
DualGraph: A graph-based method for reasoning about label noise

HaiYang Zhang, XiMing Xing, Liang Liu

Beijing University of Posts and Telecommunications

School of Computer Science

{zhhy, ximingxing, liangliu}@bupt.edu.cn

Abstract

Unreliable labels derived from large-scale dataset pre-

vent neural networks from fully exploring the data. Exist-

ing methods of learning with noisy labels primarily take

noise-cleaning-based and sample-selection-based methods.

However, for numerous studies on account of the above two

views, selected samples cannot take full advantage of all

data points and cannot represent actual distribution of cat-

egories, in particular if label annotation is corrupted. In

this paper, we start from a different perspective and propose

a robust learning algorithm called DualGraph, which aims

to capture structural relations among labels at two different

levels with graph neural networks including instance-level

and distribution-level relations. Specifically, the instance-

level relation utilizes instance similarity characterize sam-

ple category, while the distribution-level relation describes

instance similarity distribution from each sample to all

other samples. Since the distribution-level relation is ro-

bust to label noise, our network propagates it as super-

vised signals to refine instance-level similarity. Combin-

ing two level relations, we design an end-to-end training

paradigm to counteract noisy labels while generating re-

liable predictions. We conduct extensive experiments on

the noisy CIFAR-10 dataset, CIFAR-100 dataset, and the

Clothing1M dataset. The results demonstrate the advanta-

geous performance of the proposed method in comparison

to state-of-the-art baselines.

1. Introduction

Deep learning has turned out to be excellent performance

at discovering intricate structures in high-dimensional data

[14], particularly deep convolutional nets have brought

about breakthroughs in processing image classification [8],

semantic segmentation [16], and object detection [23].

Most of these tasks require reliable and clean large-scale

datasets to train Deep Neural Networks (DNNs), but it is

time-consuming and expensive to collect such high-quality

datasets like ImageNet [3]. To alleviate this problem, al-

Embedding
Network

Instance Graph

Distribution Graph

Sample Similarity

Classification Reasoning

Aggregate

Difference

extract sample

features

Prediction

Reconstruct

Figure 1. The concept of iterate optimization. Distribution graph

forward propagation instance similarity distribution difference to

refine structural relationships among labels. In the classification

phase, we utilize the reconstructed instance graph to generate reli-

able predictions. The two training processes are executed alterna-

tively.

ternatives such as crowdsourcing [34, 37] and web-crawlers

[5] are available to improve annotation efficiency. How-

ever, those low-cost approaches introduce low-quality anno-

tations, and these labels are unreliable due to various types

of noise. Meanwhile, DNNs easily fit a random labeling of

the training data [38]. As noisy labels severely degrade the

generalization performance [2, 30] of DNNs, learning from

noisy labels has become a significant task.

Existing methods of learning with noisy labels primar-

ily take noise-cleaning-based and sample-selection-based

methods [1, 27]. Noise-cleaning-based methods mainly re-

move samples with suspicious labels or correct their noisy

labels to corresponding true class [6, 29, 35]. [6] ob-

tains correct label by building the prototype and compar-

ing its similarity with the training data. However, the pro-

posed heuristics algorithms [29, 35] have been criticized

for removing too many instances or keeping mislabeled in-

stances. Sample-selection-based methods aim to identify

true-labeled samples from noisy training data [7, 17, 36].

Co-teaching [7] and Co-teaching+ [36] train models on

small-loss instances. Decoupling [17] and Co-teaching+

[36] introduce the “Disagreement” strategy, where “when

to update” depends on a disagreement between two dif-

9654

ferent networks. However, there are only a part of train-

ing examples that can be selected by the “Disagreement”

strategy, and these examples cannot be guaranteed to have

ground-truth labels. As described, studies based on these

two ideas generally choose trusted examples to avoid the

phenomenon of over-fitting. Also, these methods are lim-

ited by memorization effects [2], and examples with noisy

labels are among the most forgotten examples [30]. Fur-

thermore, previous methods lack of a global perspective to

explore patterns in the relationship between samples, which

naturally motivates us to improve them in our research.

In this paper, we start from a different perspective and

propose a robust learning algorithm called DualGraph,

which aims to capture structural relationships among la-

bels at two different levels. Relevant references reveal that

both noise and hard examples are the causes of classifier

forgetting [2, 30, 38], but the methods of probability selec-

tion and small loss selection tend to confuse noise and hard

examples. To this end, we design an end-to-end training

paradigm called iterate optimization mechanism as Figure

1 illustrates. It consists of two alternate phases, i.e., rea-

soning and classification. In the reasoning phase, we gen-

erate the similarity distribution for each sample by calcu-

lating the similarity from one sample to all other samples.

In the classification phase, the distribution features are ap-

plied to reconstruct the instance graph nodes and generate

reliable predictions via calculating node similarity. Such a

cyclic operation is executed several times until convergence.

Specifically, we train two graph neural networks with a joint

loss, including the example classifier loss and the distribu-

tion loss. Furthermore, we utilize the joint loss to weighted

edge loss to enhance positive examples (clean examples)

and weaken negative examples (noise and hard examples)

in instance graph.

In summary, the main contributions of this paper are:

• To the best of our knowledge, we are the first to ex-

ploit the graph neural network that captures structural

relations among labels at two different levels. Our

approach refines instance-level relations via instance

similarity distribution obtained from distribution-level

relations to establish the robust label relations.

• We propose an iterate optimization mechanism that

contains two phases to train two graph neural networks

simultaneously. In the reasoning phase, our approach

obtains the distribution feature for each sample and

propagates distribution information in a graph neural

network to correct corrupted labels. In the classifi-

cation phase, our approach utilizes the reconstructed

instance-level graph to generate reliable predictions.

• We experimentally show that our approach signif-

icantly advances state-of-the-art results on multiple

benchmarks with different types and levels of label

noise. Especially on the Clothing1M dataset, our ap-

proach outperforms existing methods by 6% ∼ 8%.

2. Related work

A comprehensive label noise overview is given by [1,

27]. In this section, we briefly review existing studies on

learning with noisy labeled datasets.

2.1. Learning with Noisy Labels

Learning with noisy labels is a longstanding problem

and has been studied extensively. The early methods focus

on estimating the label transition matrix [18, 19, 21, 31].

For example, F-correction [21] uses a two-step solution to

heuristically estimate the noise transition matrix. An addi-

tional softmax layer is introduced to model the noise transi-

tion matrix [4].

To avoid any false corrections, many recent studies

[7, 11, 17, 36] have adopted sample selection that involves

selecting true-labeled samples from a noisy training dataset

[27]. Recently, a promising method of handling noisy la-

bels is to train models on small-loss instances [7, 36]. In

particular, the widely used small-loss criterion is based on

a concept, that DNNs tend to learn simple patterns first,

then gradually memorize all samples [2]. For instance, Co-

teaching [7] and Co-teaching+ [36] maintain two DNNs,

but each DNN selects a certain number of small-loss ex-

amples and feeds them to its peer DNN for further training.

