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Abstract

Existing state-of-the-art disparity estimation works

mostly leverage the 4D concatenation volume and construct

a very deep 3D convolution neural network (CNN) for dis-

parity regression, which is inefficient due to the high mem-

ory consumption and slow inference speed. In this paper,

we propose a network named EDNet for efficient disparity

estimation. Firstly, we construct a combined volume which

incorporates contextual information from the squeezed con-

catenation volume and feature similarity measurement from

the correlation volume. The combined volume can be next

aggregated by 2D convolutions which are faster and re-

quire less memory than 3D convolutions. Secondly, we pro-

pose an attention-based spatial residual module to generate

attention-aware residual features. The attention mechanism

is applied to provide intuitive spatial evidence about inac-

curate regions with the help of error maps at multiple scales

and thus improve the residual learning efficiency. Extensive

experiments on the Scene Flow and KITTI datasets show

that EDNet outperforms the previous 3D CNN based works

and achieves state-of-the-art performance with significantly

faster speed and less memory consumption.

1. Introduction

Accurate and fast depth estimation is of great signifi-

cance to many applications like robot navigation, 3D recon-

struction and autonomous driving. Instead of depth regres-

sion from a single-view RGB image, stereo matching is to

conduct correspondence analysis between pixels of stereo

images and compute the disparity d for each pixel. Depth

can be then calculated by ( fB
d
), where f is the camera’s

focal length and B is the distance between two camera cen-

ters, also called baseline in stereo vision.

*Corresponding author.

While traditional methods based on hand-crafted fea-

ture extraction and matching cost aggregation tend to fail

on those textureless and repetitive regions in the images,

convolutional neural networks (CNNs) have been widely

adopted to conquer those difficulties in stereo matching.

Several recent methods [19, 3, 13, 42] have achieved state-

of-the-art performance by constructing a 4D concatenation

volume which follows 3D convolution blocks for aggrega-

tion. Although the 4D concatenation cost volume can pre-

serve the rich contextual information in conjunction with

the strong regularization ability of 3D convolutions, it sig-

nificantly increases the computation cost and usually cannot

perform real-time disparity inference. Moreover, the con-

catenation volume incorporates no feature similarity mea-

surement, which means that the model has to learn corre-

spondence from scratch. Besides, DispNetC [22] formed a

low-cost correlation layer with 2D convolutions to conduct

correspondence analysis between the left and right feature

maps. The following works [21, 38, 26] adopted the similar

method as it keeps a good balance between speed and accu-

racy. However, as the correlation map is produced with only

one single feature channel for each disparity level, the per-

formance is less competitive. Thus, this raises the question

of how to make full use of the complementary advantages

of the concatenation volume and correlation volume.

Since ResNet [15] has revealed that the residual convo-

lution block can improve the training efficiency by learning

a residual mapping instead of the desired underlying one,

it has been adopted as a popular approach to refine the dis-

parity estimation [34, 31, 21, 37]. To be specific in stereo

matching, learning an additive correction to the coarse dis-

parity map is easier and more efficient than directly learning

the fine-grained one. However, some works failed to pro-

vide the residual learning module with the fitting error in-

formation [33, 40], or computed the estimated error at only

one scale [34, 26, 17] but adopted it to learn the disparity

maps at multiple scales. The error map from one single
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Figure 1: The first row is the visualization of residual learning process from scale 3 to scale 2. The residual scale2 is learned

from the disparity scale3 for correcting the disparity scale2. With our proposed modules, sharp edges and overall structures

can be recovered. Other state-of-the-art methods fail to generate the accurate disparity estimation in low-texture regions as

shown in the second row. Please pay more attention to regions pointed by the red arrow.

scale cannot provide the precise error information at other

scales, which makes the residual learning method less effec-

tive. Furthermore, even if the error map is provided at each

corresponding scale [31], the conventional residual learn-

ing method has no explicit spatial guidance about where

to intervene. As the regions with inaccurate estimation de-

serve more attention, we argue that residual learning could

be more efficient if the spatial attention about the learning

errors is provided.

