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Abstract

Synthetic aperture imaging (SAI) is able to achieve the

see through effect by blurring out the off-focus foreground

occlusions and reconstructing the in-focus occluded targets

from multi-view images. However, very dense occlusions

and extreme lighting conditions may bring significant dis-

turbances to the SAI based on conventional frame-based

cameras, leading to performance degeneration. To address

these problems, we propose a novel SAI system based on the

event camera which can produce asynchronous events with

extremely low latency and high dynamic range. Thus, it can

eliminate the interference of dense occlusions by measuring

with almost continuous views, and simultaneously tackle the

over/under exposure problems. To reconstruct the occluded

targets, we propose a hybrid encoder-decoder network com-

posed of spiking neural networks (SNNs) and convolutional

neural networks (CNNs). In the hybrid network, the spatio-

temporal information of the collected events is first encoded

by SNN layers, and then transformed to the visual image

of the occluded targets by a style-transfer CNN decoder.

Through experiments, the proposed method shows remark-

able performance in dealing with very dense occlusions and

extreme lighting conditions, and high quality visual images

can be reconstructed using pure event data.

1. Introduction

Harsh environments, e.g. with dense occlusions and ex-

treme lighting conditions, often prohibit the efficient imag-

ing of real scenes, due to the fact that the collected light

information is very limited and moreover severely dis-

turbed. Synthetic aperture imaging (SAI) tackles the prob-

lem of seeing through occlusions via multi-view exposures

[18, 17], forming the light field [29] of the target scene un-
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Figure 1: Prototype of the event-based synthetic aper-

ture imaging (E-SAI) system and the illustrative examples

of see through imaging under harsh environments via (b)

the conventional frame-based SAI and (c) the event-based

SAI. Under either very dense occlusions or extreme lighting

scenes, the proposed E-SAI method can successfully gener-

ate high quality visual images for the occluded scenes.

der occlusions. The basic idea of SAI is to extract the light

information of the occluded scenes while filter out fore-

ground occlusions [11, 26]. However, very dense occlu-

sions and extreme lighting scenes may bring severe distur-

bances, leading to serious degradation on imaging quality

or even failure reconstructions (e.g., Fig. 1).

• Very dense occlusions: With conventional frame-

based cameras, the light cues are captured via bright-

ness intensities. Very dense occlusions will greatly de-

crease the “signal”, i.e. the light from target scenes,

while increase the “noise”, i.e. disturbances from fore-
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ground occlusions, leading to considerable reduction

of the Light-SNR (ratio of “signal” to “noise”).

• Extreme lighting scenes: Due to the low dy-

namic range (e.g. about 60 dB), images from con-

ventional frame-based cameras usually suffer from the

over/under exposure problems under extreme lighting

conditions. It will severely degrade the imaging qual-

ity and thus reduce the confidence of the light informa-

tion from target scenes.

As a consequence, conventional frame-based SAI (F-SAI)

often fails in these cases, and it is of great demand to de-

velop new SAI methods to handle such harsh environments.

In this paper, we address the aforementioned prob-

lems by presenting a novel SAI method with event cam-

eras [1]. Event cameras only measure the pixel-wise bright-

ness changes of scenes in an asynchronous manner, leading

to many outstanding properties including extremely low la-

tency (in the order of µs), high dynamic range (> 120 dB)

and low power consumption [6, 1]. Instead of using frame-

based intensity images, as shown in Fig. 1, event-based SAI

(E-SAI) collects the light information from occluded tar-

gets via event streams, representing the brightness differ-

ence between the foreground occlusions and the occluded

targets. This mechanism means that a higher density of

occasions produces more events from occluded targets, i.e.

more light information of targets can be recorded. With the

low latency, event cameras can capture adequate informa-

tion of the occluded object from almost continuous view-

points. Thanks to the high dynamic range of event camera,

E-SAI is able to collect confident light information from oc-

cluded targets even under extreme lighting conditions, mak-

ing the reconstruction of scenes feasible (e.g., Fig. 1).

Although E-SAI can easily handle the aforementioned

problems, we still have to answer the following question:

how to effectively process the event stream and recon-

struct the high quality visual images of occluded targets?

Since the working mechanism of event camera differs rad-

ically from that of the frame-based one, conventional com-

puter vision methods, e.g. convolutional neural networks

(CNNs), cannot be directly applied to such asynchronous

event streams, where the temporal and spatial information

of events should be simultaneously considered [1].

