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Abstract

The objective of co-saliency detection is to segment the

co-occurring salient objects in a group of images. To ad-

dress this task, we introduce a new deep network architec-

ture via semantic-aware contrast Gromov-Wasserstein dis-

tance (DeepACG). We first adopt the Gromov-Wasserstein

(GW) distance to build dense 4D correlation volumes for all

pairs of image pixels within the image group. These dense

correlation volumes enable the network to accurately dis-

cover the structured pair-wise pixel similarities among the

common salient objects. Second, we develop a semantic-

aware co-attention module (SCAM) to enhance the fore-

ground co-saliency through predicted categorical informa-

tion. Specifically, SCAM recognizes the semantic class of

the foreground co-objects, and this information is then mod-

ulated to the deep representations to localize the related

pixels. Third, we design a contrast edge-enhanced module

(EEM) to capture richer contexts and preserve fine-grained

spatial information. We validate the effectiveness of our

model using three largest and most challenging benchmark

datasets (Cosal2015, CoCA, and CoSOD3k). Extensive ex-

periments have demonstrated the substantial practical mer-

it of each module. Compared with the existing works, Deep-

ACG shows significant improvements and achieves state-of-

the-art performance.

1. Introduction

Salient object detection mimics the human vision system

to identify the most visually distinctive regions in a single

image. Extending this task, co-saliency detection (CoSD)
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Figure 1. Results of different module variants. (a) Input images;

(b) Ground truth; (c) DeepACG w/o SCAM&EEM; (d) DeepACG

w/o EEM; (e) The proposed DeepACG.

is a recently emerging research topic to discover the com-

mon salient foreground objects among an image group. Due

to its useful potential, it has been increasingly applied in-

to various vision applications, including image/video seg-

mentation [12, 44, 56, 14], object co-localization [41], and

weakly supervised semantic segmentation [40].

CoSD has traditionally been formulated as a two-step

procedure. First, visual representations are described us-

ing hand-engineered features, including: 1) low-level fea-

tures, such as SIFT [2], color feature [29], and texture fea-

ture [21]; 2) mid-level attributes [27]; and 3) multi-cue fu-

sion [1]. Second, these features are then fed into a sub-

sequent module to identify co-saliency. Nonetheless, the

hand-engineered features are shallow in nature, and are not

able to adapt to large variations of object appearances [58]

and complex background textures [43]. Recent studies first

improve the CoSD by developing deep-learning-based ap-

proaches [57, 46] to extract robust and richer visual rep-

resentations and explore the semantic correlations between

images. These methods have been shown as a promis-

ing alternative to conventional approaches. Later, the end-

to-end deep learning frameworks [17, 43] have been pro-

posed to integrate the process of feature learning and salien-

cy map prediction. Deep graph neural network has also

been adopted to model the non-local and long-range de-

13703



pendencies for CoSD [58]. Although these studies have

made a remarkable progress and shown state-of-the-art per-

formance, challenges still exist for further research. The

first key question is how to design effective architectures

to capture more accurate pixel-pair correspondences while

incorporating structured information. Second, the seman-

tic categories of the co-occurring salient objects are usually

unknown, but the intra-class differences of shape and ap-

pearances are huge. Third, most existing CoSD works fo-

cus mainly on the region accuracy, but lose the fine-grained

information on boundaries.

Towards addressing the aforementioned challenges, we

present a novel deep network architecture via semantic-

aware contrast Gromov-Wasserstein distance (DeepACG)

for CoSD. Figure 1 illustrates the effectiveness of Deep-

ACG. Gromov-Wasserstein (GW) distance is a notation of

distance among metric measure spaces [32, 31, 39]. GW

distance is mostly related to the Earth Mover’s Distance

(EMD) [35] that is widely applied in various classic vision

tasks [35, 61, 51]. EMD is constructed between distribu-

tions on the same geometric domain, which measures the

structural similarity. Differently, GW distance is built be-

tween different geometric domains [37]. It is able to mea-

sure distances between pairs of nodes within each domain,

as well as measuring how these distances compare to those

in the counterpart domain [3]. GW distance can extrac-

t soft matches in the presence of diverse geometric struc-

tures [37]. It has been shown great success in finding cor-

respondences between a source domain and target domain

with shared (semantic) structures in both 2D and 3D set-

tings [37]. We adopt GW distance to capture pair-wise cor-

respondence for each pixel feature between the target image

and source images in the group (Figure 1(c)). Then, we u-

tilize the semantic categorical information of the co-salient

objects to enhance the localization of pixels (Figure 1(d)).

