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Abstract

A practical long-term tracker typically contains three

key properties, i.e. an efficient model design, an effective

global re-detection strategy and a robust distractor aware-

ness mechanism. However, most state-of-the-art long-term

trackers (e.g., Pseudo and re-detecting based ones) do not

take all three key properties into account and therefore may

either be time-consuming or drift to distractors. To ad-

dress the issues, we propose a two-task tracking frame-

work (named DMTrack), which utilizes two core compo-

nents (i.e., one-shot detection and re-identification (re-id)

association) to achieve distractor-aware fast tracking via

Dynamic convolutions (d-convs) and Multiple object track-

ing (MOT) philosophy. To achieve precise and fast global

detection, we construct a lightweight one-shot detector us-

ing a novel dynamic convolutions generation method, which

provides a unified and more flexible way for fusing target

information into the search field. To distinguish the tar-

get from distractors, we resort to the philosophy of MOT

to reason distractors explicitly by maintaining all potential

similarities’ tracklets. Benefited from the strength of high

recall detection and explicit object association, our tracker

achieves state-of-the-art performance on the LaSOT, Ox-

UvA, TLP, VOT2018LT and VOT2019LT benchmarks and

runs in real-time (3x faster than comparisons)1.

1. Introduction

Visual object tracking has drawn great attention to large-

scale long-term tracking because of its great potential in

real-world applications. The main difference between long-

*Corresponding author.
1The code will be available at https://github.com/hqucv/

dmtrack
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#473#1 #1738

: GT : JDE : GlobalTrack : LTMU : Ours

Figure 1. Visualization of long-term tracking results on person-5

from LaSOT [8]. “GT” means ground truth. “GlobalTrack [12]”

and “LTMU [4]” are two strong long-term trackers. “JDE [34]” is

a multi-object tracker. In the first line, we show long-term track-

ing results from the off-the-shelf MOT model[34]. The object ids

are in the upper left corner of the bounding boxes. In the second

line, we show top-4 classification results from a detection-based

tracker[12]. The solid lines show the top-1 predictions. In the

third line, we compare our DMTrack with state-of-the-art compar-

ison, and present that distractor awareness is vital to visual object

trackers. Better viewed in color with zoom-in.

term and short-term trackers is that the former has to deal

with the cases in which the target disappears and reappears

frequently. Generally, long-term tracking sequences [8, 26,

31] last for hundreds and thousands frames, which usu-
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ally contain challenges such as appearance change, long-

duration disappearance and intra-class distractors. There-

fore, long-term trackers should have the abilities of re-

detecting objects effectively and distinguish the target from

similar distractors (As shown in Figure 1).

Recently, a large number of long-term trackers have been

proposed [4, 37, 41, 42]. Lukeźič et al. [20] group long-

term trackers into two categorizations: Pseudo long-term

tracker (LT0) and re-detecting long-term tracker (LT1). LT0

applies some short-term trackers [6, 45, 43] to the long-term

tracking task straightforwardly by simply using the classifi-

cation score to distinguish the target from its background.

However, these trackers are prone to drift to distractors

due to appearance confusion. LT1 (e.g., SiamDW LT [42],

MBMD [41], SPLT [37], LTMU [4]) uses a re-detection

strategy to recover from tracking failure. However, these

trackers require a sophisticated design for interaction be-

tween local trackers and global detectors. Recently, Huang

et al. [12] propose a global instance search (GIS) based

tracker using a two-stage detector without motion con-

straint. Under the one-shot detection scheme, long-term

tracking is simplified because the switch strategy that used

for balancing the local and global modules is no longer

needed. However, the heavy computing burdens and un-

stable performance caused by global detection make GIS-

based methods improper for real-world applications.

