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Abstract

The observation that computer vision methods overfit to

dataset specifics has inspired diverse attempts to make ob-

ject recognition models robust to domain shifts. However,

similar work on domain-robust visual question answering

methods is very limited. Domain adaptation for VQA dif-

fers from adaptation for object recognition due to addi-

tional complexity: VQA models handle multimodal inputs,

methods contain multiple steps with diverse modules result-

ing in complex optimization, and answer spaces in different

datasets are vastly different. To tackle these challenges, we

first quantify domain shifts between popular VQA datasets,

in both visual and textual space. To disentangle shifts be-

tween datasets arising from different modalities, we also

construct synthetic shifts in the image and question domains

separately. Second, we test the robustness of different fam-

ilies of VQA methods (classic two-stream, transformer, and

neuro-symbolic methods) to these shifts. Third, we test the

applicability of existing domain adaptation methods and de-

vise a new one to bridge VQA domain gaps, adjusted to

specific VQA models. To emulate the setting of real-world

generalization, we focus on unsupervised domain adapta-

tion and the open-ended classification task formulation.

1. Introduction

Visual question answering (VQA) borders on AI-

completeness: it requires perception (visual and linguistic)

and cognition. Despite the strong performance of recent

VQA methods, they fall short of generalization and true

reasoning: they are known to suffer from dataset bias [22],

require domain-specific languages or domain-specific exe-

cutable program annotations [34, 41], or must be trained

separately for each new dataset.

Prior work in domain adaptation for object recognition

examines how robust methods are when trained and tested

on different datasets (domains), and further proposes tech-

niques to bridge domain gaps. In contrast, there is a short-

age of analyses of how domain-robust visual question an-

swering methods are. Importantly, domain adaptation tech-

What time is it?
Does the curtain to the left of the side 
table have small size and white color?

What foods are placed on the table?

How many people will be having wine?

Figure 1. The same visual setting can be captured in different

ways in VQA datasets, and paired with different information needs

(questions). They may require deduction using visual contents,

reading from a specific region of the image, or reasoning about

complex spatial relationships. All examples are selected from real

VQA datasets, i.e. VQA v2, VQA Abstract, VizWiz and GQA.

niques cannot successfully be applied in the VQA setting in

a straight-forward manner. First, VQA models take inputs

across multiple modalities, each of which could contribute

to the domain specificity of the trained models. Second, dif-

ferent VQA methods have multiple intermediate stages and

processing steps over the inputs, which makes optimization

challenging. Domain adaptation techniques could be ap-

plied at multiple of these stages, and domain adaptation can

be performed jointly or separately from VQA training, with

varying success. Third, answer spaces in different datasets

are vastly different. While domain adaptation methods exist

to tackle non-identical answer spaces in object recognition,

this setting is not very common. Conversely, in VQA, it is

the norm, since many datasets are highly specialized (for

example, VizWiz [23] contains special answers “unanswer-

able” or “unsuitable image” because image-question pairs
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are provided by visually impaired users).

To tackle each of these challenges, we propose the fol-

lowing steps. First, to understand how the multiple modal-

ities contribute to domain shifts, we break down and mea-

sure both visual and textual domain shifts across datasets.

We disentangle shifts in image and question space by con-

structing synthetic dataset variants, to test how VQA meth-

ods respond to these separate shifts. To understand how the

multiple steps and mechanisms in recent VQA models make

them robust or fragile to shifts, we compare different fam-

ilies (classic two-stream, transformer, and neuro-symbolic

methods) by exposing them to different shifts. We exam-

ine multiple mechanisms to bridge domain gaps for these

methods, in the challenging setting of unsupervised adapta-

tion where no labels from the target set are available, and

discuss the differences in successful versus unsuccessful at-

tempts. Third, to examine the contribution of answer space

differences, we use the open-ended VQA classification for-

mulation. Because no embedding is available for the answer

options, the gap in answer spaces is more pronounced. We

compare performance across datasets and observe relations

between particular modality shifts and domain robustness.

In more detail, we compare image and question repre-

sentations across nine datasets: VQA v1 and v2, VQA Ab-

stract, Visual 7w, Visual Genome, COCO QA, CLEVR,

GQA and VizWiz. We find there are large shifts in both

visual and textual space, both at a low- and high-level (e.g.

syntax and meaning). We separately apply automatic style

transfer (for the visual modality) and paraphrasing (for the

textual modality) to disentangle VQA methods’ robustness

separately to each of these artificial shifts. We also observe

disparate contributions of these shifts in methods’ perfor-

mance across real domain gaps.