In the end, a contrast edge-aware design is used to preserve

the boundary information and further improve the segmen-

tation accuracy (Figure 1(e)).

Our major contributions are summarized as follows:

(1) We propose to adopt GW distance to extract dense

4D correlation volumes for all pairs of image pixels and

find their correspondences between target and source image

domains. With the GW distance, the network is able to min-

imize distortion of long-and short-range distances, and find

the probabilistic matches. The GW distance matching layer

can be embedded into the network for end-to-end training.

(2) We present a Semantic-aware Co-Attention Module

(SCAM) to enhance the co-occurring salient regions. S-

CAM first predicts the semantic categories of the co-salient

objects. Then, this information is modulated to the feature

representations to refine the localized semantic regions.

(3) We introduce a contrast Edge-Enhanced Module

(EEM) to generate fine-grained segmentation for the bound-

aries of the co-salient objects. To our best knowledge, this

is the first edge-aware design in CoSD task.

(4) Extensive experiments have been conducted to vali-

date the effectiveness of our DeepACG on three largest and

most challenging datasets, including Cosal2015 [54], Co-

CA [59], and CoSOD3k [9]. Our DeepACG significantly

outperforms the baseline models, and achieves state-of-the-

art performance.

2. Related Work

2.1. Image Cosaliency Detection

Early CoSD methods extract image low-level features

like Gabor and SIFT features, and then detect image co-

saliency through low-level feature consistency between the

testing images [2]. The use of mid-level features, such as s-

ingle image saliency detection result and over-segmentation

result can be referred to the literature [21, 27, 1, 16]. With

the extracted features, the inter-image saliency is detect-

ed by bottom-up or top-down method [52]. The top-down

methods generally score image pixels or super-pixels with

hand-crafted co-saliency cues [20, 54, 38]. Top-down meth-

ods discover the co-saliency from the image feature through

proper learning mechanism design. Typical examples in-

clude the self-paced multiple-instance learning model [55]

and unified metric learning model [13].

More recently, there is a surge of deep learning-based

image CoSD models that learns feature extraction and pre-

dictor holistically [10]. By treating the testing images as

graphical model nodes, single-image saliency detection and

cross-image co-occurrence region discovery are formulated

into unary and pairwise terms of a fully-connected condi-

tional random field model in [15]. Zhang et al. [59] pro-

pose a gradient-induced model that utilizes the image gra-

dient information to induce more attention to the discrimi-

native co-salient features. In [57], a hierarchical framework

is proposed for CoSD, in which the initial CoSD result gen-

erated by neural network model is refined by label smooth-

ing. In [58], a deep graph neural network model is proposed

to characterize the intra- and inter-image region correspon-

dence for CoSD.

2.2. Image Matching

Image matching, i.e. to establish object or region cor-

respondences between images, is a long-standing research

area in computer vision [30]. The image matching tech-

nique has extensive applications including SLAM [5], im-

age stitching [25] and structure from motion [6]. Graph

matching is one of the major image matching methodolo-

gies. Graph matching represents image pixels or key points

of one image as graph nodes and the matching task is

to estimate the node edge connection between two graph-

s. One general formulation of the edge estimation task
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Figure 2. Pipeline of the proposed DeepACG. First, the input images I are passed through an encoder sub-network, producing the cor-

responding multi-scale feature presentations. The top-layer features X are fed into a GW matching layer, which finds the dense corre-

spondence between any pair of local regions in I, and then transfers the matched feature information from the source to the target image

domains. Afterwards, the output enhanced features Y are fed into the SCAM, where we leverage the co-category label information as guid-

ance to learn a semantic co-salient object embedding γ and a group of co-attention maps M that highlight the semantic-aware co-salient

regions. γ and M are then fed into a decoder sub-network, which is similar to the feature pyramid network (FPN) [24] that fuses the

multi-scale features along the right-to-left path and top-down connections. Finally, the left-layer fused features are passed into the EEM,

followed by a 1× 1 convolutional layer and a Sigmoid layer to produce the boundary-aware co-saliency maps S̃.

is the quadratic assignment problem [19, 28], which is

NP-hard for an exact solution. A common practice is to

solve the task with proper relaxations, such as convex re-

laxation [4], convex-to-concave relaxation [50] or continu-

ous relaxation [42]. In our work, the proposed GW match-

ing layer is motivated by [37]. In that work, Solomon et

al. [37] propose a probabilistic matching algorithm through

optimizing an entropy-regularized GW objective for shape

correspondence.