Compared with Co-teaching[7], Co-teaching+[36] further

employs the disagreement strategy of decoupling [17]. In-

tuitively, different classifiers can generate different decision

boundaries and then have different abilities to learn. Thus,

when training on noisy labels, the authors also expect that

their methods have different abilities to filter out the label

noise. However, there are only a part of training examples

that can be selected by the disagreement strategy, and these

examples cannot be guaranteed to have ground-truth labels.

A simple methodology to deal with noisy labels is to

correct their noisy label [6, 29, 35] to corresponding true

class. This can be done in preprocessing stage of the train-

ing data, however such methods usually tackle the difficulty

of distinguishing informative hard samples from those with

noisy labels [1]. For instance, [6] constructs prototypes that

are able to represent deep feature distribution of the corre-

sponding class. Then corrected label is found by checking

similarity among the data sample and prototypes. Joint op-

timization framework for both training classifier and prop-

agating noisy labels to cleaner labels is presented in [29].

PENCIL [35] adopts label probability distributions to su-

pervise network learning and to update these distributions

through back-propagation end-to-end in each epoch.

9655

Loss

Clean label

Potential noise label

Unlabel

Instance graph
inference

Distribution
graph inference

E
m

b
e
d

d
ig

N
e
tw

o
rk

s

Prediction

Weight

512
128

Mini-batch

Iteration 0 Iteration

A
g
g
re

g
a
tio

n

C
o
n
c
a
t

C
o
n
v
 B

lo
c
k

L
e
a
k
y
R

e
L

U

B
a
tc

h
 N

o
rm

F
u
lly

C

o
n
n
e
c
tio

n

C
o
n
c
a
t

L
e
a
k
y
R

e
L

U

Instance graph

Distribution

graph

V
I(0)
i

<latexit sha1_base64="hPIWE8Gt80dXKvEUcRa34o2PitU=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEuilJFXRZdKO7CvYBbQyTyaQdOsmEmYlQQnDjr7hxoYhbv8Kdf+OkzUJbDwxzOOde7r3HixmVyrK+jdLS8srqWnm9srG5tb1j7u51JE8EJm3MGRc9D0nCaETaiipGerEgKPQY6Xrjq9zvPhAhKY/u1CQmToiGEQ0oRkpLrnkw8Djz5STUX9rJ3JRm9+lNzTrJXLNq1a0p4CKxC1IFBVqu+TXwOU5CEinMkJR924qVkyKhKGYkqwwSSWKEx2hI+ppGKCTSSacnZPBYKz4MuNAvUnCq/u5IUSjzLXVliNRIznu5+J/XT1Rw4aQ0ihNFIjwbFCQMKg7zPKBPBcGKTTRBWFC9K8QjJBBWOrWKDsGeP3mRdBp1+7TeuD2rNi+LOMrgEByBGrDBOWiCa9ACbYDBI3gGr+DNeDJejHfjY1ZaMoqeffAHxucPZ1KXag==</latexit>

V
D(0)
i

<latexit sha1_base64="jnmMLd2622C1m6ksz2hsSceHOL4=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEuilJFXRZ1IXLCvYBbQyTyaQdOsmEmYlQQnDjr7hxoYhbv8Kdf+OkzUJbDwxzOOde7r3HixmVyrK+jdLS8srqWnm9srG5tb1j7u51JE8EJm3MGRc9D0nCaETaiipGerEgKPQY6Xrjq9zvPhAhKY/u1CQmToiGEQ0oRkpLrnkw8Djz5STUX9rJ3JRm9+l1zTrJXLNq1a0p4CKxC1IFBVqu+TXwOU5CEinMkJR924qVkyKhKGYkqwwSSWKEx2hI+ppGKCTSSacnZPBYKz4MuNAvUnCq/u5IUSjzLXVliNRIznu5+J/XT1Rw4aQ0ihNFIjwbFCQMKg7zPKBPBcGKTTRBWFC9K8QjJBBWOrWKDsGeP3mRdBp1+7TeuD2rNi+LOMrgEByBGrDBOWiCG9ACbYDBI3gGr+DNeDJejHfjY1ZaMoqeffAHxucPX6qXZQ==</latexit>

E
I(k)
ij

<latexit sha1_base64="u3DYl3kx1/JSvNJ3AS3JvrWfhkg=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkpSBV0WRdBdBfuANobJZNqOnWTCzEQoIeDGX3HjQhG3/oQ7/8ZJm4W2HhjmcM693HuPFzEqlWV9G4WFxaXlleJqaW19Y3PL3N5pSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZGF5nffiBCUh7eqnFEnAANQtqnGCktueZez+PMl+NAf8ll6ib0Pr1Lriujo9Q1y1bVmgDOEzsnZZCj4ZpfPZ/jOCChwgxJ2bWtSDkJEopiRtJSL5YkQniEBqSraYgCIp1kckMKD7Xiwz4X+oUKTtTfHQkKZLamrgyQGspZLxP/87qx6p85CQ2jWJEQTwf1YwYVh1kg0KeCYMXGmiAsqN4V4iESCCsdW0mHYM+ePE9atap9XK3dnJTr53kcRbAPDkAF2OAU1MEVaIAmwOARPINX8GY8GS/Gu/ExLS0Yec8u+APj8wd28ZgI</latexit>

V
D(k)
i

<latexit sha1_base64="1Ka2RKismSTB5H6KQ44ssT5cDrc=">AAACAnicbVDLSgMxFM34rPU16krcBItQN2WmCros6MJlBfuAdhwyaaYNzSRDkhHKMLjxV9y4UMStX+HOvzHTzkJbD4QczrmXe+8JYkaVdpxva2l5ZXVtvbRR3tza3tm19/bbSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4Kvc7D0QqKvidnsTEi9CQ05BipI3k24f9QLCBmkTmS9uZn9LsPr2ujk8z3644NWcKuEjcglRAgaZvf/UHAicR4RozpFTPdWLtpUhqihnJyv1EkRjhMRqSnqEcRUR56fSEDJ4YZQBDIc3jGk7V3x0pilS+pamMkB6peS8X//N6iQ4vvZTyONGE49mgMGFQC5jnAQdUEqzZxBCEJTW7QjxCEmFtUiubENz5kxdJu15zz2r12/NKwyniKIEjcAyqwAUXoAFuQBO0AAaP4Bm8gjfryXqx3q2PWemSVfQcgD+wPn8AtCKXjg==</latexit>