We find evidence that neuro-symbolic, compositional

models are more robust to domain shift than others, because

in those methods, perception and reasoning are more disen-

tangled. We argue that reasoning has the potential to be

domain-independent: for example, the process of reason-

ing about spatial relationships can in theory be abstracted

away from pixel space, thus should not need retraining if the

pixel space changes. Inspired by the potential of perception-

reasoning disentanglement, we design a two-stage domain

adaptation technique to bridge domain gaps. We show that

this two-stage variant is more successful than a direct, one-

stage application of [17], and a version of [47], for recover-

ing performance lost due to domain gaps.

We are only aware of two prior works on domain adap-

tation for VQA [10, 38]. Both of these consider supervised

domain adaptation (labels present in target dataset) while

we operate in an unsupervised setting (labels on source

dataset only). They work with fewer datasets (2-5) and ap-

ply domain adaptation to fewer and simpler VQA methods.

Our work can be seen as a “reality check” for VQA meth-

ods, similar to prior reality checks for metric learning and

weakly supervised object detection [13, 43].

To summarize, our contribution is to answer the follow-

ing questions: (1) In what ways (visual, semantic, syntactic)

are image-question pairs from recent VQA datasets differ-

ent? (2) What kind of dataset differences most affect VQA

generalization? (3) Which methods are more robust to syn-

thetic visual shifts? (4) Which methods allow more gener-

alization when training/testing on different VQA datasets?

(5) What domain adaptation techniques most successfully

bridge domain gaps? (6) What are the challenges of per-

forming domain adaptation in unsupervised VQA?

2. Related Work

VQA method families. We consider three families of

methods and their robustness to domain shifts. Classic two-

stream methods [3, 32, 42, 55] represent the input image and

question separately, then fuse the representations to obtain

an answer. Perception and cognition are entangled. Trans-

former methods [12, 16, 39, 58, 65] compute multiple layers

of attention between entities in each modality (e.g. words

to visual regions). They often use unsupervised pre-training

on massive vision-language datasets (e.g. images with text

captions). Other than positional encodings, these methods

have no separate relational reasoning component. Neuro-

symbolic, knowledge base, and graph methods are concep-

tually distinct as they break down question-answering into

modules. Some of these perform perception (e.g. recog-

nize objects) while others perform cognition (e.g. relational

reasoning about object position). Notable representatives

include [1, 2, 4, 29, 31, 34, 41, 44, 61, 62]. For example, in

[2, 4, 41, 60], entities are first parsed in a perception step,

then reasoning takes a composable logic form, and ques-

tions are answered by verifying if objects satisfy a relation-

ship implied by the question. [44] extract information about

objects, then look up related concepts in a knowledge base,

and perform reasoning using a GCN. In this paper, we show

that the ability to disentangle perception and reasoning en-

ables more domain-robust question answering.

Dataset bias in VQA. Prior work has found it is easy to

introduce undesirable artifacts during dataset construction,

which models can utilize to achieve misleadingly strong re-

sults. For example, [22] find that questions can be answered

well using language priors (and bypassing the need for rea-

soning). [51] help a model cope with priors by discouraging

it from producing an answer similar to that produced by an

image-blind model. [56] accomplish robustness through ad-

versarial regularization, [21] by constructing logic compo-

sitions of existing questions, [20] through semantic image

mutations, and [27] by adding noise to the questions. All of

these are concerned with bias or lack of robustness within

a single dataset, but do not examine how datasets differ in

terms of image and question compositions.

Domain adaptation (DA) and generalization (DG) cope
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with domain shifts, e.g. for object recognition. Unlike

generalization [9, 49, 57], adaptation [6, 17, 26, 47] as-

sumes that some (unlabeled and/or sparsely labeled) data

is available in the target domain. In the most common, clas-

sic DA setting, source and target class vocabularies over-

lap. Domain adaptation is challenging for VQA in that

answer spaces do not overlap. This setting has also been

tackled in DA for object recognition, but less commonly:

in partial DA [7, 8, 67], the target class space is a subset

of the source space; and in open-set DA [46, 54], the tar-

get space could have new classes not present in the source.

The key idea in DA is to bridge the source and target dis-

tributions and arrive at a shared representation. Some in-

fluential methods include gradient reversal from a domain

classifier to ensure domain-agnostic features [17], cycle-

consistency [26], separating shared and domain-specific

features [6, 38], minimizing moments of features in differ-

ent domains [47], maximizing norm which correlates with

transferrability [63], maximizing overlap between proto-

types from different datasets [45], etc. Methods specific to

particular vision tasks also exist, e.g. for object detection

where gradient reversal is applied at both the image and in-

stance (region) level [11], for semantic segmentation [68],

etc. Some prior work [15, 36, 37, 40, 48, 53, 59, 66] lever-

ages style transfer techniques to bridge domain gaps, while

we use style transfer and language paraphrasing to factor

our shifts in the complex multi-input setting (images and

question) in VQA.