3. Proposed Approach

Given a group of N relevant images I = {In}Nn=1 as in-

put, our objective is to learn the DeepACG model that can

highlight the common objects with the same category there-

in. Figure 2 shows the architecture of the DeepACG that

is mainly composed of four components: an encoder that

leverages the VGG16 network [36] as backbone to extract

features; a GW matching layer that aligns the features of the

co-salient regions; an SCAM that enhances the foreground

co-saliency through predicted categorical information; and

a decoder that includes an EEM to produce the boundary-

aware co-saliency maps. Our key designs are on the later

three components, which will be detailed in the following

sections.

Figure 3. Schematic of GW matching. For a feature vector in the

target image, we take the inner product with all pairs in itself and

generate a 4D W ×H ×W ×H correlation volume, where each

pixel produces a 2D response map. Here we reshape the correla-

tion volume to a WH ×WH correlation map C
t. We apply simi-

lar strategy to the source images and produce an NWH×NWH

(N = 2 here) correlation map C
s. Finally, we construct the GW

distance using the two correlation maps for structural matching.

3.1. GW Matching Layer

Each image in I is fed into the encoder sub-network,

producing its corresponding feature representation X =
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[x⊤
1 ; . . . ; x

⊤
WH ] ∈ RWH×C , where W,H denote the width

and height of the feature map, C is the channel number,

and xi ∈ R
C denotes the i-th feature vector. We se-

quentially select one image as the target image, and the

other N − 1 images in I as the source images. We

then use their features to conduct GW matching between

the target image and the source ones. Specifically, as

shown in Figure 3, given the target image features X
t =

[xt
1, . . . , x

t
WH ]⊤ ∈ RWH×C and the source image repre-

sentations X
s = [xs1, . . . , x

s
(N−1)WH

]⊤ ∈ R(N−1)WH×C ,

we first compute their corresponding correlation maps as

C
t = X

t
X
t⊤, C

s = X
s
X
s⊤, where the (i, j)-th element of

C
t and the (k, l)-th element of C

s are formulated as

C
t(i, j) = x

t
i

⊤
x
t
j ,C

s(k, l) = x
s
k
⊤

x
s
l , (1)

which are the inner product of feature pairs at locations i, j
on the target domain and at locations k, l on the source

domain, measuring the dependency between any location

pairs.

If there exist matching pairs between the target and the

source domains, i.e. i 7→ k and j 7→ l, the distance between

the feature pair at locations i and j on the target domain

should be similar to that at locations k and l on the source

domain. Based on this assumption, we leverage the regu-

larized 2-GW distance [37] for optimal structural matching,

which is defined as

GW 2
2 (C

s,C
t)

= min
P∈P
{
∑

ijkl

(Ct(i, j)− C
s(k, l))2P(i, k)P(j, l)− αH(P)},

(2)

where H(P) = −
∑

ik P(i, k) ln(P(i, k)) is the entropy

of the optimal matching flows P ∈ R
WH×(N−1)WH
+ , set

P = {P : P1(N−1)WH = 1WH ,P
⊤

1WH = 1(N−1)WH},
1D is a D-dimensional all-ones vector. Intuitively, the

matching flow P(i, k) represents the probability that the i-
th location in the target domain corresponds to the k-th lo-

cation in the source domain. After achieving the optimal

matching flows P, we transfer the aligned feature informa-

tion from the source domains to the target domain via

X̃
t
= PX

s. (3)

Finally, we concatenate and reshape all the aligned fea-

tures X̃
t

i, i = 1, . . . , N , producing the strong features Y =

cat(X̃
t

1, . . . , X̃
t

N ) ∈ RN×C×W×H that are effective to en-

hance the co-saliency regions in I.

As listed by Algorithm 1, we directly use the GW solver

proposed by [37] to solve problem (2), which alternates

between a closed-form exponential formula and Sinkhorn

projection (refer to Algorithm 2) onto the cone of dou-

bly stochastic matrices. The GW mathcing layer is dif-

ferentiable since its operations in Algorithms 1 and 2 only

Algorithm 1 GW solver

Input: C
t,C

s, α, η = 0.5
Output: P

1: P← Ones(WH, (N − 1)WH)
2: for i = 1, 2, 3, . . . do

3: K← exp
(

C
t
PC

s⊤/α
)

4: P← Sinkhorn-projection(K∧η⊙P
∧(1−η)), where ∧η

denotes the element-wise power of η of a matrix, ⊙
denotes element-wise multiplication.

