (Ours) 72.8 75.4 78.9 81.2

Table 5. Comparisons with State of the Art Search Methods.

The table presents the comparison results (by T-mIoU on valida-

tion set of Cityscapes) of our proxyless search paradigm with con-

temporary approaches [2, 64, 9, 19] under various configurations.

Table 3, one can observe that our model achieves superior

performance on many categories.

PASCAL-Context [43] and ADE20K [78] are substan-

tial benchmarks toward scene parsing tasks. Being consis-

tent with [70, 24, 79, 36], we employ not only the classi-

cal mIoU but also the pixel accuracy as the evaluation met-

rics for ADE20K. As to PASCAL-Context, we report the

mIoUs both with (60-cls) and without (59-cls) considering

the background. As shown in Table 4, we present the per-

formances of our model on the validation parts of Pascal

Context and ADE20K according to corresponding evalua-

tion metrics. Our DCNAS outperforms other state-of-the-

art methods on both Pascal Context and ADE20K datasets.

It is consistent with our expectation that our approach

retained leading performance on the above mentioned ex-

tensively used benchmarks with various evaluation met-

rics. Specifically: (1) the proxyless searching paradigm

can bridge the gap between searching and training environ-

ments, which is conducive to the discovery of promising

model structures; (2) our DCNAS includes an abundance

of possible model structures, accompanied with the proxy-

less searching method, so that one may easily obtain an out-

standing model; (3) the multi-scale semantic features aggre-

gation has been proved to be instrumental for visual recog-

nization [42, 4, 74, 7, 55], and our DCNAS inherently and

repeatedly applying top-down and bottom-up multi-scale

features fusion, hence results in leading performance.

4.4. Ablation Study

In this section, we evaluate the impact of the key de-

signs in DCNAS. We take the mIoU(%) on validation part

of Cityscapes both in searching (S-mIoU) and training (T-

mIoU) periods, the Pearson Correlation Coefficient (ρ), the

Kendall Rank Correlation Coefficient (τ ), and the searching

cost (GPU Days) as the evaluation metrics.

Since the proxyless searching is instrumental in DCNAS,

we compare our searching strategy with searching methods

[2, 64, 9, 19]. Table 5 reports the comparing results under

several configurations, as a result, our proxyless searching

method is more suitable for semantic image segmentation.

Besides, our searching approach obtains significant perfor-

mance improvement comparing with PC-DARTs [64].

Methods Proxyless Dense Space ρ τ S-mIoU T-mIoU

Auto-DeepLab ✗ ✗ 0.31 0.21 34.9 80.3

Auto-DeepLab ✓ ✗ 0.61 0.45 37.6 80.6

Auto-DeepLab ✗ ✓ 0.27 0.19 49.7 80.7

Auto-DeepLab ✓ ✓ 0.63 0.43 60.9 80.9

Auto-DeepLab † ✗ ✗ 0.42 0.33 40.8 56.9

Auto-DeepLab † ✓ ✗ 0.64 0.48 43.1 67.5

Auto-DeepLab † ✗ ✓ 0.48 0.41 46.2 70.2

Auto-DeepLab † ✓ ✓ 0.69 0.54 50.5 72.4

DCNAS (Ours) ✗ ✗ 0.37 0.25 45.2 60.1

DCNAS (Ours) ✓ ✗ 0.69 0.56 51.7 73.3

DCNAS (Ours) ✗ ✓ 0.39 0.32 61.5 78.9

DCNAS (Ours) ✓ ✓ 0.73 0.55 69.9 81.2

Table 6. Ablation of the Search Strategy and Search Space. The

table presents the effects of the proxyless search paradigm and

the densely connected search space in both DCNAS and Auto-

DeepLab frameworks, mIoUs are evaluated on validation set. †

replace the ASPP with a simpler head used in DCNAS. For DC-

NAS,
✘
✘
✘
✘❳

❳
❳
❳

Proxyless denotes that setting the sampling ratio r = 1

in the mixture layer and uses a much lower resolution image for

searching, while
✭
✭
✭
✭
✭❤

❤
❤

❤
❤

Dense Space indicates constraining connections

to the previous layers only. Regrading Auto-DeepLab, Proxyless

transfer the mixture-layer and exploit higher resolution image for

searching, Dense Space transfer the fusion module and optimize

whole candidate connections rather than the adjacent cells only.

Besides, to deeply study the impact of the proxyless

search paradigm and the densely connected search space,

we transfer the searching space and searching method to

the Auto-DeepLab [36] framework. As Table 6 presents

the ablation results, one may observe that, (1) the densely

connected search space remains indispensable for semantic

image segmentation; (2) proxyless searching scheme is ca-

pable of bridging the gap between searching and training

situations, which can further improve the performance.

5. Discussion

We proposed a novel NAS framework, dubbed DCNAS,

to directly and proxylessly search the optimal multi-scale

network architectures for dense image prediction tasks. We

introduce a densely connected search space (DCSS), which

contains most of the widespread human-designed network

structures. With DCSS, we attempt to fully automati-

cally search the optimal multi-scale representations of high-

resolution imagery and to fuse those multi-scale features.

Meanwhile, to enable the efficient searching process, we

propose a novel fusion module to deal with the high GPU

memory consumption and expensive computation overhead

issues. Consequently, we implement a novel proxyless NAS

framework for dense image prediction tasks. Experiment

results demonstrate that the architectures obtained from our

DCNAS can surpass not only the human-invented architec-

tures but also the automatically designed architectures from

previous NAS methods the focusing on semantic segmenta-

tion task. For future work, one promising direction is inves-

tigating the lightweight neural architecture under the DCSS

for the resource-constrained devices.
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