To address the above issues, we propose EDNet which

is composed of a combined volume to generate robust fea-

ture representations, and an attention-based residual mod-

ule to learn the disparity refinement. Firstly, the proposed

combined volume alleviates the information loss by em-

ploying the squeezed concatenation volume and preserves

the feature similarity measurement with the correlation vol-

ume. We then adopt 2D convolutions for further aggrega-

tion so that the significant memory consumption and com-

putational complexity of 3D CNNs can be avoided. Sec-

ondly, inspired by the attention mechanism, we adopt a spa-

tial attention module to generate the attention-aware resid-

ual features. Therefore, the residual learning module can

have intuitive spatial evidence about inaccurate regions to

compute a specific correction. We follow the coarse-to-fine

strategy and compute the attention-aware residuals across

different scales. With the error maps provided at each scale,

the residual module can learn a corresponding correction

accordingly and improve the learning efficiency. As shown

in Figure 1, our network can generate an accurate and con-

tinuous disparity map even in low-texture regions. The con-

tributions of our work can be summarized as follows:

• We propose a low-cost but effective method to aggre-

gate the 3D correlation features and 4D concatenation

volume together by constructing a combined volume,

which can be further processed by fast 2D convolu-

tions. Compared with others, our correspondence anal-

ysis can preserve both the contextual information and

feature similarities even with 2D convolutions.

• We design an Attention-based Residual (AR) module

to learn the disparity refinement at each scale. In the

AR module, the attention mechanism is applied to the

concatenated maps of RGB image, estimated disparity

and estimated error to improve the learning efficiency.

• Compared to those existing methods based on 3D

CNNs, our proposed EDNet achieves state-of-the-art

accuracy on the public Scene Flow [22] and KITTI

[24, 10] datasets with less than 25% running memory

requirement compared with Bi3D [1] and is 45× faster

than GANet [42].

The rest of the paper is organized as follows. We intro-

duce some related studies about stereo matching based on

CNNs in Section 2. Section 3 introduces the methodology

and implementation of our proposed EDNet. We demon-

strate our experimental results in Section 4. We finally con-

clude the paper in Section 5.

2. Related Works

A classical stereo matching pipeline consists of four

steps [30]. In recent years, CNNs have drawn great attention

and been introduced to tackle the stereo matching task [41].

In this section, we briefly discuss those common mecha-

nisms for computing the matching cost with CNNs and re-

view the approaches with the residual learning method.

2.1. Matching Cost Computation

CNN based matching cost computation methods make a

great contribution to the stereo matching accuracy. There

are two popular approaches for matching cost computa-

tion. The first one is using either a layer of 2D [7] or

1D [22] convolutional operations, called correlation layer.

Such an inner product between feature vectors is adopted in

[4, 9, 21, 38]. Liang et al. [21] build a correlation volume

for initial disparity estimation which follows a disparity re-

finement module by learning through feature consistency.

Wang et al. [34, 35] make some modification and propose
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a point-wise correlation volume to preserve fast computa-

tion. Another popular method to compute matching cost is

to form a 4D volume by concatenating the corresponding

features from the opposite stereo images across each dis-

parity level. 3D convolutions are followed to aggregate fea-

tures and regress disparity. This method can be found first

in [19]. Chang et al. [3] improve Kendall’s approach [19]

by designing a spatial pyramid pooling module [14] so that

correspondence estimation can benefit from the image fea-

tures with rich object context information. Guo et al. [13]

combine the concatenation volume with the group-wise cor-

relation volume and improve the accuracy with 3D convolu-

tions. The best performance on Scene Flow dataset comes

from [25] which introduces the idea of DenseNet [16] to

further improve PSMNet [3]. Zhang et al. propose GANet

[42] with two guided aggregation layers and fifteen 3D con-

volutions to achieve state-of-the-art performance. Cheng et

al. improves the stereo matching based on 3D convolutions

with the help of NAS [5].

2.2. Residual Learning for Stereo Matching

The residual learning concept is proposed by He et al.

[15] which turns to be an efficient way to train a CNN model

and has been adopted by many works. In the stereo match-

ing task, the residual learning strategy is widely used for re-

fining disparity estimation [21, 34, 20, 37, 11, 2, 18]. Pang

et al. [26] present a cascade residual learning scheme and

adopt a two-stage CNN, in which the second stage refines

the estimation by producing residual signals. Stucker et al.