To address the above issues, we propose a two-task track-

ing framework, which consists of a lightweight detection

model and an explicit object association method. For the

first task, we reach back to the correlation methods between

the template and the search field in tracking and unify these

methods into a dynamic convolutions (d-convs) generation

paradigm [38]. Given powerful dynamic convolutions, we

can embed target information into a one-stage anchor-free

detection model with multiple kernel designs and integra-

tion layers while requiring less computation. For the sec-

ond task, we resort to the philosophy of multiple object

tracking (MOT). Specifically, we introduce a novel re-id

embedding into the above detection model by jointly learn-

ing the two tasks. Benefiting from the discriminative re-id

features, our tracker achieves favorable performance with

a compact association strategy. The two tasks are imple-

mented in the MOT framework which reasons distractors

explicitly by maintaining all potential similarities tracklets.

Experiments show that our tracker achieves state-of-the-art

performance on the five long-term benchmarks and runs 3x

faster than comparisons.

Our main contributions can be summarized as follows,

• We propose a two-task long-term tracking framework,

which contains a lightweight detector and an explicit

object association. By implementing the two tasks in

the MOT framework, our tracker obtains a fast infer-

ence speed and can distinguish the target from the dis-

tractors.

• To build a high-efficiency detector, we present a novel

dynamic convolutions generation method. To avoiding

drifting to distractors, we learn a discriminative re-id

embedding to achieve effective tracklet association.

• Our approach achieves state-of-the-art results on five

long-term tracking benchmarks and runs in real-time,

which shows that the proposed method can be a more

practical baseline for GIS-based trackers.

2. Related Work

2.1. Deep Long­Term Visual Tracking

Deep learning-based models for long-term tracking have

shown their great capability [9, 31, 37, 41, 47]. Recent

top-ranked long-term trackers follow the local tracker and

global re-detector schemes. MBMD [41] combines re-

gression and verification modules to the tracking frame-

work, and use a sliding window strategy in image level

for re-detecting. SPLT [37] uses a skimming module to

speed up the re-detect processing by skipping the certain re-

gions. However, there is a tough problem in the local-global

paradigm: when to switch between the local tracker and the

global re-detector? However, some methods followed the

pure re-detection paradigm, Huang et al. [12] proposed to

track in global search scheme by introducing a two-stage

anchor-based detection framework in tracking task. Voigt-

laender et al. [32] further use a cascade detection head for

precise results. However, the computing burdens are heavy

in these methods. In this paper, we develop an efficient de-

tection model under one-stage anchor-free paradigm, which

gets a favorable balance between speed and accuracy.

2.2. Distractor Problem in Visual Tracking

The ability of dealing with similar objects is important

for long-term tracker. However, distractor problem is ill-

posed due to the dynamic interaction of target and distrac-

tors. Zhu et al. [47] propose an incremental learning method

for online distractor suppression. Voigtlaender et al. [32]

implement a hard example mining to guide model learning

and use a dynamic programming algorithm to consistently

suppress potential distractors. Nevertheless, these methods

are burdensome for accurate and efficient tracking. In this

work, we address distractor problem by explicitly tracking

all the potential objects in the MOT framework. Inspired

by the joint learning methods of MOT [34, 40, 46], we de-

sign a compact two-task tracking framework with one-shot

detection and re-id association that runs in real-time.

2.3. Correlation Methods for Visual Tracking

Correlation operations that used for fusing the tem-

plate information and the search field are seldom discussed.
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Bertinetto et al. [1] use a simple cross-correlation opera-

tion to generate a similarity scoring map. Li et al. [17]

proposed a depthwise cross-correlation to reduce the com-

putational cost. Huang et al. [12] use the Hadamard pro-

duction to encode correlation information. However, these

methods are restricted to fixed model structures. Contrast to

fixed convolutional layer designs, d-convs are dynamically

generated by using some conditional information. Dynamic

filter network [13] and CondConv [38] explore the power

of d-convs for increasing the capacity of the classification

model. CondInst [29] and SOLOv2 [33] use conditional

convolution to embed position information into the mask

branch for boosting the segmentation performance. Here,

we utilize a dynamic convolutions generation method for

feature correlation.