The spiking neural network (SNN) [8, 7] serves as a per-

fect model for integrating spatio-temporal information. Un-

like other artificial neural networks, spiking neurons do not

respond to stimulus in a synchronous fashion. Instead, the

membrane potential of spiking neurons updates over time,

and a spike will be generated whenever the membrane po-

tential exceeds a specific spiking threshold. Thus the spatio-

temporal information is naturally encoded in the spike po-

sition and timing. Exploiting this, the influence of noise

events can be further mitigated from the temporal dimen-

sion, leading to the improvement of Light-SNR. However,

recent researches have observed the vanishing spike phe-

nomenon [10] in deep spiking layers. Thus SNNs often

suffer from performance degradation when the number of

layers increases.

To tackle this, we propose a hybrid neural network that

contains a SNN encoder and a CNN decoder. With initial

spiking layers, the spatio-temporal information of events

can be efficiently integrated and encoded. Then, the CNN

is able to decode the rich output of SNN, and effectively re-

construct the visual image of occluded targets. Therefore,

this architecture not only utilizes sufficient information of

events, but also guarantees the overall performance of re-

construction.

In a nutshell, contributions of this paper are three-fold:

• We present a novel event-based SAI algorithm with

systematic analysis, which can overcome the dilemma

that the conventional F-SAI faces under very dense oc-

clusions and extreme lighting conditions.

• We propose a hybrid SNN-CNN encoder-decoder net-

work to reconstruct high quality visual images for E-

SAI. By leveraging the merits of SNN and CNN, the

spatio-temporal information of events can be well re-

tained and utilized, and thus the occluded target can be

effectively reconstructed.

• We construct an event-based SAI dataset to evaluate

the proposed method, and make them available to the

research community.

2. Related Work

Synthetic Aperture Imaging: How to see through the

foreground occlusion has attracted considerable interest for

decades [18, 27, 11, 26]. Through calibrating the images

captured by camera arrays, a plane + parallax framework

was proposed to solve the de-occlusion problem [18]. Since

the output of camera arrays can be regarded as a virtual

camera imaging with large-aperture lens, the foreground

occlusion can be effectively blurred out when the back-

ground target is refocused on. But this method often results

in blurry images because the information from both occlu-

sions and targets will be indiscriminately used for recon-

struction. To improve the performance, a variety of tech-

niques have been exploited to filter the disturbance of oc-

clusions, including depth-based approach [27], energy min-

imization [11] and k-means clustering [26]. By separating

targets from foreground occlusions, a better de-occlusion

effect can be achieved using only target information.

The principle of traditional F-SAI is to reconstruct the

occluded target via multi-view images captured by a mov-

ing camera [29] or a camera array system [23, 21]. By pro-

jecting all images to the plane where targets are located,

the light information of occluded target is aligned while the

occlusion becomes out of focus. Afterward, reconstruction

can be performed to achieve the see through effect. But due

14236



Figure 2: Overall pipeline of the proposed E-SAI. As moving the event camera, E-SAI collects event streams EA
θ with almost

continuous viewpoints θ and forms the event field E
A. To reconstruct high quality images from E

A, we propose to employ

the hybrid SNN-CNN network after the event refocusing process.

to the inherent mechanism of traditional camera, the Light-

SNR of captured images is often severely reduced when en-

countering very dense occlusions or extreme light scenes,

resulting in significant performance degradation.

Event Cameras: Instead of frame-based intensity im-

ages, event cameras generate asynchronous events [1], com-

posed of pixel position, time stamp and polarity. Specif-

ically, the i-th event ei = (pi, xi, ti) is triggered at pixel

position xi and time ti whenever the log-scale brightness

change exceeds a pre-setting threshold η, i.e.

log(I(xi, ti))− log(I(xi, ti −∆ti)) ≥ pi · η, (1)

where I(·) denotes the intensity of pixel; ∆ti indicates the

time since the last event at position xi; pi ∈ {+1,−1}
is the polarity representing the sign of brightness change

[6]. This paradigm shift in visual information acquisition

leads to many outstanding properties like extremely low la-

tency and high dynamic range, and promotes great potential

in many computer vision tasks like optical flow estimation

[20], high dynamic range (HDR) imaging [14] and simulta-

neous localization and mapping (SLAM) [19].

Similarly, event cameras pose great advantages in deal-

ing with the see through tasks. Due to the low latency prop-

erty, sufficient light information of occluded targets can be

acquired by event cameras under disturbance of dense oc-

clusions. On the other hand, the high dynamic range of

event cameras provides the possibility of measuring light

information under extreme lighting conditions. Thus it mo-

tivates us to exploit event cameras to tackle the problem of

SAI under very dense occlusions and extreme lighting con-

ditions, and propose the E-SAI.