[32] specially build a U-Net [28] based network to enhance

the reconstruction by regressing a residual correction. In

order to meet the need for real-time inference, [36] takes

residual learning strategy to flexibly output disparity esti-

mation according to the requirement of applications. Song

et al. [31] manage to aggregate edge information for resid-

ual learning and thus construct a multi-task network for

edge detection and stereo matching.

3. Methodology

3.1. Network Architecture

The architecture of our proposed EDNet is shown in Fig-

ure 2. We exploit the structure of DispNetC [22] as the

backbone with extensive modifications. For feature extrac-

tion, the last left and right feature maps of conv3 from the

weights-sharing encoder network are used to form the com-

bined volume which is composed of a squeezed concate-

nation volume and a correlation volume which will be dis-

cussed in Section 3.2. The detail of our proposed cost vol-

ume combination method can be found in the left bottom

corner of Figure 2. 2D convolutions are then employed to

aggregate the combined volume and regress the disparity.

In the decoder part, we follow the coarse-to-fine strategy

to refine the disparity progressively. The spatial attention

module is applied in order to generate attention-aware resid-

ual features, which will be introduced in Section 3.3. The

stacked hourglass module in PSMNet [3] is used for resid-

ual regression but is implemented by 2D convolutions. The

attention-based spatial residual module is well illustrated in

the right bottom corner of Figure 2. Different from Disp-

NetC [22] which has 6 scales of output, we reduce the dis-

parity prediction to 4 scales, removing the prediction at 1/16

and 1/32 of full resolution.

3.2. Cost Volume Combination

Previous works simply build a correlation volume [22,

26, 34] or a 4D concatenation volume [19, 13, 3] which fol-

lows 2D or 3D convolutions for aggregation. However, a

single cost volume cannot meet the need of preserving con-

textual information and feature similarity at the same time.

GwcNet [13] improves the performance by combining the

group-wise correlation and concatenation volume, but 3D

convolutions are required for aggregation which leads to

higher memory consumption and more complex computa-

tion. To this end, we propose to combine the correlation

volume and 4D concatenation volume in a more efficient

way aiming at taking advantages of both two cost volumes.

Given a pair of stereo features fL and fR, we follow the

1D-correlation in DispNetC [22] to calculate the correspon-

dence at each disparity level d. The correlation volume is

computed as:

Ccorr(d, x, y) =
1

N
< fL(x− d, y), fR(x, y) > (1)

where < x1, x2 > is the inner product of two feature ma-

trices x1 and x2, and N is the channel number of input fea-

tures. The shape of the correlation volume is N ×D×H×

W , where N denotes the batch size, D is the estimated dis-

parity range and the spatial size is H × W . Then we con-

struct the 4D concatenation volume by concatenating the

left and right feature maps, i.e.,

Cconcat(d, x, y) = Concat{fL(x− d, y), fR(x, y)} (2)

After obtaining the concatenation volume with the shape

N × D × C × H × W , we use three 3D convolutions for

aggregation and compress it into 1 channel. The aggre-

gated concatenation volume now has the shape N × D ×

1 × H × W . It is then squeezed into N × D × H × W ,

the same shape as the correlation volume. The correlation

volume and squeezed concatenation volume are finally con-

catenated to form the combined volume. In this way, both

the contextual information and feature similarity measure-

ment are incorporated in the combined volume. Further ag-

gregation can be done by 2D convolutions instead of 3D

convolutions, which are more efficient. The final combined
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Figure 2: An overview of our proposed EDNet. We exploit the architecture of DispNetC as the backbone. The attention-

based spatial residual module and combined volume are proposed for accuracy and efficiency improvement. To provide better

visualization, the skip connections in DispNetC and some other data flow are omitted here.

volume is formed as:

Ccomb(x, y) = Concat{Ccorr(x, y),Cconcat(x, y)} (3)