3. Method

In this section, we unveil the power of GIS-based track-

ers [11, 12, 32] by designing a lightweight detector and

a re-id embedding with capable association strategy. As

shown in Figure 3, our DMTrack consists of a group of

dynamic convolution controllers, an efficient one-shot de-

tection branch and a re-id embedding.

3.1. Motivation

What is the strength of global search scheme for long-

term tracking? How can we achieve a more stable global

tracker? We dive into GIS-based methods, and answer

these two questions by designing experiments to analysis

the capabilities of modern trackers. For the first question,

we show GIS-based methods have a high-quality proposal

generating ability. And for the second question, we demon-

strate the importance of the association ability by using

an off-the-shelf MOT model to evaluate on a single object

tracking benchmark. These two experiments are meant to

show important factors that we must take into account when

building a practical GIS-based tracker.

Proposal Generator. High-quality proposals are important

for a tracking system. Though local search-based trackers

achieve favorable performance in short-term scenes, most

of them degenerate in large-scale long-term benchmarks [8,

22, 26, 31]. Therefore, a global re-detector becomes a core

component for long-term tracking. Actually, we can treat a

global re-detector as a proposal generator. And a high-recall

generator with only a few candidates will be beneficial to

later tracking stages.

We experimentally evaluate the upper bounds of local

and global trackers. Following popular protocol in OTB-

2015 [35], we perform the One-Pass Evaluation (OPE) and

measure the best success score of top-K candidates of a

local generator and a global generator. Here, we evalu-

ate RT-MDNet [14] as the local generator (marked as “RT-

MDNet∗”) and GlobalTrack [12] as the global generator
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Figure 2. Visualization of best success scores on LaSOT [8] and

speeds from the local and global generator. The circle diameter

means the relative time cost in inference stage.

(marked as “GlobalTrack∗”). For RT-MDNet, the tracker

makes a gaussian sampling based on the position of the last

frame prediction, we simply choose the top-k candidates by

classification scores, then we determine the bounding box

that has the highest intersection over Union score (IoU) as

our output. For GlobalTrack, we just follow the identical

strategy. Specifically, we implement the same classifier in

these generators to control the variable. In the experiment,

we set the candidate number K with 2, 3, 5, 15, 50, 100 and

test on the LaSOT [8]. As shown in Figure 2, GlobalTrack∗

exceed RT-MDNet∗ by a large margin. Even with only two

candidates, the global-based generator achieves a success

score of 61.3%, which is comparable with the local-based

generator with the top-50 score, and outperforms state-of-

the-art long-term tracker LTMU [4]. However, we can see

that GIS-based method is time-consuming due to the heavy

model design for global search (as shown in Figure 2).

Therefore, one of the important factors that contribute to

tracker’s performance is a good balance between the preci-

sion and the efficiency.

Off-the-Shelf MOT for Long-Term Tracking. The above

experiments have shown the capability of GIS-based track-

ers. In spite of the high proposal recall, the discrimination

of these trackers is unsatisfactory. Intra-class objects rea-

soning is crucial for global search scheme. Here, we design

an enlightening experiment to evaluate the long-term track-

ing performance of an off-the-shelf MOT model. Specif-

ically, we choose sequences in long-term tracking bench-

marks [8] that contains categories of person (match with

MOT pre-trained model). During inference stage, we main-

tain the object id that has the max IoU between the detec-

tions and the annotation in the first frame. In the subse-

quent frames, we just choose the prediction with the same

id as our tracking result. In Figure 1, we present the track-

ing results of JDE [34]. As we can see, MOT method keeps

a robust and accurate tracking for the first hundred frames,
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Figure 3. The overall architecture of our model. The framework consists of three main components: a template branch for dynamic

convolutions generation, a search branch for efficient one-shot detection and a re-id embedding for object association.

which is surprising because the model is never trained on

single object tracking dataset. Therefore, besides high-

recall proposal generator, object association is also an im-

portant factor that carries a big weight in final tracking per-

formance.