V
D(k−1)
j

<latexit sha1_base64="MGak8VzLjAVies88XwIVKfnHO2g=">AAACBHicbVC7TsMwFHV4lvIKMHaJqJDKQJUUJBgrwcBYJPqQ2hA5jtOaOnZkO0hVlIGFX2FhACFWPoKNv8FpM0DLkSwfnXOv7r3HjymRyra/jaXlldW19dJGeXNre2fX3NvvSJ4IhNuIUy56PpSYEobbiiiKe7HAMPIp7vrjy9zvPmAhCWe3ahJjN4JDRkKCoNKSZ1YGPqeBnET6SzuZl95nd+lVbXziHGeeWbXr9hTWInEKUgUFWp75NQg4SiLMFKJQyr5jx8pNoVAEUZyVB4nEMURjOMR9TRmMsHTT6RGZdaSVwAq50I8pa6r+7khhJPM9dWUE1UjOe7n4n9dPVHjhpoTFicIMzQaFCbUUt/JErIAIjBSdaAKRIHpXC42ggEjp3Mo6BGf+5EXSadSd03rj5qzatIs4SqACDkENOOAcNME1aIE2QOARPINX8GY8GS/Gu/ExK10yip4D8AfG5w+iKpgB</latexit>

V
I(k−1)
i

<latexit sha1_base64="dRCgC9AhRkBG0vc9iT59eRfCZAo=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUBqqkIMFYiQW2ItGH1IbIcZzWqhNHtoNURRlY+BUWBhBi5SPY+BucNgO0HMny0Tn36t57vJhRqSzr2yitrK6tb5Q3K1vbO7t75v5BV/JEYNLBnHHR95AkjEako6hipB8LgkKPkZ43ucr93gMRkvLoTk1j4oRoFNGAYqS05JrVoceZL6eh/tJu5qY0u09v6pNT+yRzzZrVsGaAy8QuSA0UaLvm19DnOAlJpDBDUg5sK1ZOioSimJGsMkwkiRGeoBEZaBqhkEgnnR2RwWOt+DDgQr9IwZn6uyNFocz31JUhUmO56OXif94gUcGlk9IoThSJ8HxQkDCoOMwTgT4VBCs21QRhQfWuEI+RQFjp3Co6BHvx5GXSbTbss0bz9rzWsoo4yqAKjkAd2OACtMA1aIMOwOARPINX8GY8GS/Gu/ExLy0ZRc8h+APj8weoTpgF</latexit>

E
D(k)
ij

<latexit sha1_base64="MxNCKXNbucCjBoSy0EjDdxqyLKo=">AAACA3icbVDLSsNAFJ3UV62vqDvdBItQNyWpgi4LKrisYB/QxjCZTNqxk5kwMxFKCLjxV9y4UMStP+HOv3HSZqHVA8MczrmXe+/xY0qksu0vo7SwuLS8Ul6trK1vbG6Z2zsdyROBcBtxykXPhxJTwnBbEUVxLxYYRj7FXX98nvvdeywk4exGTWLsRnDISEgQVFryzL2Bz2kgJ5H+0svMS8lddpte1MZHmWdW7bo9hfWXOAWpggItz/wcBBwlEWYKUShl37Fj5aZQKIIoziqDROIYojEc4r6mDEZYuun0hsw61EpghVzox5Q1VX92pDCS+Zq6MoJqJOe9XPzP6ycqPHNTwuJEYYZmg8KEWopbeSBWQARGik40gUgQvauFRlBApHRsFR2CM3/yX9Jp1J3jeuP6pNq0izjKYB8cgBpwwClogivQAm2AwAN4Ai/g1Xg0no03431WWjKKnl3wC8bHN2nfl/E=</latexit>

V
I(k−1)
j

<latexit sha1_base64="mToYk1BGkbGabdVobo7BrhSAvxI=">AAACBHicbVC7TsMwFHV4lvIKMHaJqJDKQJUUJBgrscBWJPqQ2hA5jtOaOnZkO0hVlIGFX2FhACFWPoKNv8FpM0DLkSwfnXOv7r3HjymRyra/jaXlldW19dJGeXNre2fX3NvvSJ4IhNuIUy56PpSYEobbiiiKe7HAMPIp7vrjy9zvPmAhCWe3ahJjN4JDRkKCoNKSZ1YGPqeBnET6SzuZl95nd+l1bXziHGeeWbXr9hTWInEKUgUFWp75NQg4SiLMFKJQyr5jx8pNoVAEUZyVB4nEMURjOMR9TRmMsHTT6RGZdaSVwAq50I8pa6r+7khhJPM9dWUE1UjOe7n4n9dPVHjhpoTFicIMzQaFCbUUt/JErIAIjBSdaAKRIHpXC42ggEjp3Mo6BGf+5EXSadSd03rj5qzatIs4SqACDkENOOAcNMEVaIE2QOARPINX8GY8GS/Gu/ExK10yip4D8AfG5w+p3JgG</latexit>

V
I(k)
i

<latexit sha1_base64="Fppq9ByAyC6X13kfr248a32NoYg=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxC3ZSkCrosutFdBfuANobJZNIOncyEmYlQQnDjr7hxoYhbv8Kdf+OkzUJbDwxzOOde7r3HjymRyra/jdLS8srqWnm9srG5tb1j7u51JE8Ewm3EKRc9H0pMCcNtRRTFvVhgGPkUd/3xVe53H7CQhLM7NYmxG8EhIyFBUGnJMw8GPqeBnET6SzuZl5LsPr2pjU8yz6zadXsKa5E4BamCAi3P/BoEHCURZgpRKGXfsWPlplAogijOKoNE4hiiMRzivqYMRli66fSEzDrWSmCFXOjHlDVVf3ekMJL5lroygmok571c/M/rJyq8cFPC4kRhhmaDwoRailt5HlZABEaKTjSBSBC9q4VGUECkdGoVHYIzf/Ii6TTqzmm9cXtWbV4WcZTBITgCNeCAc9AE16AF2gCBR/AMXsGb8WS8GO/Gx6y0ZBQ9++APjM8fwTSXpQ==</latexit>

λI
<latexit sha1_base64="f59DnLuoRw88JjjoIlrleAVbw7c=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN7qrYB8wHUomk2lDM8mQZIQy9DPcuFDErV/jzr8xbWehrQcCh3POJfeeMOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBuOb2d+94kqzaR4NJOUBgkeChYzgo2V/D630QgP8vvpoFpz6+4caJV4BalBgdag+tWPJMkSKgzhWGvfc1MT5FgZRjidVvqZpikmYzykvqUCJ1QH+XzlKTqzSoRiqewTBs3V3xM5TrSeJKFNJtiM9LI3E//z/MzE10HORJoZKsjiozjjyEg0ux9FTFFi+MQSTBSzuyIywgoTY1uq2BK85ZNXSadR9y7qjYfLWvOmqKMMJ3AK5+DBFTThDlrQBgISnuEV3hzjvDjvzsciWnKKmWP4A+fzB1XckUk=</latexit>