5: end for

Algorithm 2 Sinkhorn-projection

Input: K

Output: diag(v)Kdiag(w)

1: v,w← 1

2: for j = 1, 2, 3, . . . do

3: v ← 1 ⊘ (Kw), where ⊘ denotes element-wise divi-

sion

4: w← 1⊘ (K⊤
v)

5: end for

Figure 4. Illustrations of the behavior of the learned matching

flows P. The starting points of arrows represent the anchor lo-

cations in the target image, and the ending points represent their

corresponding matched locations in the source images.

contain matrix-vector multiplication and element-wise di-

vision, which can be readily plugged into the vanilla deep

neural networks for end-to-end training. The GW matching

layer can be readily implemented with automatic differenti-

ation in PyTorch [33].

Figure 4 visualizes two examples of the behavior of the

learned matching flows P, where it has found the meaning-

ful relational cues across the source images.

3.2. Semanticaware Coattention Module

The GW matching is effective to enhance the co-saliency

regions via structurally learning the dense correspondence

between all feature pairs in I. However, in some chal-

lenging scenarios, where there exist distractors with simi-

lar appearance to the co-salient targets (see the bananas vs.

the peanut butter jar in Figure 5), the misleading match-

ing flows between the distractors and the co-salient targets

may cause the aligned features to highlight the distractors

(see the left-second column in Figure 5, where the distrac-

tor peanut butter jar is highlighted). To address this issue,

we further propose the SCAM to guide the features to tell
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Figure 5. Effect of SCAM to distractor (i.e. peanut butter jar).

Left to right: inputs, the responses of features Y, the correlation

responses of the embedding γ and the features Y, the co-attention

responses M.

the co-salient targets from distractors with predicted seman-

tic co-category information.

As shown by Figure 2, given the input Y ∈
RN×C×W×H of the SCAM, we first feed it into a 3×3 con-

volutional layer, producing the features Z = Conv3×3(Y),
following a GAP layer to produce the semantic co-salient

object embedding γ ∈ RC

γ =
1

NWH

N∑

n=1

W∑

w=1

H∑

h=1

Z(n, :, w, h). (4)

The embedding γ is then passed through an FC layer with

weights W ∈ RL×C , where L denotes the number of cate-

gories, following a ReLU and a Sigmoid layers, yielding the

predicted co-category labels l̃ = Sigmoid(ReLU(Wγ)) ∈
RL. Then, we take the shared FC weights W as a lin-

ear classifier to classify the features Z, yielding the clas-

sification results M̃ ∈ RNWH×L. Finally, we use the

predicted co-category labels l̃ to fuse the classification re-

sults, producing the semantic-guided co-attention response

M = reshape(M̃l̃) ∈ RN×W×H .

Since the classifier pays more attention to the most dis-

criminative features for semantic classification, the learned

co-attention response M may omit some useful information

that is essential to highlight the co-salient regions. To solve

this problem, we design a residual module that complemen-

tarily learns an another spatial attention map from the input

features X using a 1× 1 convolutional layer and a Sigmoid

layer

M = M⊕ Sigmoid(Conv1×1(Y)), (5)

where ⊕ denotes element-wise sum operator.

Figure 5 shows the effect of γ and M, where we can

observe that γ can weaken the influence of the distractor

while enhancing the co-saliency features, and M can further

filter out the distractors. Finally, the learned γ in (4) and M

in (5) are fed into the decoder sub-network, which are used

to modulate the multi-scale features, such that γ serves as

the channel-wise scale parameters adjusting the weights of

different channels in the feature maps, and M is used as the

element-wise bias parameters injecting spatial co-attention

prior to the modulated features [48].

3.3. Decoder Subnetwork

The decoder sub-network has the similar architecture as

the FPN [24], which combines low-resolution, semantical-

ly strong features with high-resolution, semantically weak

features via a right-to-left pathway and top-down connec-

tions to the corresponding encoder layers. Besides, the em-

bedding γ in (4) and the co-attention maps M in (5) are

fed into the decoder sub-network to modulate each layer of

features. Finally, the left-layer features are passed through

the edge-enhanced module for co-salient object boundary

enhancement, following a 1 × 1 convolutional layer and

a Sigmoid layer, producing the predicted co-saliency maps

S̃ = {S̃
n
}Nn=1.

