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Abstract

Approaches based on deep neural networks have

achieved striking performance when testing data and train-

ing data share similar distribution, but can significantly

fail otherwise. Therefore, eliminating the impact of distri-

bution shifts between training and testing data is crucial

for building performance-promising deep models. Conven-

tional methods assume either the known heterogeneity of

training data (e.g. domain labels) or the approximately

equal capacities of different domains. In this paper, we con-

sider a more challenging case where neither of the above

assumptions holds. We propose to address this problem by

removing the dependencies between features via learning

weights for training samples, which helps deep models get

rid of spurious correlations and, in turn, concentrate more

on the true connection between discriminative features and

labels. Extensive experiments clearly demonstrate the ef-

fectiveness of our method on multiple distribution general-

ization benchmarks compared with state-of-the-art counter-

parts. Through extensive experiments on distribution gen-

eralization benchmarks including PACS, VLCS, MNIST-M,

and NICO, we show the effectiveness of our method com-

pared with state-of-the-art counterparts.

1. Introduction

Many machine learning approaches tend to exploit sub-

tle statistical correlations existing in the training distribu-

tion for predictions which have been shown to be effec-

tive under the I.I.D. hypothesis, i.e., testing and training

data is independently sampled from the identical distribu-

tion. In real cases, however, such a hypothesis can hardly

be satisfied due to the complex generation mechanism of

real data such as data selection biases, confounding factors,

or other peculiarities [5, 54, 12, 47, 21]. The testing distri-

bution may incur uncontrolled and unknown shifts from the
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Figure 1: Visualization of saliency maps produced by the

vanilla ResNet-18 model and StableNet when most of the

training images containing dogs in the water. The lightness

of the saliency map indicates how much attention that the

models pay on particular area of the input image (i.e. lighter

area plays a more crucial role for the prediction than the

darker area). Due to the spurious correlation, the ResNet-

18 model tends to focus on both dogs and the water while

our model focuses mostly on dogs.

training distribution, which makes most machine learning

models fail to make trustworthy predictions [2, 51]. To ad-

dress this issue, out-of-distribution (OOD) generalization is

proposed for improving the generalization ability of models

under distribution shifts [55, 27].

Essentially, when there incurs a distribution shift, the ac-

curacy drop of current models is mainly caused by the spuri-

ous correlation between the irrelevant features (i.e. the fea-

tures that are irrelevant to a given category, such as features

of context, figure style, etc.) and category labels, and this

kind of spurious correlations are intrinsically caused by the

subtle correlations between irrelevant features and relevant

features (i.e. the features that are relevant to a given cate-

gory) [30, 38, 35, 2]. Taking the recognition task of ‘dog’

category as an example, as depicted in Figure 1, if dogs are
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in the water in most training images, the visual features of

dogs and water would be strongly correlated, thus leading

to the spurious correlation between visual features of water

with the label ‘dog’. As a result, when encountering images

of dogs without water, or other objects (such as cats) with

water, the model is prone to produce false predictions.

Recently, such distribution (domain) shift problems have

been intensively studied in the domain generalization (DG)

literature [41, 17, 25, 62, 31, 33]. The basic idea of DG

is to divide a category into multiple domains so that ir-

relevant features vary across different domains while rel-

evant features remain invariant [25, 34, 40]. Such training

data makes it possible for a well-designed model to learn

the invariant representations across domains and inhibit the

negative effect from irrelevant features, leading to better

generalization ability under distribution shifts. Some pio-

neering methods require clear and significant heterogeneity,

namely that the domains are manually divided and labeled

[61, 16, 46, 9, 42], which cannot be always satisfied in real

applications. More recently, some methods are proposed to

implicitly learn latent domains from data [44, 39, 60], but

they implicitly assume that the latent domains are balanced,

meaning that the training data is formed by balanced sam-

pling from latent domains. In real cases, however, the as-

sumption of domain balance can be easily violated, leading

to the degeneration of these methods. This is also empiri-

cally validated in our experiments as shown in Section 4.