Prior work in domain-robust VQA. Our work is the first

to perform fully unsupervised domain adaptation for VQA.

There are only two prior works in domain-robust VQA we

are aware of, but both operate in the supervised setting (i.e.

some target labels are available). [10] find most of the do-

main shift lies in questions and answers. We consider more

recent and diverse datasets, and find these contain signif-

icant image shifts as well. Further, [10] only considered

a simple two-input MLP and two 2016 methods, while we

consider three families of recent VQA methods. [10] is par-

tially unsupervised; they do not use target labels to train

the VQA model, but do use them to compute adaptable fea-

tures. [64] only study the shift between two datasets, and

only apply domain adaptation over a non-standard method

for VQA. In contrast to [10, 64], we study nine datasets, and

a new style transfer setting to isolate shifts in visual space.

3. Approach

We assume we have a labeled source dataset DS =
{dS

1
, . . . ,dS

i , . . . ,d
S
|DS |}, where each dS

i is an image-

question-answer triplet {vS
i ,q

S
i , a

S
i }. The image and ques-

tion are inputs to the VQA model, and the ground-truth

answer is the desired output. We also have an unlabeled

target dataset D̂T = {dT
1
, . . . ,dT

j , . . . ,d
T

|D̂T |
} where each

dT
j is an image-question pair {vT

j ,q
T
j }, and no answers are

provided even in the training set. We aim to build a VQA

model using DS and D̂T , which can answer questions in

D̂T . Any two datasets DS and D̂T have potentially large

domains gaps, in terms of marginal distributions (of images,

questions, or answers) or conditional distributions (e.g. an-

swers given the images or questions). Therefore, the major

challenge is to maximize the performance on D̂T despite

the domain gaps, and our strategy is to ensure the model

trained on DS is as transferable to D̂T as possible.

We measure domain gaps for nine datasets (Sec. 3.1), de-

scribe how to construct synthetic gaps to disentangle visual

and linguistic shifts (Sec. 3.2), and how to adapt domain

adaptation techniques to bridge gaps (Sec. 3.3) for individ-

ual VQA methods (Sec. 3.4).

3.1. Measuring real domain gaps

The first step towards building a domain-robust VQA

model is to understand the multi-faceted dataset gaps. We

analyze the following datasets: (1) VQA v1 [5]; (2) VQA

v2 [22]; (3) Visual Genome [35]; (4) Visual7W [69]; (5)

COCO-QA [52]; (6) GQA [30]; (7) CLEVR [33]; (8) VQA

Abstract [5]; (9) VizWiz [23]. We could measure shifts in

the following distributions across datasets: (1) P (v); (2)

P (q); (3) P (a); (4) P (q|v); (5) P (a|v); (6) P (a|q); (7)

P (a|v,q), where v, q and a represent image, question and

answer respectively. Here, we focus on measuring shifts in

P (v) and P (q), To measure how much the corresponding

distribution changes across datasets, we using Maximum

Mean Discrepancy (MMD):

MMD(DS , D̂T ) = ‖EX∼DS [ϕ(X)]− E
Y∼D̂T [ϕ(Y )]‖H

=
1

n2
s

ns∑

i=1

ns∑

j=1

k(xi,xj) +
1

n2

t

nt∑

i=1

nt∑

j=1

k(yi,yj)

−
2

nsnt

ns∑

i=1

nt∑

j=1

k(xi,yj) (1)

where k represents the RBF kernel and ns, nt represent

sample size in the source and target domains. For visual rep-

resentations, we use pretrained ResNet-101 [25] to extract

image embeddings {vi,vj} for 10,000 randomly sampled

images in each pair of datasets {DS , D̂T }. We use the fi-

nal 2048-D embedding as high-level semantic features, and

the spatially average-pooled embedding after conv3_4 layer

(512-D) as low-level features. For questions, we measure

both semantic and syntactic gaps using two different rep-

resentations. For the semantic representation, we choose

pre-trained BERT [14] to encode 10,000 randomly sampled

questions {qi,qj} from pairwise datasets {DS , D̂T }. For

syntactic features, we follow the approach in [19] to extract

20 low-level features: question length, number of conjunc-

tions, pronouns, prepositions, etc. We show the results in

Tables 1 and 2.
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3.2. Constructing synthetic shifts to isolate effects

As we can see in Tables 1 and 2, many dataset pairs dif-

fer in both their image and question distributions. Our goal

is to understand precisely how different VQA methods re-

spond to shifts in each distribution, but this is not straight-

forward because both modalities would affect the VQA per-

formance. Therefore, to disentangle domain gaps arising

from the image or question modality, we synthetically con-

struct gaps in either image or question space. To do this, we

use image style transfer and question paraphrasing.