Edge-Enhanced Module (EEM): Due to the down-

sampling of the input images, their high-level semantic fea-

tures pay more attention to the inside parts of the objects

rather than their boundaries. Especially after the features

are further spatially modulated using the co-attention map-

s M, the object boundary information loses considerably,

leading to inaccurately predicted results, especially on the

object boundaries. To address this issue, we further design

the EEM for boundary enhancement, which can effective-

ly fuse the rich contexts from high-level features and the

fine-grained spatial details from the low-level ones. We first

resize the high-level feature maps to have the same size as

the low-level ones, and then we calculate the difference be-

tween the two feature maps, producing the boundary fea-

tures with rich contexts and spatial detail information. To

further enhance the boundary features, we leverage a resid-

ual module that learns the residual to weight the boundary

features. Finally, the enhanced boundary features and the

input features from the right path are fused to generate the

output of the EEM.

Loss: The whole network parameters are optimized end-

to-end using the loss function

L = Lcls + LIoU + LWBCE, (6)

where Lcls is the cross-entropy loss for semantic classifica-

tion defined as

Lcls = −
1

L

L∑

l=1

l(l) log(̃l(l))− (1− l(l))log(1− l̃(l)), (7)

where l ∈ RL denotes the ground-truth co-category labels.

LIoU is the IoU loss that is a relaxation of the Jaccard dis-

tance widely used to evaluate segmentation accuracy [23]

LIoU = 1−

∑
i,j min(S(i, j), S̃(i, j))

∑
i,j max(S(i, j), S̃(i, j))

, (8)

where S ∈ {0, 1}W×H is the ground-truth mask of the

co-saliency map. LWBCE is the Weighted Binary Cross-

Entropy (WBCE) loss for pixel-wise classification that is

13707



defined as

LWBCE = −
1

WH

H∑

j=1

W∑

i=1

wS(i, j) log(S̃(i, j))

− (1− w)(1− S(i, j)) log(1− S̃(i, j)),

(9)

where weight w is the ratio of the negative pixel number

over all the pixels in one image, which balances the impor-

tance of the positive and negative pixels in the loss.

4. Experiments

4.1. Implementation Details

We use the similar settings as the recently proposed CoS-

D framework [43] to configure the system: the input image

group I contains N = 5 images with the same category as a

batch, and a mini-batch of 6×I images from all categories

are sent into the network simultaneously. All the images are

resized to 224 × 224 × 3 pixels as input, and the predicted

co-saliency maps are resized to the expected sizes as output-

s. In the training process, we use the Adam algorithm [18]

to optimize the whole network end-to-end and set the first

and second decay rates of momentum to 0.9 and 0.999, re-

spectively. We set the weight attenuation to 1e-6. We set

the learning rate of all parameters of the network to 1e-4,

and set the learning rate to be an half every 25, 000 itera-

tions until convergence. Our DeepACG is implemented in

PyTorch [33] and an NVIDIA RTX2080Ti GPU is adopted

for acceleration, which requires a total of 140, 000 training

steps.

We use the COCO-SEG dataset released by [43] for

training, which contains 200, 000 images and we remove

the images containing small objects therein. The dataset

includes L = 78 categories and each image has a manually-

labeled binary mask with co-category labels l. The training

process takes about 30 hours.

4.2. Datasets and Evaluation Metrics

The deepACG model is evaluated on three largest

and most challenging benchmark datasets, including Cos-

al2015 [54], CoCA [59], and CoSOD3k [9]. Among them,

the Cosal2015 is a widely-used benchmark dataset for CoS-

D. It owns 2, 015 images of 50 categories. For some cat-

egories, such as pineapple, there are many non-co-salient

objects with similar appearances, which is very challenging

to accurately detect the co-salient targets. The CoCA con-

tains 80 classes with 1, 297 images in total. This dataset

is characterized by more complex background interferences

than those in Cosal2015. The CoSOD3k is the largest e-

valuation benchmark at present. It has a total of 160 cat-

egories with 3, 316 images. Different from Cosal2015, a

large amount of images in CoSOD3k have two or three in-

stances to be highlighted, which span a wide range of cat-

egories, shapes, object sizes, and backgrounds. We use

four evaluation metrics for comparison, including the mean

absolute error MAE [43], F-measure Fβ [52], E-measure

Em [8], and S-measure Sm [7].

4.3. Comparisons with Stateofthearts

We leverage the evaluation codes released by Fan et

al. [9] to compare with several state-of-the-art method-

s, including BASNet [34], PoolNet [26], EGNet [60],

CBCD [11], ESMG [22], CODR [49], DIM [53], C-

SMG [57], SSNM [56], GICD [59], GW [46], SCRN [47],

and GCAGC [58]. Among them, BASNet [34], Pool-

Net [26], and EGNet [60] are state-of-the-art saliency ob-

ject detection methods that have achieved favorable perfor-

mance on CoSD task.