λD
<latexit sha1_base64="34i2ZC8ug/iDGbc10v1rAl2UgKk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFXbisYB8wHUomk2lDM8mQZIQy9DPcuFDErV/jzr8xbWehrQcCh3POJfeeMOVMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBuOb2d+94kqzaR4NJOUBgkeChYzgo2V/D630QgP8rvpoFpz6+4caJV4BalBgdag+tWPJMkSKgzhWGvfc1MT5FgZRjidVvqZpikmYzykvqUCJ1QH+XzlKTqzSoRiqewTBs3V3xM5TrSeJKFNJtiM9LI3E//z/MzE10HORJoZKsjiozjjyEg0ux9FTFFi+MQSTBSzuyIywgoTY1uq2BK85ZNXSadR9y7qjYfLWvOmqKMMJ3AK5+DBFTThHlrQBgISnuEV3hzjvDjvzsciWnKKmWP4A+fzB05DkUQ=</latexit>

k
<latexit sha1_base64="a2psyGY0Qk6/P5Boo/FD6+GDNwk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSL0VJIq6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUnAxKZbfqLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jpp16reVbXWvC7XK3kcBTiHC6iABzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBzAGM2Q==</latexit>

Figure 2. DualGraph architecture and the iteration from the 0 to the k forward propagation. The features from the embedding network

are compressed into m-dimensional tensors and fed into two graph modules to initialize the instance and distribution graph.

2.2. Graph Neural Network

Globally modeling and reasoning over relations between

regions can be beneficial for many computer vision tasks

on both images and videos. Graph neural networks are

proposed to collectively aggregate information from graph

structure [41, 25], thus they can model input and/or output

consisting of elements and their dependency. Recent ap-

proaches [10, 39, 40] are proposed to exploit graph neu-

ral network in the field of label noise task. [40] formu-

lates video anomaly detection as a classification with la-

bel noise problem and trains a Graph Convolutional Neural

(GCN) label noise cleaning network depending on features

and temporal consistency of video snippets. [10] learns a

classifier on a large-scale weakly-labeled collection jointly

with only a few clean labeled examples and applies GCN to

clean noisy data. FaceGraph [39] uses two cascaded GCNs

to select useful data in the large-scale web-collected face

datasets. Unfortunately, most methods limit to specific do-

main, or depend on a clean subset.

3. Proposed Approach

In this section, we first provide the background of label

noise task, then introduce the proposed approach in detail.

3.1. Background and Problem Definition

Given the training set Dtrain, the goal is to learn the

model f : x → y , which is capable of generalizing well
to the unseen test set Dtest, where Dtrain ∩ Dtest = Ø. In

particular, we consider a classification problem with a train-

ing set D = {(x1,y1), ..., (xn,yn)} , where xi denotes the

ith sample and yi ∈ {0, 1}c is a one-hot vector representing

the corresponding noisy label over c classes. Let f (xi,θ)
denotes the discriminative function of a neural network pa-

rameterized by θ, which maps an input to an output of the

c-class softmax layer. The conventional objective for super-

vised classification is to minimize an empirical risk, such as

the cross entropy loss:

Lc = −
1

n

n∑

i=1

yi · log (f (xi,θ)) (1)

where · denotes dot product.

As data labels are corrupted in various real-world sce-

narios, that yi contains noise, the neural network can overfit

and perform poorly on the test set [38]. Formally, at each

training step, we consider a mini-batch of data (X,Y) sam-
pled from the Dtrain, where X = {x1, ...,xp} is set of p
samples, and Y = {y1, ...,yp} is the corresponding labels.
We sampling generate multiple mini-batches of potentially

noisy labels {Ŷ 1, ..., Ŷ L} with similar label distribution as
Y . We will describe the procedure for generating one set

of labels Ŷ l = {ŷl
1, ..., ŷ

l
p}. In standard training, we aim

to minimize the expected loss for the X , where each in-

put example is weighted equally. Here we aim to learn a

reweighting of the inputs, where we minimize a weighted

loss:

θ
∗(w) = argmin

θ

p∑

i=1

wif i(θ) (2)

where wi denotes weight of example xi, the initialization

details for wi will be covered in section 3.4. In this paper,

a novel weighting method is proposed to express weight of

the sample via the edge of the graph neural network and

we introduce it into the loss function. The details will be

described in the next section.

3.2. Overview of DualGraph

This section describes DualGraph for learning with noisy

labels. First of all, the train set Dtrain and validation set Dval

in mini-batch can form an undirected acyclic graph struc-

ture G = (V ,E) where V := {V i}i=1,...,|p| and E :=

9656

{Eij}i,j=1,...,|p| denote the set of nodes and edges of the

graph, respectively. Note here that both edges and nodes are

tensor representations. Even though noisy labels are explic-

itly injected, we remedy noise via distribution graph pre-

sented in the next section. Furthermore, as shown in Figure

2, the DualGraph consists of several iterations and each iter-

ation consists of an Instance graph G
I(k) = (VI(k),EI(k))

and a Distribution graph G
D(k) = (VD(k),ED(k)), where k

denotes the k-th iteration. Initially, the feature embeddings

of all samples are extracted via a convolutional neural net-

work, these embeddings are used to compute instance simi-

larities EI(k). Secondly, the instance similarities EI(k) are

delivered to build G
D(k). Initialize node feature V D(k) by

aggregating EI(k) following the position order GI(k), and

edge feature ED(k) represents the distribution similarity be-

tween node feature V D(k). Finally, the obtained ED(k) is

feed to G
I(k) to construct a more discriminative represen-

tation of the node, and then the above process is repeated

iteration by iteration.

3.3. Instance Graph

First of all, a mini-batch of data (X,Y) sampled from
Dtrain can form an undirected acyclic graph structure,

named Instance Graph. Specifically, initialize V
I(0)
i by the

output of the embedding network, for each sample xi:

V
I(0)
i = femb(xi; θemb) (3)

where femb denotes the embedding network with the pa-

rameter set θemb and V
I(0)
i ∈ R

m, m denotes the dimen-

sion of embedded features. Specifically, parameter set θemb

of femb will be jointly optimized in iterate optimization

mechanism.

Each edge in the instance graph stands for the instance

similarity. For generation k ≥ 0, given V
I(k−1)
i , V

I(k−1)
j ,

E
I(k−1)
ij and the edge E

I(k)
ij can be updated as equation (4)

and (5).

E
I(k)
ij =

{
fEI(0)(disI(0)) if k = 0

fEI(k)(disI(k)) ·E
I(k−1)
ij if k > 0

(4)

dis
I(k) =

(V
I(k)
i − V

I(k)
j)2

max
(
‖(V

I(k)
i − V

I(k)
j)2‖2, ε

) (5)

where disI(k) measures the (dis)similarity between pair of

nodes i-th with j-th, and fEI : Rm → R is a neural net-

work that transforms instance similarity to a certain scale,

further E
I(k)
i,j ∈ R. Specifically, fEI is a transformation

network consisting of two Conv-ReLU-BN [9, 33] blocks,

one sigmoid activation, and one dropout [28] layer with the

parameter set θ
I(k)
E .