Here we consider a more realistic and challenging set-

ting where the domains of training data are unknown and

we do not implicitly assume that the latent domains are bal-

anced. With this goal, a strand of research on stable learn-

ing are proposed [50, 28]. Given that the statistical depen-

dence between relevant and irrelevant features is a major

cause of model crash under distribution shifts, they propose

to realize out-of-distribution generalization by decorrelat-

ing the relevant and irrelevant features. Since there is no

extra supervision for separating relevant features from ir-

relevant features, a conservative solution is to decorrelate

all features. Recently, this notion has been demonstrated to

be effective in improving the generalization ability of linear

models. [29] proposes a sample weighting approach with

the goal of decorrelating input variables, and [51] theoreti-

cally proves why such sample weighting can make a linear

model produce stable predictions under distribution shifts.

But they are all developed under the constraints of linear

frameworks. When extending these ideas into deep models

to tackle more complicated data types like images, we con-

front two main challenges. First, the complex non-linear

dependencies among features are much more difficult to be

measured and eliminated than the linear ones. Second, the

global sample weighting strategy in these methods requires

excessive storage and computational cost in deep models,

which is infeasible in practice.

To address these two challenges, we propose a method

called StableNet. In terms of the first challenge, we pro-

pose a novel nonlinear feature decorrelation approach based

on Random Fourier Features [45] with linear computational

complexity. As for the second challenge, we propose an ef-

ficient optimization mechanism to perceive and remove cor-

relations globally by iteratively saving and reloading fea-

tures and weights of the model. These two modules are

jointly optimized in our method. Moreover, as shown in

Figure 1, StableNet can effectively partial out the irrelevant

features (i.e. water) and leverage truly relevant features for

prediction, leading to more stable performances in the wild

non-stationary environments.

2. Related Works

Domain Generalization. Domain generalization (DG)

considers the generalization capacities to unseen domains

of deep models trained with multiple source domains. A

common approach is to extract domain-invariant features

over multiple source domains [17, 25, 32, 34, 40, 10, 22, 43,

48, 40] or to aggregate domain-specific modules [36, 37].

Several works propose to enlarge the available data space

with augmentation of source domains [6, 49, 59, 44, 64, 63].

There are several approaches that exploit regularization

with meta-learning [33, 10] and Invariant Risk Minimiza-

tion (IRM) framework [2] for DG. Despite the promising

results of DG methods in the well-designed experimental

settings, some strong assumptions such as the manually di-

vided and labeled domains and the balanced sampling pro-

cess from each domain actually hinder the DG methods

from real applications.

Feature Decorrelation. As the correlations between fea-

tures affect or even impair the model prediction, several

works have focused on remove such correlation in the train-

ing process. Some pioneering works based on Lasso frame-

work [56, 7] propose to decorrelate features by adding a

regularizer that imposes the highly correlated features not

to be selected simultaneously. Recently, several works the-

oretically bridge the connections between correlation and

model stability under misspecification [51, 29], and propose

to address such a problem via a sample reweighting scheme.

However, the above methods are all developed under linear

frameworks which can not handle complex data types such

as images and videos in computer vision applications. More

related works and discussions are in Appendix A.

3. Sample Weighting for Distribution General-

ization

We address the distribution shifts problem by weight-

ing samples globally to directly decorrelate all the features

for every input sample, thus statistical correlations between

relevant and irrelevant features are eliminated. Concretely,
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Figure 2: The overall architecture of the proposed StableNet. LSWD refers to learning sample weighting for decorrelation as

described in Section 3.1. Final loss is used to optimized the classification network. Detailed learning procedure of StableNet

is in Section 3.1 and Appendix B.1.

