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Abstract

Due to the intensive cost of labor and expertise in anno-

tating 3D medical images at a voxel level, most benchmark

datasets are equipped with the annotations of only one type

of organs and/or tumors, resulting in the so-called partially

labeling issue. To address this issue, we propose a dynamic

on-demand network (DoDNet) that learns to segment multi-

ple organs and tumors on partially labeled datasets. DoD-

Net consists of a shared encoder-decoder architecture, a

task encoding module, a controller for dynamic filter gen-

eration, and a single but dynamic segmentation head. The

information of current segmentation task is encoded as a

task-aware prior to tell the model what the task is expected

to achieve. Different from existing approaches which fix ker-

nels after training, the kernels in dynamic head are gener-

ated adaptively by the controller, conditioned on both in-

put image and assigned task. Thus, DoDNet is able to

segment multiple organs and tumors, as done by multiple

networks or a multi-head network, in a much efficient and

flexible manner. We created a large-scale partially labeled

dataset called MOTS and demonstrated the superior per-

formance of our DoDNet over other competitors on seven

organ and tumor segmentation tasks. We also transferred

the weights pre-trained on MOTS to a downstream multi-

organ segmentation task and achieved state-of-the-art per-

formance. This study provides a general 3D medical im-

age segmentation model that has been pre-trained on a

large-scale partially labeled dataset and can be extended

(after fine-tuning) to downstream volumetric medical data

segmentation tasks. Code and models are available at:

https://git.io/DoDNet

∗J. Zhang and Y. Xie contributed equally. Corresponding author: Y.

Xia and C. Shen. Work was done when J. Zhang and Y. Xie were visiting

The University of Adelaide.

Pancreas & Tumor

Liver & Tumor

Hepatic Vessel & Tumor

Kidney & Tumor

Colon Tumor

Lung Tumor

Spleen

Figure 1 – Illustration of partially labeled multi-organ and tu-

mor segmentation. This task aims to segment multiple organs

and tumors using a network trained on several partially labeled

datasets, each of which is originally specialized for the segmen-

tation of a particular abdominal organ and/or related tumors.

For instance, the first dataset only has annotations of the liver

and liver tumors, and the second dataset only provides annota-

tions of kidneys and kidney tumors. Here each color represents

a partially labeled dataset.

1. Introduction

Automated segmentation of abdominal organs and tu-

mors using computed tomography (CT) is one of the most

fundamental yet challenging tasks in medical image analy-

sis [22, 18]. It plays a pivotal role in a variety of computer-

aided diagnosis tasks, including lesion contouring, surgi-

cal planning, and 3D reconstruction. Constrained by the

labor cost and expertise, it is hard to annotate multiple or-

gans and tumors at voxel level in a large dataset. Conse-

quently, most benchmark datasets were collected for the

segmentation of only one type of organs and/or tumors,

and all task-irrelevant organs and tumors were annotated

as the background (see Fig. 1). For instance, the LiTS
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dataset [1] only has annotations of the liver and liver tumors,

and the KiTS dataset [13] only provides annotations of kid-

neys and kidney tumors. These partially labeled datasets

are distinctly different from the segmentation benchmarks

in other computer vision areas, such as PASCAL VOC [8]

and Cityscapes [5], where multiple types of objects were

annotated on each image. Therefore, one of the signifi-

cant challenges facing multi-organ and tumor segmentation

is the so-called partially labeling issue, i.e., how to learn

the representation of multiple organs and tumors under the

supervision of these partially annotated images.

Mainstream approaches address this issue via separating

the partially labeled dataset into several fully labeled sub-

sets and training a network on each subset for a specific

segmentation task [39, 16, 40, 21, 43], resulting in ‘multi-

ple networks’ shown in Fig. 2(a). Such an intuitive strat-

egy, however, increases the computational complexity dra-

matically. Another commonly-used solution is to design a

multi-head network (see Fig. 2(b)), which is composed of a

shared encoder and multiple task-specific decoders (heads)

[3, 9, 30]. In the training stage, when each partially labeled

data is fed to the network, only one head is updated and oth-

ers are frozen. The inferences made by other heads are un-

necessary and wasteful. Besides, the inflexible multi-head

architecture is not easy to extend to a newly labeled task.