The distribution graph G
D(k) is generated and updated,

after edge feature EI(k) in the instance graph are generated

and updated.

3.4. Distribution Graph

As shown in Figure 2, the distribution graph aims at in-

tegrating instance-level relations from the instance graph to

generate distribution features and reweights the samples ac-

cording to the distribution relation, trying to eliminate ab-

normal noise points from the perspective of distribution.

Each distribution feature V
D(k)
ij in G

D is a p dimension
vector, where the value in j-th entry represents the relation

between sample xi and sample xj . For iteration k = 0:

V
D(0)
i =





1 if yi = yj
0 if yi ∕= yj
1

p
if yi is unlabeled

(6)

where V
D(0)
i ∈ R

p, p stands for the number of training

examples in a mini-batch.

Algorithm 1: DualGraph

Input: G = (V,E;Dtrain) , where Dtrain = (X,Y)
Output: {ỹi}

s

i=1
1 Parameters: θemb ∪

{
θ
I
E , θ

I
V , θDE , θDV

}

2 Initialize: V
I(0)
i ,V

D(0)
i by Equation (3) and (6)

3 for k = 0, · · · ,K do

// instance similarity update

4 for i = 1, · · · , |EI | do

5 E
I(k)
ij ←

(
Equation (4); θ

I(k)
E

)

6 end

7 // distribution feature generation

8 for i = 1, · · · , |V D| do

9 V
D(k)
i ←

(
Equation (7); θ

D(k)
V

)

10 end

11 // distribution similarity update

12 for i = 1, · · · , |ED| do

13 E
D(k)
ij ←

(
Equation (8); θ

D(k)
E

)

14 end

15 // rebuild instance graph

16 for i = 1, · · · , |V I | do

17 V
I(k)
i ←

(
Equation (10); θ

I(k)
V

)

18 end

19 end

// prediction

20 {ỹi}
p

i=1 ← Predict
(
{ŷi}

p

i=1

)

For iterations k > 0, the distribution graph node V
D(k)
i

can be updated as follows:

V
D(k)
i = fV D

([
p∑

j=1

E
I(k)
ij ‖

p∑

j=1

V
D(k−1)
j

]
; θ

D(k)
V

)
(7)

wherefV D : (Rp,Rp) → R
p is the aggregation network

9657

that composed of a fully-connected and leaky-ReLU [33]

layer with the parameter set θ
D(k)
V .

Each edge in distribution graph represents the similar-

ity between distribution features of different examples. For

generation k ≥ 0, given V
D(k)
i , V

D(k)
j , E

D(k−1)
ij and the

distribution similarity E
D(k)
ij can be updated as Equation

(8).

E
D(k)
ij =

{
fED(0)(disD(0)) if k = 0

fED(k)(disD(k)) ·E
D(k−1)
ij if k > 0

(8)

dis
D(k) =

(
V

D(k)
i − V

D(k)
j

)2

(9)

where fED(0) : Rp → R is a transformation operation con-

sisting of two Conv-ReLU-BN [9, 33] blocks, one sigmoid

activation, and one dropout [28] layer with the parameter

set θ
D(k)
E .

The information in distribution graph is applied to recon-

struct the instance graph at the end of each iteration. Then

node features V
I(k)
i in the instance graph captures the dis-

tribution relations through aggregating all the node features

with E
D(k)
ij as follows:

V
I(k)
i = fV I

(
p∑

j=1

(E
D(k)
ij ‖V

I(k−1)
j),V

I(k−1)
i ;θ

I(k)
V

)
(10)

where fV I : (Rm,Rm) → R
m is the aggregation network

for instance graph with the parameter set θ
I(k)
V and V

I(k)
i ∈

R
m. Such a cyclic operation is executed several times until

convergence.

3.5. Loss Function

The class prediction of each node can be computed by

feeding the corresponding edges in the final generation of

DualGraph into softmax function:

P (ỹi | xi) = Softmax

(
p∑

j=1

E
I(K)
ij · one-hot

(
ŷj

)
)

(11)

where P (ỹi | xi) is the probability distribution over

classes given example xi, ŷj is the label of j-th example

and ỹj is the label for network prediction. E
I(k)
ij stands for

the instance similarity in the instance graph at the final iter-

ation. Specifically, E
I(K)
ij is instance similarity reweighted

by G
D(K), and K denotes total iteration of the DualGraph.

It is noted that we make classification predictions in the

instance graph for each sample. Therefore, the loss of the

instance graph at iteration k-th is defined as follows:

LI
k = LCE (P (ỹi | xi) ,yi) (12)

where LCE is the cross-entropy loss function. P (ỹi | xi)
and yi are model probability predictions of sample xi and

the ground-truth label respectively.

To learn discriminative distribution features, we incor-

porate the distribution loss which plays a significant role in

promoting better discrimination of noise information. We

define the distribution loss for iteration k-th as follows:

LD
k = LCE

(
Softmax

(
p∑

j=1

E
D(k)
ij · one-hot

(
yj

)
)
,yi

)
(13)

where E
D(k)
ij stands for the distribution similarity in the dis-

tribution graph at the k-th iteration.

The total objective function is a weighted summation of

all the losses mentioned above:

L =

K∑

k=1

(
λIL

I
k + λDLD

k

)
(14)

in which λI and λD are two hyperparameters.

4. Experiments

In this section we first compare DualGraph with some

state-of-the-art approaches, then analyze the impact of

Graph Module and Iterate Optimization Mechanism by ab-

lation study.

4.1. Experiment setup

Datasets. We verify the effectiveness of our proposed al-

gorithm on three benchmark datasets: CIFAR-10, CIFAR-

100 [13] and Clothing1M [32], and the detailed charac-

teristics of these datasets can be found in supplementary

materials. These datasets are popularly used for the eval-

uation of learning with noisy labels in previous literatures

[7, 11, 29, 36, 35]. Especially, Clothing1M is a large-scale

real-world dataset with noisy labels, which is widely used

in the related works [6, 29, 35]. The Clothing1M dataset

contains 1 million images of clothing obtained from several

online shopping websites that are classified into the follow-

ing 14 classes: T-shirt, Shirt, Knitwear, Chiffon, Sweater,

Hoodie, Windbreaker, Jacket, Down Coat, Suit, Shawl,

Dress, Vest and Underwear. The labels are generated by

using surrounding texts of the images that are provided by

the sellers, and therefore contain many errors [32].