Specifically, we create stylized variants of each image

in DS . Let F (v, f) be a style transfer function which

takes in a content image v and style image f and outputs

the content image now with a new style, vf . We choose

Ada-IN [28] as our style transfer function F . We also pay

extra attention to ensure colors are preserved in the style

transfer process, which is important to ensure answers to

color-related questions remain valid. We achieve the color

preservation by converting style-transferred images into the

YUV color space, and copying the UV channels from the

original images. We also experimented with the color his-

togram matching in [18], but ultimately chose luminance-

only transfer. We also control the transfer strength α in [28]

to avoid losing too much information. We manually verified

color and answers were preserved on a small set of images.

For questions, let G be a paraphrasing function,

G(q,g) = qg, where q is a question and g is a reference

“style”. We finetuned a massively pretrained sequence-

to-sequence generative T5 model [50] on Quora duplicate

questions1, to shift the question q to a different style.

Synthetic dataset pairs: We apply the image style

transfer and question paraphrasing separately, to construct

new pairs of VQA datasets that only have domain shift in

one modality. For example, by experimenting on DS =
{v,q, a} and D̂T = {vf ,q}, the results would reveal the

model’s robustness on image domain shift. If we choose

D̂T = {v,qg}, then similar experiments would show the

impacts from question domain shift. Note that in both set-

tings, the answers are kept unchanged thus the impacts from

answer space shift will be eliminated. We do not use the

answers on the target domain to train, even though they are

identical to those in the source domain.

3.3. Bridging domain gaps

Our goal is to ensure high accuracy on D̂T , even though

we have no ground-truth answers in the target domain as

supervision. Thus, we minimize a loss of this type:

L(DS , D̂T ; θ) = Lce(D
S ; θ) + λLfd(D̂

T ,DS ; θ̄) (2)

In the above, θ refers to the parameters of a VQA model,

to be defined in Sec. 3.4. Lce is cross-entropy loss (com-

1https://www.kaggle.com/c/quora-question-pairs

puted on the source dataset only), and Lfd is a loss that

computes the discrepancy between the feature distributions

of the source and target domains, computed over images

and/or questions. The bar in θ̄ refers to the model compo-

nent over which we apply Lfd (see Sec. 3.4).

For Lfd, we consider two domain adaptation strategies

from object recognition, and a new variant of one of them.

First, we adapt an adversarial domain classifier as described

in DANN [17], and reverse its gradient. The idea is to learn

features that prevent the model θ̄ from being able to success-

fully distinguish between source and target domains. To

successfully adapt DANN, we have to consider the differ-

ences between DA for object recognition and DA for VQA.

In particular, DANN can be applied over both image and

question inputs (or over intermediate representations that

depend on both). We describe how we adapt DANN for

each VQA method, in Sec. 3.4. Second, we use a simplified

single-source version of Moment Matching [47] which min-

imizes moment-related distances to reduce domain gaps.

We treat answering as 1000-way open-ended classifica-

tion, and ensure the output space is the same for all datasets;

we provide details in Sec. 4. Alternatives include answer-

ing as generation (which is challenging for automatic eval-

uation) or as a multiple-choice task (which may introduce

biases due to the choice of the incorrect answers [10]).

3.4. Adaptation for VQA models

VQA models: We analyze domain robustness of

VQA models from different families: (1) Classic

two-stream methods (RelNet [55]); (2) Neuro-symbolic

methods (NSCL [41]); and (3) Transformer methods

(LXMERT [58]). We also test MAC [29] and TbD [42],

which are hybrids of classic and neuro-symbolic methods.

Challenges: Applying domain adaptation is challenging in

the unsupervised open-ended classification setting. The first

challenge is the lack of labels on the target dataset, in the

setting we assume. To the best of our knowledge, only two

prior works [10, 64] tried to tackle the domain adaptation

problem for VQA. However, one leveraged multiple-choice

options [10], and both leveraged labels in the target do-

mains, which are not available in our setting. More specif-

ically, Chao et al. [10] minimize Jensen-Shannon Diver-

gence (JSD) to achieve domain adaptation in the multiple-

choice VQA task. All datasets they investigated are de-

rived from COCO so there is little visual domain shift,

thus they only focused on dealing with question and an-

swer/decoys shift. We noticed their improvements mostly

come from minimizing JSD over answer/decoys (i.e. min-

imizing JSD over questions brings negligible < 0.4% per-

formance boost). In addition, [10]’s feature transformation

method (impoverished VQA model without image inputs)

requires labels from the target dataset. However, this is not

applicable under the open-ended setting because we assume
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Q

How many people 
are standing?