StableNet gets rid of both linear and non-linear dependen-

cies between features by utilizing the characteristics of Ran-

dom Fourier Features (RFF) and sample weighting. To

adapt the global decorrelation method to modern deep mod-

els, we further propose the saving and reloading global cor-

relation mechanism, to decrease the usage of storage and

computational cost when the training data are of a large

scale. The formulations and theoretical explanations are

shown in Section 3.1. In Section 3.2, we introduce the sav-

ing and reloading global correlation method, which makes

calculating correlation globally possible with deep mod-

els. Notations X ⊂ R
mX denotes the space of raw pix-

els, Y ⊂ R
mY denotes the outcome space and Z ⊂ R

mZ

denotes the representation space. mX , mY , mZ are the di-

mensions of space X , Y , Z , respectively. f : X → Z
denotes the representation function and g : Z → Y denotes

the prediction function. We have n samples X ⊂ R
n×mX

with labels Y ⊂ R
n×mY and we use Xi and yi to denote

the i-th sample. The representations learned by neural net-

works are donated as Z ⊂ R
n×mZ and the i-th variable in

the representation space is donated as Z:,i. We use w ∈ R
n

to denote sample weights. u and v are Random Fourier

Features mapping functions.

3.1. Sample weighting with RFF

Independence testing statistics To eliminate the depen-

dence between any pair of features Z:,i and Z:,j in the rep-

resentation space, we introduce hypothesis testing statistics

that measures the independence between random variables.

Suppose there are two one-dimensional random variables

A,B (Here we use A and B to represent random variables

instead of Z:,i and Z:,j for simplicity of notation.) and we

sample (A1, A2, . . . An) and (B1, B2, . . . Bn) from the dis-

tribution of A and B, respectively. The main problem is

how relevant these two variables are based on the samples.

Consider a measurable, positive definite kernel kA on the

domain of random variable A and the corresponding RKHS

is denoted by HA. If kB and HB are similarly defined, the

cross-covariance operator ΣAB [13] from HB to HA is as

follows:

〈hA,ΣABhB〉
=EAB [hA(A)hB(B)]− EA[hA(A)]EB [hB(B)]

(1)

for all hA ∈ HA and hB ∈ HB . Then, the independence

can be determined by the following proposition [14].

Proposition 3.1 If the product kAkB is characteristic,

E[kA(A,A)] < ∞ and E[kB(B,B)] < ∞, we have

ΣAB = 0 ⇐⇒ A ⊥ B (2)

Hilbert-Schmidt Independence Criterion (HSIC) [18],

which requires that the squared Hilbert-Schmidt norm of

ΣAB should be zero, can be applied as a criterion to super-

vise feature decorrelation [3]. However, the calculation of

HSIC requires noticeable computational cost which grows

as the batch size of training data increases, so it is inap-

plicable to training deep models on large datasets. More

approaches of independence test are discussed in Appendix

B.2. Actually, Frobenius norm corresponds to the Hilbert-

Schmidt norm in Euclidean space [53], so that the indepen-

dent testing statistic can be based on Frobenius norm.

Let the partial cross-covariance matrix be:

Σ̂AB =
1

n− 1

n
∑

i=1

[(

u(Ai)−
1

n

n
∑

j=1

u(Aj)

)T

·

(

v(Bi)−
1

n

n
∑

j=1

v(Bj)

)]

,

(3)

where

u(A) = (u1(A), u2(A), . . . unA
(A)) , uj(A) ∈ HRFF, ∀j,

v(B) = (v1(B), v2(B), . . . vnB
(B)) , vj(B) ∈ HRFF, ∀j.

(4)
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Here we sample nA and nB functions from HRFF respec-

tively and HRFF denotes the function space of Random

Fourier Features with the following form

HRFF =
{

h : x →
√
2 cos(ωx+ φ) |

ω ∼ N(0, 1), φ ∼ Uniform(0, 2π)
}

,
(5)

i.e. ω is sampled from the standard Normal distribution

and φ is sampled from the Uniform distribution. Then,

the independence testing statistic IAB is defined as the

Frobenius norm of the partial cross-covariance matrix, i.e.,

IAB =
∥

∥

∥
Σ̂AB

∥

∥

∥

2

F
.