Since all datasets are clean except Clothing1M, follow-

ing [21, 22], we need to corrupt these datasets manually by

the label transition matrix Q, where Qij = Pr[ŷ = j|y = i]
given that noisy ŷ is flipped from clean y. Assume that

the matrix Q has two representative structures: (1) Symme-

try flipping [24], randomly replacing the labels for a per-

centage of training data with all possible labels; (2) Asym-

metry flipping [21], simulation of fine-grained classification

with noisy labels, where labellers may make mistakes only

within very similar classes. And the detailed characteristics

of Q can be found in supplementary materials.

9658

Symmetry-20% Symmetry-50% Symmetry-80%

Asymmetry-20% Asymmetry-30% Asymmetry-50%Asymmetry-40%Asymmetry-10%

Figure 3. Top: Results on CIFAR-10 dataset with Symmetric Flipping; Bottom: Results on CIFAR-10 dataset with Asymmetric Flipping.

From left to right: train loss vs. steps, train accuracy(%) vs. steps, test loss vs. steps, test accuracy(%) vs. steps. (1 step here represents

100 steps in the experiment).

Table 1. Average test accuracy (%) on CIFAR-10.

Flipping-Rate F-correction Co-teaching Co-teaching+ Joint-optim PENCIL DualGraph

Symmetry-20% 83.40± 0.20 85.23± 0.27 89.49± 0.34 91.90± 0.20 92.64± 0.14 96.7 ± 0.53
Symmetry-50% 79.18± 0.60 76.30± 0.13 85.68± 0.54 89.60± 0.30 90.36± 0.23 92.2 ± 1.82
Symmetry-80% 63.30± 0.42 48.58± 2.22 67.37± 2.74 73.59± 0.64 76.18± 1.33 77.2 ± 2.93
Asymmetry-40% 75.71± 0.40 73.63± 0.35 68.84± 0.20 88.89± 0.35 91.01± 0.20 94.1 ± 1.41

Table 2. More details in test accuracy (%) on CIFAR-10 with

Asymmetric Flipping.

Flipping-Rate 10% 20% 30% 40% 50%

F-correction 92.4 91.4 91.0 90.3 83.8

Joint-optim 92.5 91.9 91.1 91.5 75.8

PENCIL 93.0 92.4 91.8 91.1 80.5

DualGraph 97.1 96.8 94.8 94.1 92.0

Following F-correction [21], only half of the classes in

the dataset are with noisy labels in the setting of asymmetric

noise, so the actual noise rate in the whole dataset τ is half

of the noisy rate in the noisy classes. Specifically, when the

asymmetric noise rate is 0.4, it means τ = 0.2.

For experiments on Clothing1M, we adopt the following

three settings by following previous work [6]. First, only

noisy dataset is used for training without using any extra

clean supervision in the training process. Second, verifica-

tion labels are provided, but they are not used to train the

network directly. For instance, they are used to train the

accessorial network as [15] or to help select prototypes [6].

Third, both noisy dataset and 50k clean labels are available

for training. The data preprocessing procedure includes re-

sizing the image with a short edge of 256 and randomly

cropping a 224× 224 patch from the resized image.

Baselines. We compare DualGraph with the following

state-of-the-art approaches, and implement all approaches

with default parameters by PyTorch [20], and conduct all

the experiments on NVIDIA 2080Ti GPU.

• F-correction [21], which corrects the prediction by the

label transition matrix.

• Joint-optimization [29], which presents a framework

for both training classifier and propagating noisy labels

to cleaner labels.

• PENCIL [35], which adopts label probability distribu-

tions to supervise network learning and to update these

distributions through back-propagation.

• Co-teaching [7], which trains two networks simultane-

ously and cross-updates parameters of peer networks.

• Co-teaching+ [36], which trains two deep neural net-

works and consists of disagreement-update step and

cross-update step.

Network Structure and Optimizer. We use ResNet-12

network architecture for CIFAR-10 and CIFAR-100. Espe-

cially, ResNet-12 denotes 4 layer blocks of depth 3 with

9659

Symmetry-20% Symmetry-50% Symmetry-80%

Figure 4. Results on CIFAR-100 dataset with Symmetric Flipping. From left to right: train loss vs. steps, train accuracy(%) vs. steps, test

loss vs. steps, test accuracy(%) vs. steps. (1 step here represents 100 steps in the experiment).

Table 3. Average test accuracy (%) on CIFAR-100.

Flipping-Rate F-correction Co-teaching Co-teaching+ Joint-optim PENCIL DualGraph

Symmetry-20% 68.74± 0.20 78.23± 0.27 78.71± 0.34 67.61± 0.20 73.86± 0.34 88.71 ± 1.23
Symmetry-50% 42.19± 0.60 71.30± 0.13 57.05± 0.54 60.60± 0.30 69.12± 0.62 75.80 ± 1.82
Symmetry-80%. 15.88± 0.42 26.58± 2.22 24.19± 2.74 29.60± 0.64 24.19± 2.74 50.23 ± 2.93

Table 4. Comparison with state-of-the-art methods in test accu-

racy (%) on the Clothing1M.

Method Data Accuracy

1 F-correction [21] 1M noisy 69.84

2 Joint-optim [29] 1M noisy 72.16

3 PENCIL [35] 1M noisy 73.49

4 Co-teaching [7] 1M noisy 69.21

5 Meta-Weight-Net [26] 1M noisy 73.72

6 Self-Learning [6] 1M noisy 74.45

7 DualGraph 1M noisy 80.84

8 F-correction [21] 1M noisy + 25k verify 75.19

9 Self-Learning [6] 1M noisy + 25k verify 76.44

10 DualGraph 1M noisy + 25k verify 83.73

11 F-correction [21] 1M noisy + 50k clean 80.38

12 Self-Learning [6] 1M noisy + 50k clean 81.16

13 DualGraph 1M noisy + 50k clean 89.82

3× 3 kernels and short connections. The detailed informa-

tion can be found in supplementary materials. For Cloth-

ing1M, we use ResNet-34 pre-trained on ImageNet [3].

For experiments on CIFAR-10 and CIFAR-100, Adam

optimizer [12] is used with an initial learning rate of 10−3,

a weight decay of 10−5, moreover the batch size is set to 64
and 40, respectively. Further, we run 100000 steps in total

and linearly decay the learning rate by 0.1 per 15000 steps.

Equally, for experiments on Clothing1M, Adam opti-

mizer [12] is used with an initial learning rate of 10−3, a

weight decay of 10−5, moreover the batch size is set to 10,

respectively. Further, we run 100000 steps in total and lin-

early decay the learning rate by 0.1 per 15000 steps.

In most of our experiments, the hyperparameters λI and

λD of loss function (14) are set to 1.0 and 0.1 respectively.