In this paper, we propose a dynamic on-demand net-

work (DoDNet), which can be trained on partially labeled

datasets for multi-organ and tumor segmentation. DoDNet

is an encoder-decoder network with a single but dynamic

head (see Fig. 2(c)), which is able to segment multiple or-

gans and tumors as done by multiple networks or a multi-

head network. The kernels in the dynamic head are gener-

ated adaptively by a controller, conditioned on the input im-

age and assigned task. Specifically, the task-specific prior

is fed to the controller to guide the generation of dynamic

head kernels for each segmentation task. Owing to the light-

weight design of the dynamic head, the computational cost

of repeated inference can be ignored when compared to that

of a multi-head network. We evaluate the effectiveness of

DoDNet on seven organ and tumor segmentation bench-

marks, involving the liver and tumors, kidneys and tumors,

hepatic vessels and tumors, pancreas and tumors, colon tu-

mors, and spleen. Besides, we transfer the weights pre-

trained on partially labeled datasets to a downstream multi-

organ segmentation task, and achieve state-of-the-art per-

formance on the Multi-Atlas Labeling Beyond the Cranial

Vault Challenge dataset. Our contributions are three-fold:

• We attempt to address the partially labeling issue from

a new perspective, i.e., proposing a single network that

has a dynamic segmentation head to segment multiple

organs and tumors as done by multiple networks or a

multi-head network.

• Different from the traditional segmentation head which

is fixed after training, the dynamic segmentation head

in our model is adaptive to the input and assigned task,

leading to much improved efficiency and flexibility.

• The proposed DoDNet pre-trained on partially labeled

datasets can be transferred to downstream annotation-

limited segmentation tasks, and hence is beneficial for

the medical community where only limited annota-

tions are available for 3D image segmentation.

2. Related Work

Partially labeled medical image segmentation Segmenta-

tion of multiple organs and tumors is a generally recognized

difficulty in medical image analysis [37, 41, 35, 28], partic-

ularly when there is no large-scale fully labeled datasets.

Although several partially labeled datasets are available,

each of them is specialized for the segmentation of one par-

ticular organ and/or tumors. Accordingly, a segmentation

model is usually trained on one partially labeled dataset,

and hence is only able to segment one particular organ and

tumors, such as the liver and liver tumors [20, 40, 29, 32],

kidneys and kidney tumors [21, 14]. Training multiple net-

works, however, suffers from the waste of computational

resources and a poor scalability.

To address this issue, many attempts have been made

to explore multiple partially labeled datasets in a more ef-

ficient manner. Chen et al. [3] collected multiple par-

tially labeled datasets from different medical domains, and

co-trained a heterogeneous 3D network on them, which

is specially designed with a task-shared encoder and task-

specific decoders for eight segmentation tasks. Huang et al.

[15] proposed to co-train a pair of weight-averaged models

for unified multi-organ segmentation on few-organ datasets.

Zhou et al. [42] first approximated anatomical priors of the

size of abdominal organs on a fully labeled dataset, and then

regularized the organ size distributions on several partially

labeled datasets. Fang et al. [9] treated the voxels with

unknown labels as the background, and then proposed the

target adaptive loss (TAL) for a segmentation network that

is trained on multiple partially labeled datasets. Shi et al.

[30] merged unlabeled organs with the background and im-

posed an exclusive constraint on each voxel (i.e. each voxel

belongs to either one organ or the background) for learn-

ing a segmentation model jointly on a fully labeled dataset

and several partially labeled datasets. To learn multi-class

segmentation from single-class datasets, Dmitriev et al. [6]

utilized the segmentation task as a prior and incorporated it

into the intermediate activation signal.

The proposed DoDNet is different from these methods

in three main aspects: (1) [9, 30] formulate the partially la-

beled issue as a multi-class segmentation task and treat un-

labeled organs as the background, which may be misleading

since the organ unlabeled in this dataset is indeed the fore-
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Figure 2 – Three types of methods to perform m partially labeled segmentation tasks. (a) Multiple networks: Training m networks

on m partially labeled subsets, respectively; (b) Multi-head networks: Training one network that consists of a shared encoder and m
task-specific decoders (heads), each performing a partially labeled segmentation task; and (c) Proposed DoDNet: It has an encoder, a

task encoding module, a dynamic filter generation module, and a dynamic segmentation head. The kernels in the dynamic head are

conditioned on the input image and assigned task.

ground on another task. To address this issue, we formu-

late the partially labeled problem as a single-class segmen-

tation task, aiming to segmenting each organ respectively;

(2) Most of these methods adopt the multi-head architec-

ture, which is composed of a shared backbone network and

multiple segmentation heads for different tasks. Each head

is either a decoder [3] or the last segmentation layer [9, 30].