Notice that IAB is always non-negative. As IAB de-

creases to zero, the two variables A and B tends to be inde-

pendent. Thus IAB can effectively measure the indepen-

dence between random variables. The accuracy of inde-

pendence test grows as nA and nB increase. Empirically,

setting both nA and nB to 5 is solid enough to judge the

independence of random variables [53].

Learning sample weights for decorrelation Inspired by

[29], we propose to eliminate the dependence between fea-

tures in the representation space via sample weighting and

measure general independence via RFF.

We use w ∈ R
n
+ to denote the sample weights and

∑n

i=1 wi = n. After weighting, the partial cross-covariance

matrix for random variables A and B in Equation 3 can be

calculated as follows:

Σ̂AB;w =
1

n− 1

n
∑

i=1

[(

wiu(Ai)−
1

n

n
∑

j=1

wju(Aj)

)T

·

(

wiv(Bi)−
1

n

n
∑

j=1

wjv(Bj)

)]

.

(6)

Here u and v are the RFF mapping functions explained

in Equation 4. StableNet targets independence between

any pair of features. Specifically, for feature Z:,i and Z:,j ,

the corresponding partial cross-covariance matrix should be
∥

∥

∥
Σ̂Z:,iZ:,j ;w

∥

∥

∥

2

F
, shown in Equation 6. We propose to opti-

mize w by

w
∗ = argmin

w∈∆n

∑

1≤i<j≤mZ

∥

∥

∥
Σ̂Z:,iZ:,j ;w

∥

∥

∥

2

F
, (7)

where ∆n =
{

w ∈ R
n
+ |

∑n

i=1 wi = n
}

. Hence, weight-

ing training samples with the optimal w∗ can mitigate the

dependence between features to the greatest extent

Generally, our algorithm iteratively optimize sample

weights w, representation function f , and prediction func-

tion g as follows:

f (t+1), g(t+1) =argmin
f,g

n
∑

i=1

w
(t)
i L(g(f(Xi)), yi),

w
(t+1) =argmin

w∈∆n

∑

1≤i<j≤mZ

∥

∥

∥
Σ̂

Z
(t+1)
:,i Z

(t+1)
:,j ;w

∥

∥

∥

2

F
.

(8)

where Z
(t+1) = f (t+1)(X), L(·, ·) represents the cross en-

tropy loss function and t represents the time stamp. Initially,

w
(0) = (1, 1, . . . , 1)T .

3.2. Learning sample weights globally

Equation 8 requires a specific weight learned for each

sample. However, in practice, especially for deep learn-

ing tasks, it requires enormous storage and computational

cost to learn sample weights globally. Moreover, with SGD

for optimization, only part of the samples are observed in

each batch, hence global weights for all samples cannot

be learned. In this part, we propose a saving and reload-

ing method, which merges and saves features and sample

weights encountered in the training phase and reloads them

as global knowledge of all the training data to optimize sam-

ple weights.

For each batch, the features used to optimize the sample

weights are generated as follows:

ZO = Concat (ZG1,ZG2, · · ·,ZGk,ZL) ,

wO = Concat (wG1,wG2, · · ·,wGk,wL) .
(9)

Here we slightly abuse the notation ZO and wO to mean

the features and weights used to optimize the new sample

weights, respectively, ZG1, · · ·,ZGk, wG1, · · ·,wGk are

global features and weights, which are updated at the end

of each batch and represent global information of the whole

training dataset. ZL and wL are features and weights in

the current batch, representing the local information. The

operation for merging all features in Equation 9 is the con-

catenating operation along samples, i.e. if the batch size is

B, ZO is a matrix of size ((k + 1)B) × mZ and wO is a

((k + 1)B)-dimensional vector. In this way, we reduce the

storage and the computational cost from O(N) to O(kB).
While training for each batch, we keep wGi fixed and only

wL is learnable under Equation 8. At the end of each itera-

tion of training, we fuse the global information (ZGi,wGi)
and the local information (ZL,wL) as follows:

Z
′
Gi = αiZGi + (1− αi)ZL,

w
′
Gi = αiwGi + (1− αi)wL.