Q

Figure 2. Illustration of the domain adaption strategies as described in Section 3.4. We show both training and inference stages for the

baseline where no domain adaptation is applied (top left), and the training procedure for one-stage domain adaption with DANN or Moment

Matching (top right). In the bottom, we show the training procedure of our proposed two-stage DANN approach. Specifically, we first train

a domain-adaptive visual feature extractor in the first stage, with a MSE loss to encourage preserving semantics, and a domain confusion

loss (DANN) to reduce domain gaps. Next, using extracted features from the domain-invariant extractor, we train a VQA model on source

data. The gradient reversal layer (GR) [17] is only used with DANN. Dashed lines indicate no gradients due to module being frozen or for

inference only.

no answers and decoys for the target dataset.

A second challenge is that joint optimization of VQA with

a domain adaptation objective (Eq. 2) is unstable because

the VQA loss and DA loss may compete, making optimiza-

tion difficult. This is especially true for complex, state-of-

the-art VQA models. To cope with the challenge of apply-

ing domain adaptation over VQA, [10] break up adaptation

and VQA training into two stages; they primarily use a sim-

ple MLP, while we evaluate DA with recent VQA models.

[10] empirically use a GAN-like approach to estimate JSD,

which makes their training computationally intensive and

hard to adapt to more complicated VQA models. [64] also

reports similar challenges in training a complex multitask

(VQA+DA) method, and they handle it by carefully tun-

ing the scalars for their multitask loss. Notably, they make

the scalars corresponding to the unsupervised feature align-

ment very small (e.g., 0.003, 0.025), and the multiplier for

the source classifier is also small (0.001 vs 1 for the super-

vised target loss). This highlights the challenge of leverag-

ing transfer from the source domain without target labels.

Baseline and one-stage approaches: We report the per-

formance of two reference models: (1) the accuracy on

the source dataset, which indicates model capacity, and

(2) the accuracy on the target dataset assuming target la-

bels are fully available, which serves as an empirical upper

bound for domain adaptation. The simplest baseline is di-

rectly applying a model trained on a source dataset, on test

data from the target domain, without any domain adapta-

tion. The training and inference procedure is illustrated in

Fig. 2. As another baseline, we also investigated an end-

to-end pipeline to combine the DANN training with VQA

training, shown as “One-stage DA”. Specifically, we added

the domain discrimination loss and reversed its gradients to

update the visual representations. However, it is non-trivial

to find the best place for applying domain discrimination for

different VQA methods. For example, for MAC we added

a linear classifier to distinguish the domains and applied the

DANN loss on the visual embedding before feeding them

into the MAC unit. In addition to DANN, we experimented

with moment matching [47] where the first- and second-

order moments are enforced to align across domains. In

this case the gradient reversal layer is no longer needed.

Proposed two-stage DA approach: To better cope with the

challenges, we also propose a two-stage approach to build

a domain-invariant feature extractor and VQA module se-

quentially. A figurative illustration of the process is shown

in Fig. 2 (bottom). The motivation for breaking up domain

adaptation and VQA modeling is to stabilize the training for

greater robustness. The idea is partially inspired by neuro-

symbolic methods, which separate perception (in this case,

feature extraction) and reasoning (the VQA model after fea-

ture extraction). Our two-stage strategy is summarized as:
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Visual 7W VG VQA v1 VQA v2 COCO QA CLEVR VQA Abs. GQA Bal. VizWiz

Visual 7W – 0.04 0.18 0.18 0.56 0.88 0.18 0.46 0.25

VG 0.01 – 0.16 0.16 0.54 0.87 0.16 0.44 0.27

VQA v1 0.06 0.07 – 0.00 0.44 0.81 0.03 0.34 0.28

VQA v2 0.06 0.07 0.00 – 0.44 0.81 0.03 0.35 0.28

COCO QA 0.20 0.20 0.15 0.15 – 0.69 0.44 0.26 0.58

CLEVR 0.22 0.22 0.17 0.17 0.19 – 0.81 0.58 0.76

VQA Abs. 0.06 0.06 0.02 0.02 0.15 0.19 – 0.34 0.27

GQA Bal. 0.10 0.11 0.06 0.06 0.15 0.13 0.07 – 0.43

VizWiz 0.06 0.06 0.10 0.10 0.23 0.22 0.10 0.12 –

Table 1. Domain gaps in question space; red shading is MMD over 768-D BERT embeddings, blue is MMD over 20-D syntax statistics.