In contrast, the proposed DoDNet is a single-head network,

in which the head is flexible and dynamic; (3) Our DoD-

Net uses the dynamic segmentation head to address the par-

tially labeled issue, instead of embedding the task prior into

the encoder and decoder; (4) Most existing methods focus

on multi-organ segmentation, while our DoDNet segments

both organs and tumors, which is more challenging.

Dynamic filter learning Dynamic filter learning has drawn

considerable research attention in the computer vision com-

munity due to its adaptive nature [17, 38, 4, 33, 10, 23].

Jia et al. [17] designed a dynamic filter network, in which

the filters are generated dynamically conditioned on the in-

put. This design is more flexible than traditional convolu-

tional networks, where the learned filters are fixed during

the inference. Yang et al. [38] introduced the conditionally

parameterized convolutions, which learn specialized convo-

lutional kernels for each input, and effectively increase the

size and capacity of a convolutional neural network. Chen et

al. [4] presented another dynamic network, which dynam-

ically generates attention weights for multiple parallel con-

volution kernels and assembles these kernels to strengthen

the representation capability. Pang et al. [23] integrated

the features of RGB images and depth images to generate

dynamic filters for better use of cross-modal fusion infor-

mation in RGB-D salient object detection. Tian et al. [33]

applied the dynamic convolution to instance segmentation,

where the filters in the mask head are dynamically gener-

ated for each target instance. These methods successfully

employ the dynamic filer learning toward certain ends, like

increasing the network flexibility [17], enhancing the rep-

resentation capacity [38, 4], integrating cross-modal fusion

information [23], or abandoning the use of instance-wise

ROIs [33]. Comparing to them, this work is different in:

(1) we employ the dynamic filter learning to address the

partially labeling issue for 3D medical image segmentation,

and (2) the dynamic filters generated in our DoDNet are

conditioned not only on the input image, but also on the

assigned task.

3. Approach

3.1. Problem definition

Let us consider m partially labeled datasets {D1, D2,
...,Dm}, which were collected for m organ and tumor seg-

mentation tasks:

{S1 : liver&tumor; S2 : kidney&tumor, ...}.

Here, Di = {Xij ,Yij}
ni

j=1
represents the i-th partially la-

beled dataset that contains ni labeled images. The j-th im-

age in Di is denoted by Xij ∈ R
D×W×H , where W ×H is

the size of each slice and D is number of slices. The corre-

sponding segmentation ground truth is Yij , where the label

of each voxel belongs to {0 : background; 1 : organ; 2 :
tumor}. Straightforwardly, this partially labeled multi-

organ and tumor segmentation problem can be solved by

training m segmentation networks {f1, f2, ..., fm} on m
datasets, respectively, shown as follows











minθ1

∑n1

j=1
L(f1(X1j ;θ1),Y1j)

...

minθm

∑nm

j=1
L(fm(Xmj ;θm),Ymj)

(1)

where L represents the loss function of each network,

{θ1, θ2, ..., θm} represent the parameters of these m net-

works. In this work, we attempt to address this problem
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using only one single network f , which can be formally ex-

pressed as

min
θ

m
∑

i=1

ni
∑

j=1

L(f(Xij ;θ),Yij) (2)

The DoDNet proposed here for this purpose consists of a

shared encoder-decoder, a task encoding module, a dynamic

filter generation module, and a dynamic segmentation head

(see Fig. 2). We now delve into the details of each part.

3.2. Encoder­decoder architecture

The main component of DoDNet is the shared encoder-

decoder that has an U-like architecture [26]. The encoder

is composed of repeated applications of 3D residual blocks

[12], each containing two convolutional layers with 3×3×3
kernels. Each convolutional layer is followed by group nor-

malization [36] and ReLU activation. At each downsam-

pling step, the convolution with a stride of 2 is used to halve

the resolution of input feature maps. The number of filters

is set to 32 in the first layer, and is doubled after each down-

sampling step so as to preseve the time complexity per layer

[12]. We totally perform four downsampling operations in

the encoder. Given an input image Xij , the output feature

map is

Fij = fE(Xij ;θE) (3)

where θE represents all encoder parameters.