Motivated by the above trials, we design a GIS-based

tracker that considers computation cost and distractor

awareness. In the next part, we make an overview on our

DMTrack and demonstrate its core components.

3.2. Overall Architecture

Given the template image I t ∈ R
H×W×3 and search im-

age I s ∈ R
H×W×3, our tracking algorithm search the target

in successive frames with only first frame annotation. In this

work, we develop a GIS-based tracker that uses an anchor-

free detection model as the base detection model. In order

to build a class-agnostic detector, we introduce the dynamic

convolutions controller to generate convolution parameters

conditioned on the target information. Further, we jointly

learn the detection task with a re-id embedding model for

the detection and the association stages. The total frame-

work is shown in Figure 3.

We design our detection model under anchor-free

paradigm [30]. Being benefited from compact model de-

sign and simplified parameter settings, the detection branch

obtains a satisfactory inference speed. As shown in Fig-

ure 3, we use DLA-34 [39] as our model backbone and

feature pyramid networks (FPN [18]) as our model neck.

We aggregate feature maps by FPN and use multiple-scale

features from three levels P3, P4, P5, the strides s of fea-

tures are 8, 16, 32, respectively. The backbone and neck are

shared in both template and search branch.

In template branch, we use an efficient feature align

method [10] to crop target features. And then a group of

controllers that use these features to generate convolution

parameters for d-convs. In search branch, following the

stacking designs of modern detection methods [19, 30], we

embed our d-convs in specific layers to filter the useful fea-

tures. In re-id embedding branch, we design to generate N-

dimensions re-id features for each point in stride-4 feature

map. N is set to be 128 in our model. With the discrimina-

tive re-id feature, we obtain smooth tracking trajectories.

3.3. One­shot Detection and Embedding Learning

We follow the common practice of GIS-based tracker

to train a class-agnostic detector with d-convs. Firstly,

by using a full convolutional network, each location

(xPi , y
P
j )(P = 3, 4, 5) on the feature map of different FPN

levels can be mapped back onto the original image as

(xori
i
′ , yori

j
′ ) = (

⌊

sP

2

⌋

+ xPi s
P ,

⌊

sP

2

⌋

+ yPj s
P ) (1)

where i and j indicate the x, y-coordinates on the fea-

ture map, ori indicates original input image. Then we de-

fine a center region box on original image as the sampling

box (corii − rsP , corij − rsP , corii + rsP , corij + rsP ), where

(corii , corij ) denotes the annotation center of the target, r is

a scale parameter being 1.5, which is the same as the de-

fault setting [30]. According to the former definition, we

define the location on FPN’s feature that can be mapped

onto the center region box on original input image as a pos-

itive sample σ(= 1), otherwise a negative sample. Note that
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(b) Dynamic Generated Conditional Convolutions
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Figure 4. Comparison of different kernel generation methods. (a)

Siamese-based method generates a large kernel by extracting fea-

ture from a coarse template image which includes many noises.

(b) With aligned feature cropping [10], convolutions were gener-

ated by a global average pooling layer, which are more flexible and

effective.

we train the regression head and center-ness head only on

positive samples. For re-id branch, we treat it as a clas-

sification task. As there are no multiple objects annota-

tions in single object tracking dataset, we introduce MOT

datasets [7, 25, 36, 44] to train our re-id branch alternatively.

Finally, our model predicts a 2-D vector σ̂ for classification,

a 4-D vector τ̂ = (l̂, t̂, r̂, b̂) for bounding box regression,

where (l̂, t̂, r̂, b̂) indicates the distances from the box center

to four sides, a center-ness score ϕ̂ for classification regu-

larization and a 128-D re-id embedding feature ψ̂.