(10)

Here for each group of global information (ZGi,wGi), we

use k different smoothing parameters αi for considering

both long-term memory (αi is large) and short-term mem-

ory (αi is small) in global information and k indicates that
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the presaved features are k times of that of original features.

Finally, we substitute all (ZGi,wGi) with (Z′
Gi,w

′
Gi) for

the next batch.

In the training phase, we iteratively optimize sample

weights and model parameters with Equation 8. In the infer-

ence phase, the predictive model directly conduct prediction

without any calculation of sample weights. The detailed

procedure of our method is shown in Appendix B.1.

4. Experiments

4.1. Experimental settings and datasets

We validate StableNet in a variety of settings. To cover

more general and challenging cases of distribution shifts,

we adopt four experimental settings as follows:

Unbalanced. In the common DG setting, the capacities of

source domains are assumed to be comparable. However,

considering most datasets are a mixture of latent unknown

domains, one can hardly assume that the amount of sam-

ples from these domains are consistent since these datasets

are not generated by equally sampling from latent domains.

We simulate this scenario with this setting. Domains are

split into source domains and target domains. The capaci-

ties of various domains can vary significantly. Note that this

setting, where the capacities of available domains are unbal-

anced while the proportion of each class remains consistent

across domains, is completely different from the settings of

the class imbalance problem. This setting is to evaluate the

generalization ability of models when the heterogeneity is

unclear and insignificant.

Flexible. We consider a more challenging but common in

real-world setting where domains for different categories

can be various. For instance, birds can be on trees but hardly

in the water while fishes are the opposite. If we consider

the backgrounds in images as an indicator of domain divi-

sion, images for class ‘bird’ can be divided into domain ‘on

tree’ but cannot into domain ‘in water’ while images for

class ‘fish’ are otherwise, resulting in the diversity of do-

mains among different classes. Thus this setting simulates

a widely existing scenario in the real-world. In such cases,

the level of the distribution shifts varies in different classes,

requiring a strong ability of generalization given the statis-

tical correlations between relevant features and category-

irrelevant features vary.

Adversarial. We consider the most challenging scenario,

where the model is under adversarial attack and the spuri-

ous correlations between domains and labels are strong and

misleading. For instance, we assume a scenario where the

category ‘dog’ is usually associated with the domain ‘grass’

and the category ‘cat’ with the domain ‘sofa’ in the training

data, while the category ‘dog’ is usually associated with the

domain ‘sofa’ and the category ‘cat’ with the domain ‘grass’

in the testing data. If the ratio of domain ‘grass’ in the im-

ages from class ‘dog’ is significantly higher than others, the

predictive model may tend to recognize grass as a dog.

Classic. This setting is the same as the common setting

in DG. The capacities of various domains are comparable.

Therefore this setting is to evaluate the generalization abil-

ity of models when the heterogeneity of training data is sig-

nificant and clear, which is less challenging compared with

the previous three settings.

Datasets. We consider four datasets to carry through these

four settings, namely PACS [31], VLCS [58], MNIST-M

[15] and NICO [20]. Introduction to these datasets and de-

tails of implementation are in Appendix C.1.

4.2. Unbalanced setting

Given this setting requires all the classes in the dataset

share the same candidate set of domains, which is incom-

patible with NICO, we adopt PACS and VLCS for this set-

ting. Three domains are considered as source domains and

the other one as target. To make the amount of data from

heterogeneous sources clearly differentiated, we set one do-

main as the dominant domain. For each target domain, we

randomly select one domain from the source domains as the

dominant source domain and adjust the ratio of data from

the dominant domain and the other two domains. Details of

ratios and partition are shown in Appendix C.2.