Symmetrically, the decoder upsamples the feature map

to improve its resolution and halve its channel number step

by step. At each step, the upsampled feature map is first

summed with the corresponding low-level feature map from

the encoder, and then refined by a residual block. After

upsampling the feature map four times, we have

Mij = fD(Fij ;θD) (4)

where Mij ∈ R
C×D×W×H is the pre-segmentation feature

map, θD represents all decoder parameters, and the channel

number C is set to 8 (see ablation study in Sec. 4.2).

The encoder-decoder aims to generate Mij , which is

supposed to be rich-semantic and not subject to a specific

task, i.e., containing the semantic information of multiple

organs and tumors.

3.3. Task encoding

Each partially labeled dataset contains the annotations of

only a specific organ and related tumors. This information

is a critical prior that tells the model with which task it is

dealing and on which region it should focus. For instance,

given an input sampled from the liver and tumor segmen-

tation dataset, the proposed DoDNet is expected to be spe-

cialized for this task, i.e., predicting the masks of liver and

liver tumors while ignoring other organs and other tumors.

Conv layer #Weights #Bias

1 8× 8 8

2 8× 8 8

3 8× 2 2

Totoal 162

Table 1 – Number of parameters generated by controller ϕ(·).

Intuitively, this task prior should be encoded into the model

for task-awareness. Chen et al. [2] encoded the task as

a m-dimensional one-hot vector, and concatenated the ex-

tended task encoding vector with the input image to form

an augmented input. Owing to task encoding, the network

‘awares’ the task through the additional input channels and

thus is able to accomplish multiple tasks, albeit with the

performance degradation. However, the channel of input

increases from 1 to m + 1, leading to a dramatic increase

of computation and memory cost. In this work, we also en-

code the task prior of each input Xij into a m-dimensional

one-hot vector Tij ∈ {0, 1}m, shown as follows

Tijk =

{

0 if k 6= i
1 otherwise

k = 1, 2, ...,m (5)

Here, Tijk = 1 means that the annotation of k-th task is

available for the current input Xij . Instead of extending

the size of task encoding vector Tij from R
m×1×1×1 to

R
m×D×W×H and using it as m additional input channels

[2], we first concatenate Tij with the aggregated features

and then use the concatenation for dynamic filter genera-

tion. Therefore, both computational and spatial complexity

of our task encoding strategy is significantly lower than that

in [2] (see Figure 4).

3.4. Dynamic filter generation

For a traditional convolutional layer, the learned kernels

are fixed after training and shared by all test cases. Hence,

the network optimized on one task must be less-optimal to

others, and it is hard to use a single network to perform mul-

tiple organ and tumor segmentation tasks. To overcome this

difficulty, we introduce a dynamic filter method to generate

the kernels, which are specialized to segment a particular

organ and tumors. Specifically, a single convolutional layer

is used as a task-specific controller ϕ(·). The image fea-

ture Fij is aggregated via global average pooling (GAP) and

concatenated with the task encoding vector Tij as the input

of ϕ(·). Then, the kernel parameters ωij are generated dy-

namically conditioned not only on the assigned task Si but

also on the input image Xij itself, expressed as follows

ωij = ϕ(GAP(Fij)||Tij ;θϕ) (6)

where θϕ represents the controller parameters, and || repre-

sents the concatenation operation.
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3.5. Dynamic head

During the supervised training, it is worthless to pre-

dict the organs and tumors whose annotations are not avail-

able. Therefore, a light-weight dynamic head is designed

to enable specific kernels to be assigned to each task for

the segmentation of a specific organ and tumors. The dy-

namic head contains three stacked convolutional layers with

1 × 1 × 1 kernels. The kernel parameters in three layers,

denoted by ωij = {ωij1,ωij2,ωij3}, are dynamically gen-

erated by the controller ϕ(·) according to the input image

and assigned task (see Eq. 6).

The first two layers have 8 channels, and the last layer

has 2 channels, i.e., one channel for organ segmentation and

the other for tumor segmentation. Therefore, a total of 162

parameters (see Table 1 for details) are generated by the

controller. The partial predictions of j-th image with regard

to i-th task is computed as

Pij = ((Mij ∗ ωij1) ∗ ωij2) ∗ ωij3 (7)

where ∗ represents the convolution, and Pij ∈ R
2×D×W×H

represents the predictions of organs and tumors. Al-

though each image requires a group of specific kernels for

each task, the computation and memory cost of our light-

weight dynamic head is negligible compared to the encoder-

decoder (see Sec. 4.3).