3.3. Attention-based Spatial Residual

The normal residual learning method lacks the spatial

evidence about where the errors occur. We propose an

attention-based spatial residual module to guide the resid-

ual learning process to pay more attention to those inaccu-

rate regions across the whole spatial space. According to

the estimated disparity d̂s at scale s, a synthesized left im-

age ĨsL can be obtained by warping the right image IsR, i.e.,

ĨsL(x, y) = IsR(x+ d̂s(x, y), y) (4)

With the warped left image and target left image, we can

get the error Es
L = |ĨsL − IsL|. A spatial attention mod-

ule with 3 layers of 2D convolution which are 1×1, 3×3

and 1×1 respectively is applied. The spatial attention fea-

ture map fsa is compressed into one channel followed by

the sigmoid function to compute the spatial attention matrix

whose size is N × 1×H ×W . The input of error map and

color stereo images enables the spatial attention module to

learn an attention distribution on blurry object boundaries

and mismatched pixels. Akin to FADNet [34], CRL[34],

FlowNet2 [17], the input to spatial attention module is the

concatenation of the stereo images, error map and estimated

disparity map.

We follow DispNetC [22] to preserve both the high-

level information and local information by skip-connection.

The concatenation of ‘upconvolution’ feature maps from

the decoder network and corresponding feature maps from

the encoder network is then concatenated with the in-

put of attention module to form the residual feature maps

fsr ∈ RH×W×C . The final attention-aware residual features

fsar ∈ RH×W×C at scale s are computed by multiplying the

attention matrix and residual features fsr, i.e.,

fsar = fsar ⊗ σ(fsa) (5)

where σ(·) denotes the sigmoid function. The attention-

aware residual features are then input to the stacked hour-

glass module for residual regression. The stacked hourglass

module has the same encoder-decoder structure as PSMNet

[3] but is implemented with 2D convolutions.

The attention-based spatial residual module is repeated

3 times as we increase the resolution of the disparity map

progressively. Different from the aforementioned works

[34, 26], we compute error maps across multiple scales as

the error information changes accordingly after the correc-

tion. Therefore, we provide the residual learning module

with constantly updated error maps across multiple scales

instead of a single error map at full resolution.
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3.4. Multi-scale Residual Learning

Instead of building a cascade architecture with residual

refinement at the second stage [17, 26, 34], we simply re-

place the direct disparity estimation with a residual estima-

tion over all scales except the smallest S at which the initial

disparity is computed. The multi-scale residual outputs are

denoted as {rs}S−1

s=0
where 0 represents the scale of full res-

olution. For the rest S scales, the estimated disparity at the

previous scale is first upsampled to the current scale d̂sup
using bilinear interpolation function and then added to the

residual for refinement. The final predicted disparity d̂s at

scale s is produced as:

d̂s = d̂sup + rs, 0 ≤ s ≤ S − 1 (6)

3.5. Loss Function

Given the output disparity map at different scales, we

adopt the pixel-wise smooth L1 loss to train our EDNet at

scale s:

Ls(ds, d̂s) =
1

N

N
X

i=1

smoothL1
(dsi − d̂si ), (7)

where N is the number of pixels of the disparity map, d̂si is

the ith element of the predicted disparity d̂s, and ds repre-

sents the ground truth disparity. The smooth L1 loss func-

tion is:

smoothL1
(x) =

(

0.5x2, if |x| < 1

|x|− 0.5, otherwise.
(8)

The final loss function is a combination of losses over all

scales, i.e.,

L =
S
X

s=0

λ
sLs(ds, d̂s) (9)

where λs is a scalar for adjusting the loss weight at scale s.

4. Performance Evaluation

4.1. Datasets and Evaluation Metrics

Three public datasets are used for training and testing

our EDNet. The Scene Flow dataset [22] consists of 39,824

pairs of synthetic stereo RGB images (35,454 pairs for

training and 4,370 pairs for testing) with a full resolution of

960×540. Both KITTI 2012 [10] and KITTI 2015 [24] are

datasets of real scenes with a full resolution of 1242×375.

The ground truth of these two datasets is generated by lidar

so that only sparse ground truth is available. We evaluate

our model on Scene Flow dataset with the end-point error

(EPE), 1-pixel error and 3-pixel error. The end-point er-

ror computes the mean disparity error in pixels while the 1-

pixel error and 3-pixel error measure the average percentage

of the pixel whose EPE is bigger than 1 pixel and 3 pixels

respectively. The official metrics (e.g., D1-all) are reported

for evaluation on KITTI 2012 and KITTI 2015 datasets.