Here we show the results when the capacity ratio of three

source domains is 5:1:1 in Table 1 and our method outper-

forms other methods in all the target domains on both PACS

and VLCS. Moreover, StableNet achieves best performance

consistently under all the other ratios as shown in Appendix

C.2. These results indicate that the subtle statistical corre-

lations between relevant and irrelevant features are strong

enough to significantly harm the generalization across do-

mains. When the correlations are eliminated, the model is

able to learn the true connections between relevant features

and labels and inference according to them only, thus gen-

eralize better. For adversarially trained methods like DG-

MMLD [39], the supervision from minor domains is insuf-

ficient and the ability of the model to discriminate irrelevant

features is impaired. For augmentation of source domains

based methods like M-ADA [44], the impact of the domi-

nant domain is not diminished while the minor ones are still

insignificant after the augmentation. Methods like RSC [23]

adopt regularization to prevent the model from overfitting

on source domains and the samples from minor domains

can be considered as outliers and ignored. Therefore, the

subtle correlations between relevant features and irrelevant

features especially in minor domains are not eliminated.

4.3. Unbalanced + flexible setting

We adopt PACS, VLCS and NICO to evaluate the un-

balanced + flexible setting. For PACS and VLCS, we ran-

domly select one domain as the dominant domain for each
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Table 1: Results of the unbalanced setting on PACS and VLCS. We reimplement the methods that require no domain labels

on PACS and VLCS with ResNet18 [19] which is pretrained on ImageNet [8] as the backbone network for all the methods.

The reported results are average over three repetitions of each run. The title of each column indicates the name of the domain

used as target. The best results of all methods are highlighted with the bold font and the second with underscore.

PACS VLCS

Art. Cartoon Sketch Photo Avg. Caltech Labelme Pascal Sun Avg.

JiGen [6] 72.76 69.21 64.90 91.24 74.53 85.20 59.73 62.64 50.59 64.54

M-ADA [44] 61.53 68.76 58.49 83.21 68.00 70.29 55.44 49.96 37.78 53.37

DG-MMLD [39] 64.25 70.31 64.16 91.64 72.59 79.76 57.93 65.25 44.61 61.89

RSC [23] 75.72 68.50 66.10 93.93 76.06 83.82 59.92 64.49 49.08 64.33

ResNet-18 68.41 67.32 65.75 90.22 72.93 80.02 60.21 58.33 47.59 61.54

StableNet (ours) 80.16 74.15 70.10 94.24 79.66 88.25 62.59 65.77 55.34 67.99

Table 2: Results of the unbalanced + flexible setting on PACS, VLCS and NICO. For details about the number of runs,

meaning of column titles and fonts, see Table 1.

JiGen M-ADA DG-MMLD RSC ResNet-18 StableNet (ours)

PACS 40.31 30.32 42.65 39.49 39.02 45.14

VLCS 76.75 69.58 78.96 74.81 73.77 79.15

NICO 54.42 40.78 47.18 57.59 51.71 59.76

class, and another domain as the target. For NICO, there

are 10 domains for each class, 8 out of which are selected

as the source and 2 as the target. We adjust the ratio of

the dominant domain to minor domains to adjust the level

of distribution shifts. Here we report the results when the

dominant ratio is 5:1:1. Details and more results of other

divisions are shown in Appendix C.3.

The results are shown in Table 2. M-ADA and DG-

MMLD fail to outperform ResNet-18 on NICO under this

setting. M-ADA, which generates images for training with

an autoencoder, may fail when the training data are large-

scale real-world images and the distribution shifts are not

caused by random disturbance. DG-MMLD generates do-

main labels with clustering and may fail when the data lack

explicit heterogeneity or the number of latent domains is too

large for clustering. In contrast, StableNet shows a strong

ability of generalization when the input data are with com-

plicated structure especially real-world images from unlim-

ited resources. StableNet can capture various forms of de-

pendencies and balance the distribution of input data. On

PACS and VLCS, StableNet also outperforms state-of-the-

art methods, showing the effectiveness of removing sta-

tistical dependencies between features especially when the

source domains for different categories are not consistent.

More experimental results are in Appendix C.3.