3.6. Training and Testing

For simplicity, we treat the segmentation of an organ and

related tumors as two binary segmentation tasks, and jointly

use the Dice loss and binary cross-entropy loss as the objec-

tive for each task. The loss function is formulated as

L =1−
2
∑V

i=1
piyi

∑V
i=1

(pi + yi + ǫ)

−

V
∑

i=1

(yi log pi + (1− yi) log(1− pi))

(8)

where pi and yi represent the prediction and ground truth

of i-th voxel, V is the number of all voxels, and ǫ is added

as a smoothing factor. We employ a simple strategy to train

DoDNet on multiple partially labeled datasets, i.e., ignoring

the predictions corresponding to unlabeled targets. Taking

colon tumor segmentation for example, the result of organ

prediction is ignored during the loss computation and error

back-propagation, since the annotations of organs are un-

available.

During inference, the proposed DoDNet is flexible to

m segmentation tasks. Given a test image, the pre-

segmentation feature Mij is extracted from the encoder-

decoder network. Assigned with a task, the controller gen-

erates the kernels conditioned on the input image and task.

The dynamic head powered with the generated kernels is

Table 2 – Details about MOTS dataset, including partial labels,

available annotations, and number of training and test images.

Xmeans the annotations are available and × is the opposite.

Partial-label task
Annotations # Images

Organ Tumor Training Test

#1 Liver X X 104 27

#2 Kidney X X 168 42

#3 Hepatic Vessel X X 242 61

#4 Pancreas X X 224 57

#5 Colon × X 100 26

#6 Lung × X 50 13

#7 Spleen X × 32 9

Total - - 920 235

able to automatically segment the organ and tumors as spec-

ified by the task. In addition, if m tasks are all required, our

DoDNet is able to generate m groups of kernels for the dy-

namic head and to efficiently segment all of m organs and

tumors in turn. Compared to the encoder-decoder, the dy-

namic head is so light that the inference cost of m dynamic

heads is almost negligible.

4. Experiment

4.1. Experiment setup

Dataset: We built a large-scale partially labeled Multi-

Organ and Tumor Segmentation (MOTS) dataset using

multiple medical image segmentation benchmarks, includ-

ing LiTS[1], KiTS [13], and Medical Segmentation De-

cathlon (MSD) [31]. MOTS is composed of seven partially

labeled sub-datasets, involving seven organ and tumor seg-

mentation tasks. There are 1155 3D abdominal CT scans

collected from various clinical sites around the world, in-

cluding 920 scans for training and 235 for test. More de-

tails are given in Table 2. Each scan is re-sliced to the same

voxel size of 1.5× 0.8× 0.8mm3.

The MICCAI 2015 Multi Atlas Labeling Beyond the

Cranial Vault (BCV) dataset [19] was also used for this

study. It is composed of 50 abdominal CT scans,including

30 scans for training and 20 for test. Each training scan

is paired with voxel-wise annotations of 13 organs, includ-

ing the liver, spleen, pancreas, right kidney, left kidney,

gallbladder, esophagus, stomach, aorta, inferior vena cava,

portal vein and splenic vein, right adrenal gland, and left

adrenal gland. This dataset provides a downstream task, on

which the segmentation network pre-trained on MOTS was

evaluated.

Evaluation metric: The Dice similarity coefficient (Dice)

and Hausdorff distance (HD) were used as performance

metrics for this study. Dice measures the overlapping be-

tween a segmentation prediction and ground truth, and HD

evaluates the quality of segmentation boundaries by com-

puting the maximum distance between the predicted bound-

aries and ground truth.
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Table 3 – Comparison of dynamic

head with different depth (#layers),

varying from 2 to 4.

Depth Avg. Dice Avg. HD

2 71.30 25.72

3 71.67 25.86

4 71.63 26.07

Table 4 – Comparison of dynamic

head with different width (#chan-

nels), varying from 4 to 8.

Width Avg. Dice Avg. HD

4 69.79 30.40

8 71.67 25.86

16 71.45 26.31

Table 5 – Comparison of the effectiveness of differ-

ent conditions (image feature, task encoding) during

the dynamic filter generation.