4.2. Implementation Details

We implemented our EDNet by PyTorch [27] and trained

the model with Adam (momentum=0.9, beta=0.999) as op-

timizer. For Scene Flow dataset, raw images are randomly

cropped to 320×640 as input. Our training is performed on

2 NVIDIA RTX 2080Ti GPUs for 70 epochs with a batch

size of 8 (4 on each GPU). We follow the training strategy

in AANet [37], where the initial learning rate is set to 0.001

and decreased by half every 10 epochs after 20th epoch.

The loss weights are set to λ0 = 1.0,λ1 = λ2 = 0.8,λ3 =
0.6. The crop size for KITTI is set as 256×512. Due to

the insufficient training samples of both KITTI 2012 and

KITTI 2015, the pre-trained Scene Flow model is used for

fine-tuning on the mixed KITTI 2012 and KITTI 2015 train-

ing sets for the first 1000 epochs which follows another 400

epochs of training on two datasets to get the submission re-

sult respectively. We use a constant learning rate of 0.0001

for KITTI datasets. Inspired by [23] that searching the cor-

respondence at a coarse scale can be beneficial, especially

in low-texture or textureless regions, the loss weights are

set as λ0 = 0.6,λ1 = λ2 = 0.8,λ3 = 1.0. For all datasets,

color normalization is taken into use with the mean ([0.485,

0.456, 0.406]) and variation ([0.229, 0.224, 0.225]) of the

ImageNet [6] for data pre-processing. The maximum dis-

parity is set as 192 pixels.

4.3. Ablation Study

To validate the effectiveness of each component in ED-

Net, we evaluate our model with different configurations on

Scene Flow dataset. All the experimental results are ob-

tained after 10 epochs of training. As shown in Table 1,

removing either of the combined volume or attention-based

spatial residual leads to a clear drop of performance.

Cost Volume Combination: As shown in Figure 3,

models without the combined volume suffer from inaccu-

rate and discontinuous disparity estimation, especially in

low-texture regions. The possible reason might be that

a single cost volume is unable to avoid the information

loss which leads to less robust feature representations. As

shown in Table 1, the EPE decreases from EDNet-NS’s 1.07

to EDNet-F’s 1.00. The comparison among EDNet-NRS,

EDNet-NRCo and EDNet-NR can validate the effectiveness

of our proposed combined volume as well.

Attention-based Spatial Residual: It can be directly

analyzed from EDNet-NR and EDNet-NA in Table 1 that

the residual learning module brings significant improve-

ment in terms of accuracy, about 36% decrease of EPE. The

comparison between EDNet-NA and EDNet-F in Table 1

demonstrates that the learning efficiency can be further im-
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Method
Cost Volume Residual Module Results

correlation s-concatenation normal attention EPE >1px(%) >3px(%)

EDNet-NRS 3 1.67 27.9 9.7

EDNet-NRCo 3 1.89 29.9 10.7

EDNet-NR 3 3 1.63 27.4 9.8

EDNet-NA 3 3 3 1.04 12.7 5.4

EDNet-NS 3 3 1.07 13.1 5.8

EDNet-F 3 3 3 1.00 12.2 5.4

Table 1: Evaluation of EDNet with different settings. We compute the end-point error, 1-pixel and 3-pixel error on Scene Flow

dataset. We use ”Co”, ”S”, ”R”, ”A” to denote the correlation volume, squeezed concatenation volume, normal residual, and

attention-based residual respectively. ”N” stands for ”not applied”. ”EDNet-F” represents the model with all our proposed

components and ”s-concatenation” means the squeezed concatenation volume.
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Figure 3: Visualization of the ablation study results on

Scene Flow dataset. Our proposed combined volume and

spatial residual module can bring great performance im-

provement especially at bounding box areas.

proved with the help of the attention mechanism. The visu-

alization of EDNet-NA and EDNet-F shown in Figure 3 il-

lustrates that more details like the shaper object boundaries

Figure 4: Comparison among models with different num-

bers of error maps. The multi-scale error maps speed up

the convergence and achieve a lower loss. “n scale(s)” in-

dicates that the error map is applied to the residual features

from scale 0 to scale n.

can be recovered with the attention-based spatial residual.