Qualitative Results. Figure 6 shows some visualiza-

tion results of our DeepACG compared with three rep-

resentative state-of-the-art methods, including GICD [59],

GCAGC [58], and CSMG [57]. The proposed DeepACG

performs favorably well under the challenging scenarios

that the co-salient targets suffer from complex background

clutters, small sizes, large-scale appearance or shape varia-

tions, severe occlusions, etc. In the Alarm Clock and Beaker

groups, the co-salient objects suffer from large-scale shape

and appearance variations (see the alarm clock in the right-

most column in Alarm Clock and the two beakers in the

third and fourth columns in Beaker), making it difficult to

accurately extract the co-salient targets without semantic

guidance. Our DeepACG achieves much better visual re-

sults than the others due to the use of predicted semantic in-

formation as guidance in the SCAM. In the Globe group, the

co-salient globes undergo significant appearance variation-

s (the second column) and background clutters (the right-

two columns), making only using appearance information

unable to well group the co-salient targets (see the results

of GCAGC and CSMG). The DeepACG makes use of the

correlation maps to conduct GW matching, which naturally

encodes the shape topology information in the correlation

maps to help better group the co-salient targets with differ-

ent appearance textures yet similar shapes. As shown by the

left-two columns, the co-saliency maps generated by GICD

contain a large amount of background noises. The reason is

that it uses consensus embedding as guidance for learning,

which is polluted by background distractors. Similar result-

s produced by GICD on Alarm Clock and Beaker groups.

Our DeepACG can effectively filter out the distractors by

using the co-attention mask in the SCAM. In the Frog and

the Pinapple groups, some parts of the co-salient target-

s have tenuous and complex boundaries (see the frog feet

and the pinapple crown). Due to the use of EEM to enhance

boundary information, our DeepACG can produce satisfy-

ing co-saliency maps with fine boundary details while the

co-saliency maps generated by the compared methods are

more coarse.
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Figure 6. Results of our DeepACG compared with other state-of-the-art methods

Figure 7. Comparisons with state-of-the-art methods in terms of PR and F-measure curves on three benchmark datasets

Qualitative Results. Figure 7 shows the PR and the F-

measure curves of all compared methods on three bench-

mark datasets. It can be observed that DeepACG achieves

the best performance over the other state-of-the-arts, where

all the curves of DeepACG are on the top of those generated

by the other comparison methods. Meanwhile, Table 1 list-

s the statistic comparison results of all compared methods,

where GICD and GCAGC are the most recently proposed

state-of-the-art methods. DeepACG achieves the best per-

formance in terms of all evaluation metrics on three bench-

mark datasets. Specifically, on the COCA dataset, Deep-

ACG reaches the best scores of 0.552, 0.771, and 0.688 in

terms of F-measure, E-measure, and S-measure, respective-

ly, with a gain of 2.9%, 1.7%, 1.7% compared to the second

best-performing GCAGC with scores of 0.523, 0.754, and

0.669, respectively. Besides, on the other two benchmarks,

DeepACG also achieves the best scores in terms of all met-

rics, further demonstrating its effectiveness on large-scale
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Table 1. Statistic comparisons of our DeepACG with the other state-of-the-arts. Red and blue bold fonts indicate the best and second-best

performance, respectively. *single image saliency object detection methods.-the results have not been provided by the benchmarks.

Methods
Cosal2015 CoSOD3k CoCA

MAE↓ Sm↑ Em↑ Fβ↑ MAE↓ Sm↑ Em↑ Fβ↑ MAE↓ Sm↑ Em↑ Fβ↑

BASNet∗ (CVPR2019) [34] 0.097 0.820 0.846 0.784 0.122 0.753 0.791 0.696 0.195 0.589 0.623 0.397

EGNet∗ (ICCV2019) [60] 0.099 0.818 0.842 0.782 0.119 0.762 0.796 0.703 0.179 0.594 0.637 0.389

PoolNet∗ (CVPR2020) [26] 0.094 0.820 0.851 0.785 0.120 0.763 0.797 0.704 0.179 0.599 0.631 0.401