Image feat. Task enco. Avg. Dice Avg. HD

X X 71.67 25.86

× X 71.26 29.38

X × 51.80 79.94

Implementation details: To filter irrelevant regions and

simplify subsequent processing, we truncated the HU val-

ues in each scan to the range [−325,+325] and linearly nor-

malized them to [−1,+1]. Owing to the benefits of group

normalization [36], our model adopts the micro-batch train-

ing strategy with a small batch size of 2. To accelerate

the training process, we also employed the weight stan-

darization [25] that smooths the loss landscape by stan-

dardizing the convolutional kernels. The stochastic gra-

dient descent (SGD) algorithm with a momentum of 0.99

was adopted as the optimizer. The learning rate was initial-

ized to 0.01 and decayed according to a polynomial policy

lr = lrinit × (1 − k/K)0.9, where the maximum epoch

K was set to 1,000. In the training stage, we randomly ex-

tracted sub-volumes with the size of 64×192×192 from CT

scans as the input. In the test stage, we employed the slid-

ing window based strategy and let the window size equal

to the size of training patches. To ensure a fair compari-

son, the same training strategies, including the weight stan-

darization, learning rate, optimizer, and other settings, were

applied to all competing models.

4.2. Ablation study

We split the 20% of training scans as validation data to

perform the ablation study, which investigates the effective-

ness of the detailed design of the dynamic head and dy-

namic filter generation module. We average the Dice score

and HD of 11 organs and tumors (listed in Table 2) as two

evaluation indicators for a fair comparison.

Depth of dynamic head: In Table 3, we compared the per-

formance of the dynamic head with different depths, vary-

ing from 2 to 4. The width is fixed to 8, except for the

last layer, which has 2 channels. It shows that, considering

the trade-off between Dice and HD, DoDNet achieves the

best performance on the validation set when the depth of

dynamic head is set to 3. But the performance fluctuation

is very small when the depth increases from 2 to 4. The re-

sults indicate the robustness of dynamic head to the varying

depth. We empirically set the depth to 3 for this study.

Width of dynamic head: In Table 4, we compared the per-

formance of the dynamic head with different widths, vary-

ing from 4 to 16. The depth is fixed to 3. It shows that

the performance improves substantially when increasing the

width from 4 to 8, but drops slightly when further increasing

the width from 8 to 16. It suggest that the performance of

DoDNet tends to become stable when the width of dynamic

head falls within reasonable range (≥ 8). Considering the

complexity issue, we empirically set the width of dynamic

head to 8.

Condition analysis: The kernels of dynamic head are gen-

erated on condition of both the input image and assigned

task. We compared the effectiveness of both conditions in

Table 5. It reveals that the task encoding plays a much more

important role than image features in dynamic filer gener-

ation. It may be attributed to the fact that the task prior

is able to make DoDNet aware of what task is being han-

dled. Without the task condition, all kinds of organs, like

liver, kidneys, and pancreas, are equally treated as the same

foreground. In this case, it is hard for DoDNet to fit such

a complex foreground that is composed of multiple organs.

Moreover, DoDNet fails to distinguish each specific organ

or tumors from this foreground without the task condition.

4.3. Comparing to state­of­the­art methods

We compared the proposed DoDNet to state-of-the-art

methods, which also attempt to address the partially label-

ing issue, on seven partially labeled tasks using the MOTS

test set. The competitors include (1) seven individual net-

works, each being trained on a partially dataset (denoted

by Multi-Nets), (2) two multi-head networks (i.e., Multi-

Head [3] and TAL [9]), (3) a single-network method without

the task condition (Cond-NO), and (4) two single-network

methods with the task condition (i.e., Cond-Input [2] and

Cond-Dec [6]). To ensure a fair comparison, we used the

same encoder-decoder architecture for all methods, except

that the channels of decoder layers in Multi-Head were

halved due to GPU memory limitation.

Table 6 shows the performance metrics for the segmen-

tation of each organ / tumor and the average scores over 11

categories. It reveals that (1) most of methods (TAL, Multi-

Head, Cond-Input, Cond-dec, DoDNet) achieve better per-

formance than seven individual networks (Multi-Nets), sug-

gesting that training with more data (even partially labeled)

is beneficial to model performance; (2) Cond-NO fails to

segment multiple organs and tumors when the task condi-

tion is unavailable, demonstrating the importance of task

condition for a single network to address the partially label-

ing issue (consistent with the observation in Table 5); (3) the
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Table 6 – Performance (Dice, %, higher is better; HD, lower is better) of different methods on seven partially labeled datasets. Note that

‘Average score’ is the aggregative indicator that averages the Dice or HD over 11 categories.