4.2. Comparison with the State-of-the-Arts

Results on CIFAR-10. At the top of Figure 3, it shows

the training indicators on CIFAR-10 with symmetric flip-

ping. The memorization effect of networks [2], i.e., test ac-

curacy first reaches a very high level and then gradually de-

creases. Thus, a robust training method should stop or alle-

viate the decreasing process. At this point, DualGraph stops

the decreasing process and consistently achieves higher ac-

curacy. We can compare the test accuracy of different algo-

rithms in detail in Table 1. In the most natural Symmetry-

20% case, all new approaches work well, which demon-

strates their robustness. Among them, DualGraph and PEN-

CIL work significantly better than other methods. When

it goes to Symmetry-50% case and Asymmetry-40% case,

Co-teaching begins to fail while DualGraph, PENCIL and

Joint-optim still work fine. However, Co-teaching can-

not resist the hardest Symmetry-80% case, where it only

achieves 48.58%. In this case, DualGraph achieves the best

average classification accuracy (77.2%) again.

The bottom of Figure 3 shows training indicators on

CIFAR-10 with asymmetric flipping. We report experi-

ment results of CIFAR-10 with asymmetric flipping and

other comparative methods in Table 2. We see that in the

Asymmetry-50% case, the proposed method outperforms

the others by a large margin, i.e. improving the accuracy

from 83.8% to 92.0%, better than Joint-optim by 16.2% and

PENCIL by 11.5%. Furthermore, our model outperforms

other comparative methods and achieves 4.1% test accuracy

improvements in the asymmetry-20% case.

Results on CIFAR-100. Then, we show our results on

CIFAR-100. The test accuracy is shown in Table 3. The

training indicators on CIFAR-100 with symmetric flipping

are shown in Figure 4. Note that there are only 10 classes

in CIFAR-10 datasets. Thus, overall the accuracy is much

lower than the previous Tables 1 and 2. But DualGraph

still achieves high test accuracy on CIFAR-100. In the eas-

iest Symmetry-20% and Symmetry-50% cases, DualGraph

works significantly better than Co-teaching, Co-teaching+

9660

(c) (d)(b)(a)

Figure 5. Results of ablation study on Clothing1M. Iteration number K in DualGraph from 0 to 5. (a) train loss vs. steps; (b) train

accuracy(%) vs. steps; (c) test loss vs. steps; (d) test accuracy(%) vs. steps. (1 step here represents 100 steps in the experiment).

and other methods. In the hardest Symmetry-80% case, Du-

alGraph is substantially ahead of Baselines. Furthermore,

as shown in the last image in Figure 4, the test accuracy

reaches a very high level, then decreases gradually, and fi-

nally stabilizes. Such experimental phenomena also indi-

cate that our method resists memorization effect, moreover,

is robust to noisy labels.

Results on Clothing1M. Finally, we demonstrate the effi-

cacy of the proposed method on the real-world noisy labels

using the Clothing1M. We see that in the first case (#1∼#7),

the proposed method outperforms the others by a large mar-

gin, e.g. improving the accuracy from 69.21% to 80.84%,

better than Joint Optimization [29] (#2) by 8.68%, PENCIL

[35] (#3) by 7.35% and Self-Learning [6] (#6) by 6.30%.

For the second case, [21] (#8) used the information(25k

verify) to estimate the transition matrix, while [6] (#9) used

the verification labels to select the class prototypes. Our

method utilizes this information to initialize the graph neu-

ral network so that the graph network has a stable initial

topology. In this case, DualGraph still achieves the best re-

sult compared to all methods.

For the third case, all data (both noisy and clean) can

be used for training. All the methods (#11, #12) first train

a model on the noisy dataset and then the model is fine-

tuned using vanilla cross-entropy loss on the clean dataset.

Among all of these cases, our approach obtains state-of-the-

art performances compared to previous methods, showing

that our method is effective and suitable for board situa-

tions.

4.3. Ablation Studies

4.3.1 Impact of Distribution Graph.

The distribution graph module works as an important com-

ponent of DualGraph, so it is necessary to investigate the

effectiveness of GD(k) quantitatively. In order to verify the

effectiveness of the distributed graph under real-world sce-

nario, we conduct experiments on the Clothing1M dataset

by occluding the weight λD of DualGraph. The cyan line

in Figure 5(a)(c) shows that without the supervision of dis-

tribution graph, the neural network cannot learn in the la-

bel noise environment. The lines in other colors represent

the results of applying distribution graph under different K,

which are greatly improved in comparison with the case of

K = 0.

4.3.2 Impact of Iteration Number.

As literatures [25, 41] in show, stacking multiple GCN lay-

ers will result in over-smoothing, that is to say, all vertices

will converge to the same value. In order to study the effect

of different iteration number K on the results, we do exper-

iment on the Clothing1M dataset by setting different values

of K. We take K from 0 to 5, and the result is shown in

Figure 5. Obviously, the verification accuracy and value of

K kept in G
D(k) have a positive correlation, that is, the ac-

curacy increases with K. As the value of K increases, the

robustness of DualGraph under label noise gradually im-

proves. But when the value of K increases to a certain ex-

tent, the difference in the forward propagation distribution

of the graph neural network cannot add new information.

5. Conclusion

In this paper, we are the first to exploit the graph neu-

ral network that captures structural relationships among la-

bels at two different levels. To leverage both instance-

level and distribution-level representation of each example

and process the representations at different levels indepen-

dently, we propose the DualGraph. Moreover, we propose

an iterate optimization mechanism that contains two phases,

which train two graph neural networks alternatively. In the

cyclic execution, to further improve robustness to noisy la-

bel, the distribution graph extracts instance similarity distri-

bution to refine the similarity between samples of instance

graph. Extended experiments have demonstrated that Dual-

Graph can effectively improve the classification accuracy of

noise labels from real-world data via capturing the Instance

Similarity Distribution. For future work, we plan to explore

using the proposed method to other domains with different

model architectures, such as Recurrent Neural Networks for

machine translation with corrupted ground-truth sentences.

Acknowledgement

This work is supported in part by National Key

R&D Program of China (2017YFB1003000) and NSFC

(62061146002,61632008,61921003,61871046).

9661

References

[1] Gorkem Algan and Ilkay Ulusoy. Image classification

with deep learning in the presence of noisy labels: A

survey. arXiv preprint arXiv:1912.05170, 2019. 1, 2

[2] Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Bal-

las, David Krueger, Emmanuel Bengio, Maxin-

der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron

Courville, Yoshua Bengio, and Simon Lacoste-Julien.

A closer look at memorization in deep networks. In In-

ternational Conference on Machine Learning (ICML),

volume 70, pages 233–242, 2017. 1, 2, 7

[3] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and

Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 248–255,

2009. 1, 7

[4] J. Goldberger and E. Ben-Reuven. Training deep

neural-networks using a noise adaptation layer. In In-

ternational Conference on Learning Representations

(ICLR), 2017. 2

[5] Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana

Lazebnik. A multi-view embedding space for model-

ing internet images, tags, and their semantics. Inter-

national journal of computer vision, 106(2):210–233,

2014. 1

[6] Han, Jiangfan, Ping Luo, and Xiaogang Wang. Deep

self-learning from noisy labels. In IEEE International

Conference on Computer Vision (ICCV), pages 5138–

5147, 2019. 1, 2, 5, 6, 7, 8

[7] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.