4.4. Unbalanced + flexible + adversarial setting

To exploit the effect of various levels of adversarial at-

tack, we adopt MNIST-M to evaluate our method owing

to the numerous (200) optional domains in MNIST-M. Do-

mains in PACS and VLCS are insufficient to generate multi-

ple adversarial levels. Hence, we generate a new MNIST-M

dataset with three rules: 1) for a given category, there is no

overlap between the domains in training and testing; 2) a

background image is randomly chosen for each category in

the training set, and contexts cropped in the same image are

assigned as dominant contexts (domains) for another cate-

gory in test data so that there are strong spurious correla-

tions between labels and domains; 3) the ratio of dominant

context to other contexts varies from 9.5:1 to 1:1 to gener-

ate settings with different levels of distribution shifts. De-

tailed data generating method, adopted backbone network

and sample images are in Appendix C.4.

The results are shown in Table 3. As the dominant

ratio increases, the spurious correlation between domains

and categories becomes stronger so that the performance

of predictive models drops. When the imbalance in vi-

sual features is significant, our method achieves notice-

able improvement compared with baseline methods. For

regularization-based methods such as RSC, they tend to

weaken the supervision from minor domains which may be

considered as outliers and therefore the spurious correla-

tions between irrelevant features and labels are strengthened

under adversarial attacks, resulting in even poorer results

compared with the vanilla ResNet model. As shown in Ta-

ble 3, RSC fails to outperform vanilla CNNs.

4.5. Classic setting

The classic setting is the same as the common setting in

DG. Domains are split into source domains and target do-

mains. The capacities of various domains are comparable.

Given this setting requires all the classes in the dataset to
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Table 3: Results of the unbalanced + flexible + adversarial setting on MNIST-M. Random donates each digit is blended over

a randomly chosen background. DR0.5 donates that in each class, the proportion of the dominant domain in all the training

data is 50% and other notations with ‘DR’ are similar.

Settings Random DR0.5 DR0.6 DR0.7 DR0.8 DR0.9 DR0.95 Avg.

JiGen 97.18 94.97 92.99 90.64 78.97 68.79 69.34 84.70

M-ADA 95.92 94.45 92.29 88.87 85.89 70.32 67.08 84.97

DG-MMLD 96.89 94.61 92.59 89.72 88.44 69.13 71.39 86.11

RSC 96.94 93.43 89.44 85.78 81.68 69.15 65.12 83.08

CNNs 96.93 93.76 91.93 88.13 81.48 68.43 66.11 83.82

StableNet (ours) 97.35 95.33 93.49 91.24 87.04 75.69 75.46 87.94

Table 4: Results of the classic setting on PACS and VLCS. All the results on PACS are obtained from the original papers

of these methods. We reimplement the methods that require no domain labels on VLCS since these methods are tested with

AlexNet [26] in original papers while we adopt ResNet18 [19] as the backbone network for all the methods. The methods

that require domain labels are labelled with asterisk.

PACS VLCS

Art. Cartoon Sketch Photo Avg. Caltech Labelme Pascal Sun Avg.

JiGen 79.42 75.25 71.35 96.03 80.51 96.17 62.06 70.93 71.40 75.14

M-ADA 64.29 72.91 67.21 88.23 73.16 74.33 48.38 45.31 33.82 50.46

DG-MMLD 81.28 77.16 72.29 96.09 81.83 97.01 62.20 73.01 72.49 76.18

D-SAM* [11] 77.33 72.43 77.83 95.30 80.72 - - - - -

Epi-FCR* [33] 82.10 77.00 73.00 93.90 81.50 - - - - -

FAR* [24] 79.30 77.70 74.70 95.30 81.70 - - - - -

MetaReg* [4] 83.70 77.20 70.30 95.50 81.70 - - - - -

RSC 83.43 80.31 80.85 95.99 85.15 96.21 62.51 73.81 72.10 76.16

ResNet-18 76.61 73.60 76.08 93.31 79.90 91.86 61.81 67.48 68.77 72.48

StableNet (ours) 81.74 79.91 80.50 96.53 84.69 96.67 65.36 73.59 74.97 77.65

share the same candidate set of domains, which is incompat-

ible with NICO, we adopt PACS and VLCS for this setting.