Methods

Task 1: Liver Task 2: Kidney Task 3: Hepatic Vessel

Dice HD Dice HD Dice HD

Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor

Multi-Nets 96.61 61.65 4.25 41.16 96.52 74.89 1.79 11.19 63.04 72.19 13.73 50.70

TAL [9] 96.18 60.82 5.99 38.87 95.95 75.87 1.98 15.36 61.90 72.68 13.86 43.57

Multi-Head [3] 96.75 64.08 3.67 45.68 96.60 79.16 4.69 13.28 59.49 69.64 19.28 79.66

Cond-NO 69.38 47.38 37.79 109.65 93.32 70.40 8.68 24.37 42.27 69.86 93.35 70.34

Cond-Input [2] 96.68 65.26 6.21 47.61 96.82 78.41 1.32 10.10 62.17 73.17 13.61 43.32

Cond-Dec [6] 95.27 63.86 5.49 36.04 95.07 79.27 7.21 8.02 61.29 72.46 14.05 65.57

DoDNet 96.87 65.47 3.35 36.75 96.52 77.59 2.11 8.91 62.42 73.39 13.49 53.56

Methods

Task 4: Pancreas Task 5: Colon Task 6: Lung Task 7: Spleen Average score

Dice HD Dice HD Dice HD Dice HD
Dice↑ HD↓

Organ Tumor Organ Tumor Tumor Tumor Tumor Tumor Organ Organ

Multi-Nets 82.53 58.36 9.23 26.13 34.33 103.91 54.51 53.68 93.76 2.65 71.67 28.95

TAL [9] 81.35 59.15 9.02 21.07 48.08 66.42 61.85 39.92 93.01 3.10 73.35 23.56

Multi-Head [3] 83.49 61.22 6.40 18.66 50.89 59.00 64.75 34.22 94.01 3.86 74.55 26.22

Cond-NO 65.31 46.24 36.06 76.26 42.55 76.14 57.67 102.92 59.68 38.11 60.37 61.24

Cond-Input [2] 82.53 61.20 8.09 31.53 51.43 44.18 60.29 58.02 93.51 4.32 74.68 24.39

Cond-Dec [6] 77.24 55.69 17.60 48.47 51.80 63.67 57.68 53.27 90.14 6.52 72.71 29.63

DoDNet 82.64 60.45 7.88 15.51 51.55 58.89 71.25 10.37 93.91 3.67 75.64 19.50

dynamic filter generation strategy is superior to directly em-

bedding the task condition into the input or decoder (used in

Cond-Input and Cond-Dec); and (4) the proposed DoDNet

achieves the highest overall performance with an averaged

Dice of 75.64% and an averaged HD of 19.50.

To make a qualitative comparison, we visualized the seg-

mentation results obtained by six methods on seven tasks

in Figure 3. It shows that our DoDNet outperforms other

methods, especially in segmenting small tumors.

In Figure 4, we also compared the speed-accuracy trade-

off of five methods. Single-network methods, including

TAL, Cond-Dec, Cond-Input, and DoDNet, share the en-

coder and decoder for all tasks, and hence have a simi-

lar number of parameters, i.e., 17.3M. Although our DoD-

Net has an extra controller, the number of parameters in

it is negligible. The Multi-Head network has a little more

parameters (i.e., 18.9M) due to the use of multiple task-

specific decoders. Multi-Nets has to train seven networks

to address these partially labeled tasks, resulting in seven

times more parameters than a single network.

As for inference speed, Cond-Input, Multi-Nets, Multi-

Head, and Cond-Dec suffer from the repeated inference pro-

cesses, and hence need more time to segment seven kinds

of organ and tumors than other methods. In contrast, TAL

is much more efficient to segment all targets, since the

encoder-decoder (excepts for the last segmentation layer)

is shared by all tasks. DoDNet shares the encoder-decoder

architecture and specializes the dynamic head for each par-

tially labeled task. Due to the light-weight architecture, the

inference of dynamic head is very fast. In summary, DoD-

Net achieves the best accuracy and a fast inference speed.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3 – Visualization of segmentation results obtained by

different methods. (a) input image; (b) ground truth; (c) Multi-

Nets; (d) TAL [9]; (e) Multi-Head [3]; (f) Cond-Input [2]; (g)

Cond-Dec [6]; (h) DoDNet.