Co-teaching: Robust training of deep neural networks

with extremely noisy labels. In Advances in neural

information processing systems (NIPS), pages 8527–

8537, 2018. 1, 2, 5, 6, 7

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In IEEE conference on computer vision and pattern

recognition (CVPR), pages 770–778, 2016. 1

[9] Sergey Ioffe and Christian Szegedy. Batch normal-

ization: Accelerating deep network training by reduc-

ing internal covariate shift. In International Confer-

ence on Machine Learning (ICML), volume 37, page

448456, 2015. 4, 5

[10] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Ondrej

Chum, and Cordelia Schmid. Graph convolutional

networks for learning with few clean and many noisy

labels. In European Conference on Computer Vision

(ECCV), 2020. 3

[11] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,

and Li Fei-Fei. Mentornet: Learning data-driven cur-

riculum for very deep neural networks on corrupted la-

bels. In International Conference on Machine Learn-

ing (ICML), pages 2304–2313, 2018. 2, 5

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Confer-

ence on Learning Representations (ICLR), 2015. 7

[13] Alex Krizhevsky. Learning multiple layers of features

from tiny images. University of Toronto, 05 2012. 5

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

Deep learning. Nature, 521(7553):436–444, 2015. 1

[15] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Lin-

jun Yang. Cleannet: Transfer learning for scalable im-

age classifier training with label noise. In Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 5447–5456, 2018. 6

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell.

Fully convolutional networks for semantic segmenta-

tion. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2015. 1

[17] Eran Malach and Shai Shalev-Shwartz. Decoupling

when to update from how to update. In Advances in

Neural Information Processing Systems (NIPS), pages

960–970, 2017. 1, 2

[18] Aditya Menon, Brendan Van Rooyen, Cheng Soon

Ong, and Bob Williamson. Learning from corrupted

binary labels via class-probability estimation. In In-

ternational Conference on Machine Learning (ICML),

volume 37, pages 125–134, 2015. 2

[19] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K

Ravikumar, and Ambuj Tewari. Learning with noisy

labels. In Advances in Neural Information Processing

Systems (NIPS), volume 26, 2013. 2

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Te-

jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. Pytorch: An imper-

ative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems

(NIPS), pages 8024–8035. 2019. 6

[21] Giorgio Patrini, Alessandro Rozza, Aditya Kr-

ishna Menon, Richard Nock, and Lizhen Qu. Mak-

ing deep neural networks robust to label noise: A loss

correction approach. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

1944–1952, 2017. 2, 5, 6, 7, 8

9662

[22] Scott Reed, Honglak Lee, Dragomir Anguelov, Chris-

tian Szegedy, Dumitru Erhan, and Andrew Rabi-

novich. Training deep neural networks on noisy la-

bels with bootstrapping. In International Conference

on Learning Representations (ICLR), 2015. 5

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian

Sun. Faster r-cnn: Towards real-time object detection

with region proposal networks. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,

editors, Advances in Neural Information Processing

Systems (NIPS), pages 91–99. 2015. 1

[24] Brendan van Rooyen, Aditya Krishna Menon, and

Robert C. Williamson. Learning with symmetric label

noise: The importance of being unhinged. In Interna-

tional Conference on Neural Information Processing

Systems (NIPS), page 1018, 2015. 5

[25] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,

and G. Monfardini. The graph neural network model.

IEEE Transactions on Neural Networks, 20(1):61–80,

2009. 3, 8

[26] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping

Zhou, Zongben Xu, and Deyu Meng. Meta-weight-

net: Learning an explicit mapping for sample weight-

ing. In Advances in neural information processing sys-

tems (NIPS), 2019. 7

[27] Hwanjun Song, Minseok Kim, Dongmin Park, and

Jae-Gil Lee. Learning from noisy labels with

deep neural networks: A survey. arXiv preprint

arXiv:2007.08199, 2020. 1, 2

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:

A simple way to prevent neural networks from over-

fitting. Journal of Machine Learning Research,

15(56):1929–1958, 2014. 4, 5

[29] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and

Kiyoharu Aizawa. Joint optimization framework for

learning with noisy labels. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

pages 5552–5560, 2018. 1, 2, 5, 6, 7, 8

[30] Mariya Toneva, Alessandro Sordoni, Remi Tachet des

Combes, Adam Trischler, Yoshua Bengio, and Geof-

frey J. Gordon. An empirical study of example for-

getting during deep neural network learning. In In-

ternational Conference on Learning Representations

(ICLR), 2019. 1, 2

[31] Xiaobo Xia, T. Liu, N. Wang, B. Han, C. Gong, Gang

Niu, and Masashi Sugiyama. Are anchor points really

indispensable in label-noise learning? In Advances in

Neural Information Processing Systems (NIPS), 2019.

2

[32] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi-

aogang Wang. Learning from massive noisy labeled

data for image classification. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

pages 2691–2699, 2015. 5

[33] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.

Empirical evaluation of rectified activations in convo-

lutional network. arXiv preprint arXiv:1505.00853,

2015. 4, 5

[34] Yan Yan, Romer Rosales, Glenn Fung, Ramanathan

Subramanian, and Jennifer Dy. Learning from multi-

ple annotators with varying expertise. Machine Learn-

ing, 95(3):291–327, 2014. 1

[35] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise

correction for learning with noisy labels. In IEEE

Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 7017–7025, 2019. 1, 2, 5, 6, 7,

8

[36] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu,

Ivor W Tsang, and Masashi Sugiyama. How does

disagreement help generalization against label corrup-

tion? In International Conference on Machine Learn-

ing (ICML), 2019. 1, 2, 5, 6

[37] Xiyu Yu, Tongliang Liu, Mingming Gong, and

Dacheng Tao. Learning with biased complementary

labels. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 68–83, 2018. 1

[38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben-

jamin Recht, and Oriol Vinyals. Understanding deep

learning requires rethinking generalization. In In-

ternational Conference on Learning Representations

(ICLR), 2017. 1, 2, 3

[39] Yaobin Zhang, Weihong Deng, Mei Wang, Jiani Hu,

Xian Li, Dongyue Zhao, and Dongchao Wen. Global-

local gcn: Large-scale label noise cleansing for face

recognition. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2020. 3

[40] Jia-Xing Zhong, Nannan Li, Weijie Kong, Shan Liu,

Thomas H Li, and Ge Li. Graph convolutional label

noise cleaner: Train a plug-and-play action classifier

for anomaly detection. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

1237–1246, 2019. 3

[41] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and

Maosong Sun. Graph neural networks: A re-

view of methods and applications. arXiv preprint

arXiv:1812.08434, 2018. 3, 8

9663