Controller Heads. How to extract abundant target features

is an important problem for visual tracking. Nevertheless,

this problem is seldom discussed. In Siamese-based meth-

ods [1, 3, 17], the template branch uses a coarse cropping to

extract features, which is not appropriate for similar match-

ing due to the noises it involved. Furthermore, the size and

the type of the Siamese kernel are fixed for the final acti-

vation map which is difficult for model reconstruction. In

the dynamic generating method, firstly, we extract the tar-

get information from head layers using a feature cropping

technology[10]. Then with a 1 × 1 conv encoder to adjust

the feature channels Cg (as shown in Equation 2) to adapt

to the required parameter numbers as shown in Equation 3.

Finally, we use a global average pooling layer to generate

Cg − D vectors for filter parameters of classification and

regression heads.

Cg =

p
∑

u=1

PN (convu
cls) +

q
∑

v=1

PN (convv
reg) (2)

PN (convucls) = (Cu ×Ku
w ×Ku

h + 1)× Cu+1

PN (convvreg) = (Cv ×Kv
w ×Kv

h + 1)× Cv+1
(3)

where p, q denote layer numbers counted after model’s neck

(from 1 to 6). PN means parameter numbers of the d-

convs, e.g. , in u layer of classification branch, the amount

of parameters consist of weights and bias. Specifically, the

weight’s parameters can be a multiplication of input feature

map’s channel Cu, kernel width Ku
w, kernel height Ku

h and

kernel number Cu+1.

Detection Heads with Dynamic Convolutions. The detec-

tion head contains four components: classification, regres-

sion, center-ness and dynamic convolutions. In our model

structure, there are four convolutions after neck, an encoder

to reduce the channels for efficient computation and predic-

tion layers for each head. We first define numbers of feature

layers for classification and regression heads which from 1

to p and q, respectively. Then we define groups of layers

{ui | 0 6 i ≤ p, i ∈ N
∗} and {vj | 0 6 j ≤ q, j ∈ N

∗} to

insert our d-convs. By integrating target information to de-

tection head with d-convs, we predict the target and directly

regress bounding box at each location on feature maps. Fol-

lowing FCOS [30], we also predict the center-ness scores

associate with regression branch for further robustness.

Re-id Embedding. We jointly learn detection task and re-

id embedding in order to distinguish similar objects. Here

we use a convolutional layer on the low level of backbone

features to extract re-id embedding features with stride 4.

Each re-id featureE(x, y) ∈ R
CE

in location (x, y) present

the object whose center annotation that closest to it , CE is

the dimension of the embedding feature and set to 128 in

our settings.

3.4. Loss Function

We model the learning task of our framework as a multi-

task problem. There are two learning objectives in our full

pipeline: detection and re-id. For the detection part, we

have three loss functions for classification Lα, regression

Lβ and center-ness Lγ as following

Lα(σi,j) =
∑

i,j

Lfocal(σ̂i,j , σi,j) (4)

Lβ(τi,j) =

{∑

i,j LIoU (τ̂i,j , τi,j) σi,j = 1

0 otherwise
(5)

Lγ(ϕi,j) =

{∑

i,j LBCE(ϕ̂i,j , ϕi,j) σi,j = 1

0 otherwise
(6)

The detection loss of multiple scales and heads can be sum-

marized as

Ldet =
∑

m=3,4,5

∑

n=α,β,γ

λmn Lm
n (7)

where λmn are loss weights to balance these loss functions.

Further, we follow the cross-query loss in [12] to improve

the discriminating ability of our method as following

1028



CC DW HP DC Layers Top-1 PC AC Re-id Success↑ Precision↑ FPS↑ GPU Days↓
X 1+6 X - - - 49.8 50.0 27 15

X 1+6 X - - - 51.4 52.4 32 9.5

X 1+6 X - - - 51.1 52.5 32 9.5

X 1+6 X - - - 53.0 54.2 32 10

- - - X 6 X - - - 48.7 49.2 34 9

- - - X [1 → 6] X - - - 53.2 54.3 28 19

- - - X 1+6 X 46.9 42.4 32 10

- - - X 1+6 X 55.2 55.9 16 10

- - - X 1+6 X 57.4 58.0 31 11

Table 1. Ablation studies of different model designs and object association strategies that influences the model’s capacity. We also evaluate

the time cost for training and inference on a Titan Xp.