Visual 7W VG VQA v1 VQA v2 COCO QA CLEVR VQA Abs. GQA Bal. VizWiz

Visual 7W – 0.00 0.01 0.01 0.01 0.10 0.08 0.00 0.04

VG 0.01 – 0.00 0.01 0.01 0.10 0.08 0.00 0.04

VQA v1 0.02 0.02 – 0.00 0.00 0.10 0.08 0.01 0.04

VQA v2 0.03 0.02 0.01 – 0.00 0.10 0.08 0.01 0.03

COCO QA 0.04 0.04 0.03 0.03 – 0.10 0.08 0.01 0.03

CLEVR 0.54 0.54 0.54 0.54 0.54 – 0.10 0.10 0.09

VQA Abs. 0.36 0.36 0.36 0.36 0.36 0.59 – 0.08 0.08

GQA Bal. 0.03 0.03 0.03 0.03 0.04 0.54 0.36 – 0.04

VizWiz 0.22 0.22 0.21 0.21 0.21 0.52 0.42 0.22 –

Table 2. Domain gaps in image space; red shading is MMD over ResNet-101 2048-D features, blue is MMD over conv3_4 512-D features.

1. Extract features for images in the source dataset, as de-

fined in the VQA method (e.g. use pre-trained ResNet).

2. Train a domain-invariant feature extractor with both

source and target datasets (without labels), using (a) an

MSE loss which encourages the extracted features on

source dataset to preserve semantics, and (b) a BCE loss

with gradient reversal layer to prevent distinguishing the

source and target domains.

3. Apply the backbone from step 2 to extract visual features

and train a VQA model on the source dataset.

4. Take the visual feature extractor from step 2 and VQA

model from step 3, then feed in the target dataset and

evaluate the performance.

VQA method specifics: Each VQA method extracts fea-

tures in a particular way, resulting in small variances in our

two-stage DA implementation. For MAC and TbD, fea-

ture extraction is executed with ResNet-101 prior to train-

ing the VQA model, following the methodology outlined

previously. NSCL uses ResNet-34 to extract features from

different regions in the image (region proposals via a pre-

trained Mask R-CNN [24]), and allows for NSCL to fine-

tune ResNet-34 during training. To most closely follow our

two-stage methodology, we replace the pretrained ResNet-

34 with a frozen ResNet-34 backbone trained in step 2. Rel-

Net uses 4 convolutional layers to extract features from the

images. We used a pre-trained set of these convolutional

layers to export the source features for VQA and DA. For

LXMERT, the initial visual features are from pre-trained

Faster R-CNN and processed by vision-only transformer

layers. We kept the Faster R-CNN backbone untouched and

fine-tuned the transformer layers to be domain-invariant.

4. Experimental Validation

We show four groups of results: shifts in image and ques-

tion space for nine datasets (Sec. 4.1), robustness of five

methods to synthetic shifts in visual or textual space using

the CLEVR dataset (Sec. 4.2), different ways to apply un-

supervised domain adaptation using MAC on three datasets

(Sec. 4.3), and finally robustness of two methods using eight

real dataset pairs (Sec. 4.4).

4.1. Domain shifts in nine datasets

Tables 1 and 2 show how the questions and images in

nine datasets differ. Each table is a composition of two tri-

angles. In Table 1, the lower triangle contains Maximum

Mean Discrepancy (MMD) statistics using BERT embed-

dings, while the upper triangle shows MMD statistics using

syntax features (Sec. 3.1). MMD computes how different

two distributions are, with higher values indicating larger

difference. The shading ranges from white to red/blue, with

darker, more vivid colors indicating larger values.

In the lower triangle of Table 1, we observe that Vi-

sual 7W and Visual Genome (VG) are similar, and VQA

v1 and v2 are similar, as expected. GQA is similar to VQA

v1/v2 in terms of semantics (captured through BERT), but

it is different in terms of syntax. VQA Abstract is much

more similar to VQA v1/v2 in terms of syntax than to other

datasets (blue triangle), but in terms of semantic content

(red triangle), it is also fairly similar to Visual 7W and VG.

COCO QA and CLEVR stand out from other datasets both

in terms of semantics and syntax (both rows/columns for

COCO QA and CLEVR have high values except on diag-
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Method / Type Source Acc.
Target Acc.

(direct)

Target Acc.

(2-stage DANN)

Target Acc.

(10% scratch)

Target Acc.

(10% finetune)

Target Acc.

(full)

NSCL (NS) 98.0 59.7 68.6 60.0 75.8 95.9

MAC (NS/CL) 93.4 62.6 65.2 84.6 82.1 88.6

TbD (NS/CL) 99.1 36.3 41.3 72.5 84.2 95.3

RelNet (CL) 93.7 44.8 47.2 61.5 77.1 91.4

LXMERT (TR) 94.8 58.0 – 60.9 65.9 91.3
Table 3. Method robustness on CLEVR, using style transfer of the original images (domain shift in image space). We bold the best two

results per column. The most important columns are Target (direct) and Target (2-stage DANN) as they require no supervision on the

target. We observe neuro-symbolic methods are most robust. – means performance degraded on LXMERT with DANN.