Multi-scale Error Maps: Experiments are conducted to

prove that our multi-scale error maps mechanism is of great

importance to the residual learning. We remove the error

map from the residual features as well as the input of atten-

tion module from scale 2 to all scale. As shown in Figure

4, models with error maps at multiple scales can achieve a

lower EPE loss with a faster convergence speed. Such per-

formance gain comes at a low cost of extra computation.

Multi-scale error maps enable the residual module to learn

from the error at the corresponding scale and thus greatly

explore the ability of residual learning.

4.4. Experimental Results

In this subsection, we compare our method with those

existing state-of-the-art methods in the aspect of inference

speed, memory consumption and accuracy on Scene Flow,

KITTI 2015 and KITTI 2012 datasets. We also evaluate the

model generalization on Middlebury 2014 dataset [29].
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Method PSMNet [3] GANet [42] GwcNet [13] Bi3D [1] DispNetC [22] AANet+ [37] Ours

EPE 1.09 0.84 0.76 0.73 1.68 0.72 0.63

Time (s) 0.453 3.302 0.254 OOM 0.025 0.068 0.059

Table 2: EPE values on Scene Flow dataset of several state-of-the-art methods. Our method achieves the best scores and has

a competitive inference speed. The inference time is tested on a single NVIDIA 2080Ti GPU at the resolution of 576×960

for a fair comparison. OOM denotes out of memory. “X” indicates the second best.
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Figure 5: Visual comparison of our EDNet and some other

top-performing methods. Please enlarge the bounding box

areas for more details.

Scene Flow Dataset: As shown in Table 2, our pro-

posed EDNet not only outperforms all the competing state-

of-the-art methods with the lowest EPE but also runs signif-

icantly faster: approximately 7.5× faster than PSMNet [3],

4× faster than GwcNet [13], 55× faster than GANet [42].

Compared with DispNetC [22] and StereoNet [20], EDNet

improves the performance by 60% and 40% respectively.

Figure 5 gives a visual comparison between our EDNet and

other outstanding methods. Sharper object boundaries and

more continuous disparity maps can be generated by ED-

Net, indicating the value of our proposed approach.

KITTI Datasets: We divide the comparison into two

groups as shown in Table 3 and Table 4. First, com-

pared with other top-performing methods, our EDNet still

achieves competitive results when evaluating non-occluded

Method
Noc (%) All (%)

Time (s)
fg all fg all

GANet [42] 3.37 1.73 3.82 1.93 0.36

GCNet [19] 5.58 2.61 6.16 2.87 0.9

PSMNet [3] 4.31 2.14 4.62 2.32 0.41

GwcNet [13] 3.49 1.92 3.93 2.11 0.32

SegStereo [38] 3.70 2.08 4.07 2.25 0.6

MC-CNN [43] 7.64 3.33 8.88 3.89 67

HD3 [39] 3.43 1.87 3.63 2.02 0.14

CSN [12] 3.55 1.78 4.03 2.00 0.6

DeepPruner-B [8] 3.18 1.95 3.56 2.15 0.18

Bi3D [1] 3.11 2.01 3.48 2.21 0.48

Ours 3.33 2.31 3.88 2.53 0.05

AANet [37] 4.93 2.32 5.39 2.55 0.06

DeepPruner-F [8] 3.43 2.35 3.91 2.59 0.06

DispNetC [22] 3.72 4.05 4.41 4.34 0.06

FADNet [34] 3.07 2.59 3.50 2.82 0.05

MADNet [33] 8.41 4.27 9.20 4.66 0.02

Ours 3.33 2.31 3.88 2.53 0.05

Table 3: Benchmark results on KITTI 2015 test sets. “Noc”

and “All” indicate the percentage of outliers averaged over

ground truth pixels of non-occluded and all regions respec-

tively. “fg” and “all” indicate the percentage of outliers av-

eraged over the foreground and all ground truth pixels re-

spectively. “X” indicates the best result.