L
′

det =
1

I

I
∑

i=1

Ldet (8)

where I indicates the template-search pairs for a pair of im-

ages, which means we calculate average loss over different

targets in one search image.

For the re-id embedding part, we treat object identity as

a classification problem and use loss function like in [40]

for the model training

Lreid =
M
∑

i=1

J
∑

m=1

Lsoftmax (9)

where J is the number of classes,M is the number of ob-

jects. And we use strategy in [34] to balance the detection

and re-id loss.

3.5. Online Tracking

Network Inference. The inference of our model is straight-

forward. We initialize the dynamic convolutions using the

first frame annotation and keep the re-id feature of the tar-

get. Then in subsequent frames, we use the generated ker-

nels to convolve the feature maps in multiple layers. Finally,

we take the top-k candidates ordered by the classification

score and use a variant non-maximum suppression (NMS)

strategy to provide a group of interests.

Online Box Linking. We use three clues for box linking

as in [40]: appearance information (i.e. re-id features), po-

sition information (i.e. IoU between adjacent frames) and

motion information (i.e. Kalman Filter). With these abun-

dant clues, we get smooth box linking with simple Hungar-

ian algorithm [16].

4. Experiments

4.1. Implementation Details

Parameters. We use light version of FCOS [30] with DLA-

34 [39] backbone as our base model for one-shot detection.

1 2 3 4 5 6

Stacking

Convolutions

EncoderIntegration

Choices

Neck
Prediction

Heads

Figure 5. Numbering the integration layer choices for one-shot de-

tection head.

The feature channels are 256 for four stack convolutions and

32 for the encoder behind these. In the template branch, we

use RoIAlign [10] with output feature size of 7. Then we

use a group of k controllers with global average pooling

to generate dynamic convolutions (we set k to 4 as shown

in Section 4.2). In our model, we simply generate 1 × 1
convolutions. In the search branch, we embed d-convs be-

hind neck layer and stack convolutions for both classifica-

tion head and regression head. In re-id embedding, we use a

convolution layer on top of the backbone features with 128

channels, the feature map size is a quarter of size of input

image.

Training. We use the same training data as in [12, 40] and

use the multi-scale data augmentation by sampling shorter

size of input image from 256 to 608 with interval 32. Our

model is trained with stochastic gradient descent (SGD)

with a starting learning rate of 1×10−3. We use 360K train-

ing iterations and decreased by 10 at iteration 300K and

340K respectively.

4.2. Ablation Study

In this section, we conduct ablation analysis to evaluate

different components of our tracker using the LaSOT [8]

benchmark. The image size for inference is set to 735×512
for all testing.

Effectiveness of Correlation Method. We make quanti-

tative analysis to compare our dynamic convolutions (DC)

generation method with other correlation methods. We de-

note the cross correlation [1] by CC, depthwise cross corre-

lation [17] by DW, Hadamard production [12] by HP. As

shown in Table 1, with similar inference time, we show
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t-SNE Objects

Figure 6. We show the effectiveness of re-id embedding by using t-

SNE [24] to visualize the distance between the features of different

objects. The features of the same object are shown by the same

color.

that d-convs based correlation method are more powerful

to model the template information and embed it into search

field. This fine-grained feature learning results in strong

template correlation. Other methods (i.e. Siamese-based

and modulation-based) are special cases of D-Conv. With

compact convolutions, we provide a non-trivial solution to

unify previous methods, and urge further research on this

problem.