Methods Q I1 I1+Q I2 I2+Q

NSCL (NS) – 71.0 – 60.6 –

MAC (NS/CL) 52.2 45.9 28.1 60.9 37.9

TbD (NS/CL) 52.9 55.7 36.1 70.4 42.6

RelNet (CL) 49.6 20.5 19.1 46.2 31.6

LXMERT (TR) 53.4 50.6 36.6 58.0 40.5

Table 4. Method robustness on CLEVR. We show performance

under artificial Question shifts, followed by Image shifts with two

styles (resulting in I1 and I2), and two settings where both Image

and Question shifts are applied (I+Q). – means we were unable to

test on NSCL since their semantic parser is not open-sourced. We

bold the best result and those within 1% of the best.

onal), but CLEVR’s syntax (darker blue) stands out more

than COCO QA’s syntax (lighter blue), while in terms of

semantics they are similarly unique. GQA and VizWiz are

also relatively unique, but less so than CLEVR. In Sec. 4.4,

we show how these shifts affect cross-dataset performance.

Some dataset pairs that were distinct in terms of ques-

tions are similar in terms of images, and vice versa, as

shown in Table 2. COCO QA is now fairly similar to

other datasets (in terms of images), but VQA Abstract and

VizWiz become more unique (darker shading) than in Table

1; they are two of the three rows/columns with high values,

in addition to CLEVR. Results are generally consistent in

the lower/upper triangles (from ResNet layers closer to the

output or input, respectively) except that in higher dimen-

sions (lower triangle), absolute MMD scores are larger.

4.2. Methods’ robustness to synthetic domain shifts

Tables 3 and 4 show how robust different VQA methods

are to synthetic shifts on the CLEVR dataset. In Table 3,

we show robustness to visual shifts. We evaluate perfor-

mance by the method on the original CLEVR dataset, per-

formance of the model trained on CLEVR and applied in the

shifted setting (e.g. style-transferred images) directly, target

performance with unsupervised domain adaptation (specif-

ically, 2-stage DANN), and three supervised settings for

comparison – two that use 10% of the target training data,

and one that uses 100% of the target training data. We use

the default recommended hyperparameters without exhaus-

tive search. We observe all methods’ performance drops in

the Target setting compared to Source, as expected. How-

ever, in Target (direct) and Target (2-stage DANN), both of

VQA v2 CLEVR GQA Bal.

Source Accuracy 54.0 95.8 44.6

Target (direct) 41.0 45.9 37.3

Target (1-stage DANN) 42.2 45.7 37.4

Target (1-stage MM) 42.6 46.6 38.6

Target (2-stage DANN) 42.8 46.7 38.5

Target (full) 49.1 90.0 42.1

Table 5. Different DA methods on MAC (NS/CL), image shift.

which do not use labels on the target, NSCL and MAC (both

neuro-symbolic or NS hybrid) retain the best performance.

Using a small amount of target data for fine-tuning, MAC

and TbD (both NS hybrids) perform best.

Table 4 demonstrates each method’s change in perfor-

mance when evaluated with paraphrased questions (first

column), style-transferred images using two separate styles,

I1 and I2 (second and fourth columns), and combined ques-

tion and image shifts (third and fifth columns). LXMERT is

most robust to question shifts, likely due to its extensive

pre-training on language data, followed by TbD. Neuro-

symbolic or hybrid methods (NSCL or TbD) are most ro-

bust to image shifts, consistent with our hypothesis.

4.3. Domain adaptation for synthetic shifts

In Table 5, we evaluate different domain adaptation

strategies with MAC as the backbone model on VQA v2,

CLEVR, and GQA Balanced, where artificial domain shifts

are created in the image space. By comparing Source and

Target (full) accuracy, we deduce the image style trans-

fer preserves the information required for VQA as accu-

racy only drops slightly. However, in all datasets, we see

quite significant performance drop if a trained model is di-

rectly applied to the corresponding target dataset. The do-

main adaptation strategies (1-stage DANN [17] and Mo-

ment Matching [47], and our 2-stage DANN) help to dif-

ferent degree. Our proposed 2-stage DANN is always sig-

nificantly better than then 1-stage DANN, and better than

the 1-stage MM on two of three datasets. Note that differ-

ences between methods are significant in that the range be-

tween Target (direct) and Target (full) is very small for two

of the three datasets. It is worth mentioning that training the

1-stage DANN baseline is highly unstable as the optimiza-

tion is more difficult. We repeated the experiments multiple
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Datasets Accuracy (%)

A B A B A → B B → A

M
A

C

VQA v2

CLEVR

53.3

95.9 29.8 18.7

GQA Bal. 44.4 32.0 35.6

VQA Abs. 48.3 33.6 31.7

VG 33.3 26.2 23.1

L
X

M
E

R
T

VQA v2

CLEVR

67.6

84.9 31.6 34.8

GQA Bal. 58.2 50.5 51.5

VQA Abs. 56.3 34.3 34.6

VG 41.0 36.7 31.4

Table 6. Robustness across VQA datasets; best viewed in color.