4.4. MOTS Pre­training for downstream tasks

Although achieving startling success driven by large-

scale labeled data, deep learning remains trammelled by the

limited annotations in medical image analysis. The largest

partially labeled dataset, i.e., #3 Hepatic Vessel, only con-

tains 242 training cases, which is much smaller than MOTS

with 920 training cases. It has been generally recognized

that training a deep model with more data contributes to
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Figure 4 – Speed vs. accuracy. The accuracy refers to the over-

all Dice score on the MOTS test set. The inference time is

computed based on a single input with 64 slices of spatial size

128× 128). ‘#P’: the number of parameters. ‘M’: Million.

a better generalization ability [44, 11, 34, 7]. Therefore,

pre-training a model on MOTS should be beneficial for the

annotation-limited downstream task. To demonstrate this,

we treated the BCV multi-organ segmentation as a down-

stream task and conducted experiments on the BCV dataset.

We initialized the segmentation network, which has the

same encoder-decoder structure as introduced in Sec. 3.2,

using three initialization strategies, including randomly ini-

tialization (i.e., training from scratch), pre-training on the

#3 Hepatic Vessel dataset, and pre-training on MOTS.

First, we split 20 cases from the BCV training set for

validation, since the annotations of BCV test set were with-

held for online assessment, which is inconvenient. Fig-

ure 5 shows the training loss and validation performance

of the segmentation network with three initialization strate-

gies. The validation performance is measured by the av-

eraged Dice score calculated over 13 categories. It rev-

els that, comparing to training from scratch, pre-training

the network helps it converge quickly and perform better,

particularly in the initial stage. Moreover, pre-training on

a small dataset (i.e., #3 Hepatic Vessel) only slightly out-

performs training from scratch, but pre-training on MOTS,

which is much larger than #3 Hepatic Vessel, achieves not

only the fastest convergence, but also a remarkable perfor-

mance boost. The results demonstrate the strong general-

ization ability of the model pre-trained on MOTS.

Second, we also evaluated the effectiveness of the MOTS

pre-trained weights on the BCV unseen test set. We com-

pared our method to other state-of-the-art methods in Ta-

ble 7, including Auto Context [27], DLTK [24], PaNN [42],

and nnUnet [16]. Comparing to training from scratch, us-

ing the MOTS pre-trained weights contributes to a substan-

tial performance gain, improving the average Dice from

85.30% to 86.44%, reducing the average mean surface dis-

tance (SD) from 1.46 to 1.17, and reducing the average HD

from 19.67 to 15.62. With the help of MOTS pre-training
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Figure 5 – Comparison of training loss and validation perfor-

mance of segmentation network using three initialization strate-

gies, including training from scratch, pre-training on #3 Hepatic

Vessel, and pre-training on MOTS. Here the validation perfor-

mance refers to the averaged Dice score over 13 categories.

Table 7 – Comparison of state-of-the-art methods on the BCV

test set. SD: Mean surface distance (lower is better); TFS: Train-

ing network from scratch; MOTS: Pre-training on MOTS. The

values of three metrics were averaged over 13 categories.

Methods Avg. Dice Avg. SD Avg. HD

Auto Context [27] 78.24 1.94 26.10

DLTK [24] 81.54 1.86 62.87

PaNN [42] 84.97 1.45 18.47

nnUnet [16] 88.10 1.39 17.26

TFS 85.30 1.46 19.67

MOTS 86.44 1.17 15.62

weights, our method achieves the best SD and HD, and sec-

ond highest Dice on the test set.

5. Conclusion

In this paper, we have proposed DoDNet, a single

encoder-decoder network with a dynamic head, to address

the partially labelling issue for multi-organ and tumor seg-

mentation in abdominal CT scans. We have created a

large-scale partially labeled dataset called MOTS and con-

ducted extensive experiments on it. Our results indicate

that, thanks to task encoding and dynamic filter learning,

the proposed DoDNet achieves not only the best overall per-

formance on seven organ and tumor segmentation tasks, but

also higher inference speed than other competitors. We

also demonstrated the value of DoDNet and the MOTS

dataset by successfully transferring the weights pre-trained

on MOTS to downstream tasks for which only limited an-

notations are available. It suggests that the byproduct of this

work (i.e., a pre-trained 3D network) is conducive to other

small-sample 3D medical image segmentation tasks.
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