pixels while runs considerably faster according to the

benchmark. Then we compare our EDNet with previous

real-time models. Experimental results from Table 3 and

Table 4 show that our work can produce competitive esti-

mation. To stress the efficiency of our proposed method,

we compare the computational complexity, memory con-

sumption as well as the inference speed with some popular

3D convolutions based models. Table 5 comprehensively

shows that our model requires less memory consumption:

approximately 50% less than PSMNet [3], 40% less than

GwcNet [13], 60% less than GANet [42] and 70% less than

Bi3D [1]. Moreover, our EDNet has lower computational

complexity as our work has the lowest FLOPs (the lower

the better) and runs significantly faster: approximately 7×

faster than PSMNet [3], 17× faster than Bi3D [1] and 45×

faster than GANet [42]. Figure 6 visualizes the dispar-

ity and error maps of our method and other state-of-the-art

works on KITTI 2015 dataset.
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AANet OursDispNetC PSMNet GwcNet

psmnet

Figure 6: Results of the disparity prediction for KITTI 2015 testing data. The leftmost column shows left images of the stereo

pairs. The rest five columns show the disparity maps predicted by DispNetC [22], PSMNet [3], GwcNet [13], AANet[37]

and our EDNet, as well as their error maps.

Method
Out (%) Avg

Time (s)
Noc All Noc All

GANet [42] 2.18 2.79 0.5 0.5 0.36

GCNet [19] 2.71 3.46 0.6 0.7 0.90

PSMNet [3] 2.44 3.01 0.5 0.6 0.41

GwcNet [13] 2.16 2.71 0.5 0.5 0.32

SegStereo [38] 2.66 3.19 0.5 0.6 0.60

MC-CNN [43] 3.90 5.45 0.7 0.9 67

Ours 2.97 3.67 0.5 0.6 0.05

AANet [37] 2.90 3.60 0.5 0.6 0.06

StereoNet [20] 4.91 6.02 0.8 0.9 0.015

DispNetC [22] 7.38 8.11 0.9 1.0 0.06

FADNet [34] 3.98 4.61 0.6 0.7 0.05

Ours 2.97 3.67 0.5 0.6 0.05

Table 4: Benchmark results on KITTI2012 test sets. Both

the percentage of pixels with error bigger than 2 and the

overall EPE are reported over non-occluded and all regions.

Method Memory (GB) GFLOPs Time (s)

PSMNet [3] 4.83 937.9 0.393

GANet [42] 6.53 1936.98 2.43

GwcNet [13] 4.27 899.99 0.272

Bi3D [1] 10.74 4212.05 0.899

Ours 2.52 162.92 0.053

Table 5: Comparisons of the runtime, running memory and

computational cost. All the results are tested on a single

NVIDIA RTX 2080Ti GPU at a resolution of 1248×384.

Middlebury 2014 Dataset: We evaluate the model gen-

eralization on Middlebury 2014 dataset without additional

training. All the models are pretrained on Scene Flow and

finetuned on KITTI. As observed from Figure 7, the perfor-

mance of our EDNet is superior to others, as more smooth

and continuous disparity estimation in low-texture regions

can be produced. Moreover, our EDNet can preserve better

overall object structures and generate sharper edges.
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Figure 7: Evaluation of model generalization on Middle-

bury 2014 dataset. Our EDNet produces more smooth and

continous disparity maps. Sharper object boundaries as well

as better overall structures can be recovered. Please zoom

in bounding box areas for a further comparison.

5. Conclusion

We have exploited an efficient architecture called EDNet

with the proposed combined volume and attention-based

residual module. We show that the combination of the cor-

relation volume and squeezed 4D concatenation volume is

of great importance to robust feature representations, espe-

cially in ill-posed regions. Besides, the employment of the

spatial attention module greatly improves the efficiency of

residual learning with multi-scale error maps. Extensive ex-

perimental results on KITTI and Scene Flow datasets have

demonstrated the superiority of our method when compar-

ing with previous state-of-the-art methods. The future work

would be applying our work to other depth-related tasks,

e.g., 3D reconstruction and robot navigation.
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