Integration Layer Choices. We experimentally evaluate

the influences of integration layer choice, a key factor for

correlation capacity. First, we show the sketch of head

structures in Figure 5, there are four stacking convolutions

and one encoder, therefore the permutation and combination

of six candidate integration layers can result in hundreds

choices. Here, we show the relation between the perfor-

mance and training cost in Table 1. From the table, we can

see that with only the high-layer integration (line 5), tracker

gets degenerate results. However, with dense connections

in stacking layers (line 6), the performance does not boost

significantly, but the training cost can be unbearable. In our

final model, we integrate d-convs with the 1+6 layers for

more practical.

Effectiveness of objects association with re-id embed-

ding. GIS-based trackers can potentially track all inter-

ested objects. These trackers treat the object that have the

Top-1 classification score as the target. However, distrac-

tor problem leads the tracking performance to deterioration

because trackers do not use any constraint. We implement

two heuristic constraints to compare with our association

method. The first one uses position constraint (denoted by

PC). In this constraint, we simply choose the object which is

closest to last frame prediction among top 5 candidates. The

second one uses appearance constraint (denoted by AC). In

this constraint, we use an extra classifier [2] with online

update to choose the final target. As shown in Figure 1,

our association strategy (denoted by Re-id) outperforms two

heuristic methods by a large margin both in precision and
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Figure 7. Plots of ours and state-of-the-art trackers on the test set

of LaSOT [8]. Better viewed in color with zoom-in.
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Figure 8. Plots of Ours and state-of-the-art trackers on the test set

of TLP [26]. Better viewed in color with zoom-in.

computational costs. With only the position or appearance

constraint, tracker unable to deal with high-frequency dis-

appearance. However, with an explicit multiple-object asso-

ciation, our tracker is more robust to these real-world chal-

lenges. Besides, we use t-SNE [24] technology to show

re-id features for different objects. As shown in Figure 6,

we use person-6 sequence from LaSOT [8] and label six in-

stances in these frames (include person, basketball and wa-

termark on the videos). We show that the re-id embedding

can differentiate the inter-class objects and the intra-class

objects.

4.3. Comparison with the state­of­the­art

LaSOT. The LaSOT benchmark [8] is a large-scale mod-

ern tracking dataset that contains 1400 long videos (with

an average of 2500 frames). In this work, we follow the

protocol II defined by official evaluation toolkit and con-

duct one-pass evaluation with success and precision scores

to evaluate our tracker. Compared to nine SOTA meth-

ods [1, 2, 4, 5, 9, 12, 17, 23, 37]2, our approach achieves

the best results among all competing methods. As shown

in Figure 7, our tracker achieves the best results among all

competing methods. Besides that, we maintain a fast infer-

ence speed with compact model design, which shows the

practicability of our approach.

OxUvA. The OxUvA [31] is a long-term tracking dataset

in the wild. The dataset consists of 366 object tracks which

2We use the raw result provided by official evaluation toolkit in their

website.
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(%) MaxGM TPR TNR FPS

ECO-HC [5] 31.4 39.5 0.0 -

MDNet [27] 34.3 47.2 0.0 1

LCT [23] 39.6 29.2 53.7 20

TLD [15] 43.1 20.8 89.5 23

MBMD [41] 54.5 60.9 48.5 3

GlobalTrack[12] 60.3 57.4 63.3 10

SPLT [37] 62.2 49.9 77.6 27

Siam R-CNN [32] 72.3 70.1 74.5 4.7

Ours 68.8 68.6 69.4 31

Table 2. State-of-the-art comparison on the test set of OxUvA [31]

in terms of MaxGM, TPR and TNR. The best three results are

shown in red, blue and green colors, respectively.

are chosen from YTBB [28] and labeled at 1Hz frequency.