We follow the experimental protocol of [6, 39] for both the

datasets and utilize three domains as source domains and

the remaining one as the target.

The results are shown in Table 4. On VLCS, StableNet

outperforms other state-of-the-art methods in two out of

four target cases and achieves the highest average accu-

racy. On PACS, StableNet achieves the highest accuracy on

the target domain ‘photo’ and comparable average accuracy

(0.46% less) compared with the state-of-the-art method,

RSC. The accuracy gap between StableNet and baseline in-

dicates that even when the numbers of samples from differ-

ent source domains are approximately the same, the subtle

statistical correlations between relevant features and irrel-

evant features still hold strong and the model generalizes

across domains better when the correlations are eliminated.

4.6. Ablation study

StableNet relies on Random Fourier Features sampled

from Gaussian to balance the training data. The more fea-

tures are sampled, the more independent the final represen-

tations are. In practice, however, generating more features

requires more computational cost. In this ablation study,

we exploit the effect of sampling size for Random Fourier

Features. Moreover, inspired by [57], one can further re-

duce the feature dimension by randomly selecting features

used to calculate dependence with different ratios. Figure

3 shows the results of StableNet with different dimensions

of Random Fourier Features. If we remove all the Random

Fourier Features, our regularizer in Equation 7 degenerates

and can only model the linear correlation between features.

Figure 2(a) demonstrates the effectiveness of eliminating

non-linear dependence between representations. From Fig-

ure 2(b), the non-linear dependence is common in vision

features and keep deep models from learning true depen-

dence between input images and category labels.

We further exploit the effect of the size of presaved fea-

tures and weights in Equation 9 and the results are shown

in Figure 2(c). When the size of presaved features is re-

duced to 0, sample weights are learned inside of each batch,

yielding noticeable variance. Generally, as the presaving

size increases, the accuracy raises slightly and the variance

drops significantly, indicating that presaved features help to

learn sample weights globally and therefore the generaliza-

tion ability of the model is more stable.
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(a) (b) (c)

Figure 3: Results of ablation study on NICO. All the experiments adopt NICO since NICO consists of a wide range of

domains and objects and all domains come from real-world images which make the indication of results more reliable. The

RFF dimension in (a) indicates the dimension of Fourier features, where 10x indicates that the dimension of Fourier features

are 10 times the size of original features and 0.3x indicates the sampling ratio is 30%. StableNet-N and StableNet-L indicate

the original StableNet and the degenerated version of StableNet that only eliminates the linear correlation between features.

Presaved size in (c) indicates the dimension of the presaved features and 0x indicates no features are saved.
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Figure 4: Saliency maps of the ResNet-18 model and StableNet. The brighter the pixel is, the more contributions it makes to

prediction.

4.7. Saliency map

An intuitive type of explanation for image classification

models is to identify pixels that have a strong influence on

the final decision [52]. To demonstrate whether the model

focuses on the object or the context (domain) while con-

ducting prediction, we visualize the gradient of the class

score function with respect to the input pixels. In the case

of stable learning, we adopt the same backbone architecture

for all methods, so that we adopt smoothed gradient as sug-

gested by [1], which generates saliency maps depending on

the learned parameters of the models instead of the architec-

ture. Visualization results are shown in Figure 4. Saliency

maps of the baseline model show that various contexts draw

noticeable focus of the classifier while fail to make decisive

contributions to our model. More visualization results are

in Appendix C.6, which further demonstrate that StableNet

focuses more on visual parts which are both distinguishing

and invariant when the postures or positions of objects vary.

5. Conclusion

In the paper, to improve the generalization of deep mod-

els under distribution shifts, we proposed a novel method

called StableNet which can eliminate the statistical corre-

lation between relevant and irrelevant features via sample

weighting. Extensive experiments across a wide range of

settings demonstrated the effectiveness of our method.
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