Datasets
Image Question

Appearance Semantic Syntactic Semantic

CLEVR High High High High

GQA Bal. Low Low Med. High Medium

VQA Abs. Med. High Med. High Low Low

VG Low Low Med. Low Medium

Table 7. Summary of shifts, VQA-v2 ↔ selected datasets.

times and only preserved the 1-stage DANN models that did

not collapse. Because of the challenges mentioned, on real

dataset shifts, we only achieved marginal gains using do-

main adaptation, over directly applying the source model,

consistent with prior work [10, 64].

4.4. Generalization under real domain shifts

Table 6 shows the robustness of two recent VQA meth-

ods among five datasets: VQA v2, CLEVR, GQA Bal-

anced, VQA Abstract and Visual Genome. These datasets

have different answer spaces, as shown in Fig. 3. Since the

final classification layer is coupled with the answer vocab-

ulary, models trained on one dataset cannot be directly ap-

plied to another. To mitigate this issue, we obtain a shared

1000-class answer space by computing the 1000 most com-

mon answers across all five selected datasets. We report

training and evaluating a model on the same dataset (i.e.

Acc of A and B), and training on one and evaluating on the

other (e.g. Acc of A → B denotes training on A and eval-

uating on B). The accuracy is calculated on the validation

split for individual datasets (except for GQA where we use

testdev split as recommended), and is obtained by matching

the top-1 prediction with the ground-truth answer(s).

Since source/target datasets have different upper bounds

(i.e. B Acc), we normalize the transferred accuracy by di-

viding by B, and illustrate the relative normalized perfor-

mance using the intensity of shading: darker background

of a cell indicates higher ratio of the transferred accuracy

and the source/target accuracy. Blue backgrounds measure

how well a transferred model A → B performs compared

to its upper bound, as they are all transferring from the same

source A, while red backgrounds measure how well differ-

ent source models B → A transfer to the same target A.

By comparing the accuracy on the training and evalu-

ation datasets, we see that in most cases LXMERT (TR)

Dataset Most Frequent Answers

VQA v2 yes, no, 2, 1, white, 3, 4, . . .

CLEVR no, yes, 1, 0, small, rubber, . . .

GQA Bal. no, yes, left, right, man, . . .

VQA Abs. yes, no, 2, 1, red, 3, white, . . .

VG 1, white, 2, daytime, black, . . .

Figure 3. Venn diagram of answer vocabulary of three datasets. A

large portion of answers are not shared across datasets, and the

distribution (e.g. most frequent answers) may differ as well.

generalizes better across datasets than MAC (NS/CL). We

hypothesize that transformer-based methods like LXMERT

benefit from their massive pre-training (which includes dis-

joint GQA and VQA v2 data). We also observe that GQA

and Visual Genome are more useful sources when trans-

ferring knowledge to VQA v2, compared to CLEVR. This

observation is consistent with our statistical analysis in Ta-

bles 1 and 2, and for simplicity we extracted relevant infor-

mation in Table 7. We see that GQA Balanced and Visual

Genome are similar to VQA v2 in multiple aspects. We

also note that GQA Balanced has smaller semantic shifts

than syntactic shifts with respect to VQA v2, while VG

has smaller syntactic than semantic shifts with VQA v2.

This makes GQA Balanced more helpful as a source dataset

(darker shading for GQA→VQA-v2 than for VG→VQA-

v2 in Table 6, for both MAC and LXMERT). Finally, the

only case MAC is more robust than LXMERT (in terms of

shading) is VQA-v2↔VQA-Abstract, which is the dataset

with largest visual shifts after CLEVR. One possibility is

that LXMERT is better suited to deal with question shifts

and MAC with visual shifts, because of its neuro-symbolic

nature and dedicated perception module.

5. Conclusion

We showed domain differences between VQA datasets

can come from the visual and linguistic space; different

methods are more susceptible to visual or linguistic shifts,

and high-level semantic shifts make methods more fragile

than syntactic ones. We found neuro-symbolic methods are

more robust to synthetic visual-only domain shifts and some

real dataset shifts, but transformer methods handle real lin-

guistic and some visual shifts better due to pretraining. We

demonstrated that while unsupervised domain adaptation in

VQA is challenging, better gains can be made through a

two-stage DANN which shares similar intuition as neuro-

symbolic methods. In the future, we will explicitly handle

shifts in answer space, and develop DA techniques that can

flexibly choose how much to adapt over each modality,
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