SCRN∗ (CVPR2020) [47] 0.097 0.814 0.854 0.789 0.118 0.773 0.806 0.717 0.166 0.610 0.658 0.416

CBCD (TIP2013) [11] 0.233 0.544 0.656 0.503 0.228 0.528 0.589 0.363 0.172 0.526 0.659 0.313

ESMG (SPL2014) [22] 0.247 0.552 0.653 0.470 0.239 0.532 0.615 0.364 - - - -

CODR (SPL2015) [49] 0.204 0.689 0.723 0.608 0.229 0.630 0.645 0.458 - - - -

DIM (TNNLS2016) [53] 0.312 0.593 0.697 0.559 0.327 0.559 0.610 0.420 - - - -

GW (IJCAI2017) [46] 0.147 0.743 0.793 0.697 - - - - 0.171 0.603 0.666 0.398

CSMG (CVPR2019) [57] 0.130 0.774 0.818 0.777 0.157 0.711 0.723 0.645 0.124 0.632 0.734 0.503

SSNM (AAAI2020) [56] 0.102 0.788 0.843 0.794 0.120 0.726 0.756 0.675 0.116 0.628 0.741 0.482

GCAGC (CVPR2020) [58] 0.085 0.817 0.866 0.813 0.100 0.785 0.816 0.740 0.111 0.669 0.754 0.523

GICD (ECCV2020) [59] 0.071 0.842 0.884 0.834 0.089 0.778 0.831 0.743 0.125 0.658 0.701 0.504

DeepACG 0.064 0.854 0.892 0.842 0.089 0.792 0.838 0.756 0.102 0.688 0.771 0.552

Table 2. Ablations of our model on the CoCA. NLA is short for

non-local attention. EMD is short for earth mover’s distance. Red

bold fonts indicate the best performance.

Models MAE↓ Sm↑ Em↑ Fβ↑

w/o GW 0.107 0.676 0.756 0.529

w/o SCAM 0.104 0.678 0.764 0.529

w/o GW&SCAM 0.130 0.632 0.715 0.443

w/o EEM 0.105 0.679 0.767 0.532

with NLA 0.105 0.676 0.756 0.532

with EMD 0.104 0.678 0.760 0.535

DeepACG 0.102 0.688 0.771 0.552

challenging datasets.

4.4. Ablation Study

To verify the effect of the key module designs in our

DeepACG, we further conduct extensive ablative studies

on CoCA dataset. Table 2 lists the corresponding experi-

mental results in terms of all metrics. We can observe that

without GW matching, the Fβ score drops from 0.552 to

0.529 by 2.3% and the Em score reduces by 1.5% from

0.771 to 0.756, validating that the GW matching plays a

vital role in our DeepACG. Moreover, without SCAM, the

performance of DeepACG drops significantly in terms of all

metrics, especially for the Fβ that decreases from 0.552 to

0.529 by 2.3%. If we further remove both the modules G-

W and SCAM, the performance of our model significantly

drops by 10.9% and 5.6% in terms of F-measure and S-

measure, respectively. Then, we test our DeepACG without

EEM, which suffers from a drop score of 2% in terms of

F-measure, which proves the effectiveness of the EEM to

handle complex object boundaries that is essential to pro-

ducing high-quality co-saliency maps.

Finally, we replace the GW matching layer with the N-

LA module [45], which enhances features by considering

all pair-wise location interactions. The DeepACG with N-

LA has an Fβ score of 0.532, which is lower than Deep-

ACG by 2%. This is due to the NLA module generates

non-zero weights for all pair-wise positions, which may in-

troduce noisy interactions that degrade the model. Howev-

er, the deepACG learns the optimal matching flows based

on the GW distance, which only assign non-zero weights to

the most stable locations (see Figure 4), thereby achieving

better performance. So does the DeepACG with EMD [51],

which performs better than that with NLA, but worse than

DeepACG by a drop of 1.7% in terms of Fβ score. This

is because the EMD matching directly learns structure sim-

ilarity between two semantic feature points, which is less

robust to the object topology changes than the GW match-

ing.

5. Conclusion

This paper have presented a new deep network architec-
ture DeepACG for co-saliency detection, which includes
three novel module designs. First, a novel GW distance
matching layer has been designed that is built on dense 4D
correlation volumes for all pairs of image pixels within
the image group, which is able to accurately discover the
structured pair-wise pixel similarities among the co-salient
objects. Second, a semantic-aware co-attention module
has been developed to enhance the foreground co-saliency
through predicted categorical information. Third, a contrast
edge-enhanced module has been designed to capture richer
context and preserve fine-grained spatial information. Ex-
tensive evaluations on three benchmarks have demonstrated
superior performance of our method over state-of-the-arts.
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Sra. Entropic metric alignment for correspondence problem-

s. TOG. 2, 3, 4

13711



[38] Hangke Song, Zhi Liu, Yufeng Xie, Lishan Wu, and Mengke

Huang. Rgbd co-saliency detection via bagging-based clus-

tering. SPL, 2016. 2

[39] Karl Theodor Sturm. The space of spaces: curvature bounds

and gradient flows on the space of metric measure spaces.