According to the [31], OxUvA is divided into two subset:

dev and test. The test subset contains 166 tracks and each of

these lasts for average 2.4 minutes. The evaluation criteria

is quite different from short-term benchmarks [35, 22], we

introduce them briefly as following. The true positive rate

(TPR calculate the fraction of present objects that are pre-

dicted present and precisely. The true negative rate (TNR)

gives the fraction of absent objects that are determined to

disappear. The MaxGM provides more convinced measure-

ment to show the trackers performances and is defined as

MaxGM =

max
0≤p≤1

√

((1− p) ·TPR)((1− p) ·TNR+ p)
(10)

We compare our method with eight competing ap-

proaches using the open challenge illustrated in [31]. In

this challenge, trackers can use any public dataset as the

training data expect for the YTBB [28] validation set. As

we can see in Table 2, our method achieves comparable per-

formance to sophisticated designed long-term trackers that

have heavy computation. However, our method runs in real-

time, which is practical for applications.

TLP. The TLP is a long video dataset for object tracking.

The dataset including 50 long videos of 676K frames (over

400 minutes). We follow the OPE evaluation that used

in [35] and compare our tracker with other trackers. As

shown in Figure 8, our tracker outperforms another GIS-

based tracker[12] by a large margin and gets a comparable

performance to the best tracker[4] in this benchmark. Com-

pared with another GIS-based tracker GlobalTrack [12], our

model get a good balance between precision and recall.

VOT2018LT. We compare our tracker with other state-of-

the art tracking algorithms on VOT2018LT benchmark [21].

In this dataset, there are 35 long videos with 146K frames in

total. The challengs in these sequences are varied, includ-

ing long-term target disappearances and severe occlusion,

which require trackers to be more robust. The evaluation

VOT2018LT VOT2019LT

Tracker F-score Pr Re Tracker F-score Pr Re

PTAVplus 0.481 0.595 0.404 FuCoLoT 0.411 0.507 0.346

SYT 0.509 0.520 0.499 ASINT 0.505 0.517 0.494

LTSINT 0.536 0.566 0.510 CooSiam 0.508 0.482 0.537

MMLT 0.546 0.574 0.521 SiamRPNsLT 0.556 0.749 0.443

DaSiam LT 0.607 0.627 0.588 mbdet 0.567 0.609 0.530

MBMD 0.610 0.634 0.588 SiamDW LT 0.665 0.697 0.636

SPLT 0.616 0.633 0.600 CLGS 0.674 0.739 0.619

SiamRPN++ 0.629 0.649 0.609 LT DSE 0.695 0.715 0.677

Ours 0.683 0.687 0.655 Ours 0.687 0.690 0.662

Table 3. State-of-the-art comparison on the VOT2018LT [21] and

VOT2019LT [22] benchmarks in terms of F-score, Pr and Re. The

best three results are shown in red, blue and green colors.

criterion of VOT2018LT dataset includes tracking precision

(Pr), tracking recall (Re) and tracking F-score. We report

the tracking performance of our tracker and other compet-

ing ones in Table 3. As we see, our tracker achieves an

absolute gain of 5% in terms of F-score. The results demon-

strate the strong performance of our approach in long-term

tracking scenarios.

VOT2019LT. The VOT2019LT benchmark [22] is an exten-

sion of the 2018 version [21] that contains 50 challenging

sequences. Each video contains 10 long-range disappear-

ances on average. The evaluation protocol is similar to that

in VOT2018LT [21]. Table 3 show that our model get a

promising result compared to the well-designed long-term

trackers for the competition. The tracking results demon-

strate the advantage of GIS-based paradigm.

5. Conclusions

In this work, we propose a new long-term tracking

paradigm which consists of one-shot detection and object

association. To achieve an efficient detection model, we de-

sign a novel dynamic convolutions generation method for

flexible feature correlation. Further, in order to distinguish

the target from distractors, we present a compact object as-

sociation strategy with discriminative re-id embedding. Nu-

merous experiments on five long-term tracking benchmarks

verify the performance of the proposed approach. Poten-

tiated by its efficiency, we believe that the proposed frame-

work can be performed as a new baseline for further studies.
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