Mathematics, 2012. 2

[40] Guolei Sun, Wenguan Wang, Jifeng Dai, and Luc Van Gool.

Mining cross-image semantics for weakly supervised seman-

tic segmentation. arXiv preprint arXiv:2007.01947, 2020. 1

[41] Kevin Tang, Armand Joulin, Li Jia Li, and Li Fei-Fei. Co-

localization in real-world images. In CVPR, 2014. 1

[42] Yu Tian, Junchi Yan, Hequan Zhang, Ya Zhang, Xiaokang

Yang, and Hongyuan Zha. On the convergence of graph

matching: Graduated assignment revisited. In ECCV, 2012.

3

[43] Chong Wang, Zheng-Jun Zha, Dong Liu, and Hongtao Xie.

Robust deep co-saliency detection with group semantic. In

AAAI, 2019. 1, 6

[44] Wenguan Wang, Jianbing Shen, Hanqiu Sun, and Ling Shao.

Video co-saliency guided co-segmentation. TCSVT, 2017. 1

[45] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 8

[46] Lina Wei, Shanshan Zhao, Omar El Farouk Bourahla, Xi Li,

and Fei Wu. Group-wise deep co-saliency detection. IJCAI,

2017. 1, 6, 8

[47] Zhe Wu, Li Su, and Qingming Huang. Stacked cross re-

finement network for edge-aware salient object detection. In

ICCV, 2020. 6, 8

[48] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang,

and Aggelos K Katsaggelos. Efficient video object segmen-

tation via network modulation. In CVPR, 2018. 5

[49] Linwei Ye, Zhi Liu, Junhao Li, Wan Lei Zhao, and Liquan

Shen. Co-saliency detection via co-salient object discovery

and recovery. SPL, 2015. 6, 8

[50] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A

path following algorithm for the graph matching problem.

TPAMI, 2008. 3

[51] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.

Deepemd: Few-shot image classification with differentiable

earth mover’s distance and structured classifiers. In CVPR,

2020. 2, 8

[52] Dingwen Zhang, Huazhu Fu, Junwei Han, Ali Borji, and

Xuelong Li. A review of co-saliency detection algorithms:

Fundamentals, applications, and challenges. TIST, 2018. 2,

6

[53] Dingwen Zhang, Junwei Han, Jungong Han, and Ling Shao.

Cosaliency detection based on intrasaliency prior transfer

and deep intersaliency mining. TNNLS, 2016. 6, 8

[54] Dingwen Zhang, Junwei Han, Chao Li, and Jingdong Wang.

Co-saliency detection via looking deep and wide. In CVPR,

2015. 2, 6

[55] Dingwen Zhang, Deyu Meng, and Junwei Han. Co-saliency

detection via a self-paced multiple-instance learning frame-

work. TPAMI, 2016. 2

[56] Kaihua Zhang, Jin Chen, Bo Liu, and Qingshan Liu. Deep

object co-segmentation via spatial-semantic network modu-

lation. In AAAI, 2020. 1, 6, 8

[57] Kaihua Zhang, Tengpeng Li, Bo Liu, and Qingshan Liu. Co-

saliency detection via mask-guided fully convolutional net-

works with multi-scale label smoothing. In CVPR, 2019. 1,

2, 6, 8

[58] Kaihua Zhang, Tengpeng Li, Shiwen Shen, Bo Liu, and

Qingshan Liu. Adaptive graph convolutional network with

attention graph clustering for co-saliency detection. In

CVPR, 2020. 1, 2, 6, 8

[59] Zhao Zhang, Wenda Jin, Jun Xu, and Ming-Ming Cheng.

Gradient-induced co-saliency detection. In ECCV, 2020. 2,

6, 8

[60] Jiaxing Zhao, Jiang Jiang Liu, Deng Ping Fan, Yang Cao,

Jufeng Yang, and Ming Ming Cheng. Egnet: Edge guidance

network for salient object detection. In ICCV, 2019. 6, 8

[61] Qi Zhao, Zhi Yang, and Hai Tao. Differential earth mover’s

distance with its applications to visual tracking. TPAMI,

2008. 2

13712