3. Problem Statement

Suppose for some static unknown scene A with IAθ (u, v)
representing the projected brightness intensity captured

with the camera pose θ, where u, v are respectively horizon-

tal / vertical coordinates. Then I
A
, {IAθ }θ∈P forms a ten-

sor of light field of A with P the set of camera poses. Ana-

logically, the light field of occlusions O can be represented

as I
O

, {IOθ }θ∈P with IOθ (u, v) denoting the brightness

intensity captured with the camera pose θ.

F-SAI: The task of F-SAI is to achieve the see through

imaging from limited number of occluded observations, i.e.,

Ī
A
= {ĪAθ }θ∈P with |P| < ∞ and

ĪAθ = MO(IAθ ) + IOθ + In (2)

where In denotes the measurement noises and MO repre-

sents the masking operator for MO(·) = 0 only when it

is occluded by O. With very dense occlusions, ĪAθ will be

severely contaminated and the extreme lighting conditions

make the observations completely saturated and incorrect,

leading to failure reconstruction of visual images for A.

E-SAI: As illustrated in Fig. 1, events are induced by

the brightness change as moving the event camera, then we

can denote the collected events with camera pose θ as a set

of stream EA
θ , {ei}

M
i=1

= {(pi, xi, ti)}
M
i=1

with M =
|EA

θ |. According to the generating process, we can divide

EA
θ into two categories: (1) Signal events, denoted as EOA

θ ,

are induced by the brightness difference between the scene

A and the occlusion O. Then based on Eq. (1), the number

of events emitted for EOA
θ ,

|EOA
θ | ∝

∣

∣log(IAθ )− log(IOθ )
∣

∣ . (3)

(2) Noise events include the physical noises En inherently

from the event camera and the interference events induced

by the brightness change (caused by textures) of occlusions

EOO
θ and occluded targets EAA

θ as moving the event camera.

Due to the low latency property, E-SAI is able to collect

events EA
θ from almost continuous viewpoints θ and form

the event field, i.e. EA = {EA
θ }θ∈P , with |P| → ∞ and

EA
θ = EOA

θ + EOO
θ + EAA

θ + En (4)

where EOA
θ encodes the light information from the occluded

targets and the other terms are considered as noises. Thus

the main problem of E-SAI is to reconstruct the high quality

visual images of the scene A from the event field E
A which

are severely disturbed by noise events.

4. Event-based SAI

Fig. 2 illustrates the overall pipeline of the proposed E-

SAI algorithm, which aims at reconstructing the high qual-

ity visual images of occluded targets. It consists of two
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Figure 3: Diagram of event generating process in E-SAI

system. As the event camera moves, signal events triggered

with camera poses θ1 and θ3 are induced by the brightness

difference between occlusions (green) and the target A (or-

ange), while noise events triggered with camera pose θ2 are

induced by textures on occlusions.

main steps: refocusing and reconstruction. The purpose

of refocusing is to align the signal events, while scatter

out the noise events from both spatial and temporal dimen-

sions. For the reconstruction, a hybrid SNN-CNN network

is proposed to mitigate the disturbance of noise mentioned

in Eq. (4). With spiking layers, the influence of scattered

noise events can be eliminated from the temporal dimen-

sion, thus a clean visual result can be decoded by the CNN.

4.1. Event Refocusing

Previous works [2, 13] have presented the similar ideas

of event refocusing. But in our case, the basic principles of

the aforementioned techniques are violated due to the dis-

turbance of dense occlusions and extreme lighting scenes.

Thus we only consider a simple situation with linear camera

motion and known target depth in this work. As displayed

in Fig. 3, a moving camera is employed to collect events EA

from multiple viewpoints. We assume that the event cam-

era keeps staying on the camera plane and the optical axes

of all camera poses are parallel. Since all the events are

emitted asynchronously as the camera moves, a pixel-wise

refocusing process needs to be performed for event align-

ment. Define θref as the reference camera pose and Xi as

the coordinate of pixel xi in the camera coordinate system

at pose θi. According to the multiple view geometry [3]

and the pinhole imaging model [12], the refocusing equa-

tion can be formulated as [28]:

x
ref
i = KRiK

−1xi +
KTi

d
, (5)

where x
ref
i represents the target pixel position on the ref-

erence imaging plane; K is the intrinsic matrix of cam-

era; Ri, Ti are the rotation and translation matrices between

camera poses θi and θref ; target depth d is the distance be-

tween target A and the camera plane.

Figure 4: An illustrative example of the LIF neuron and its

working mechanism. The spikes from pre-neurons are first

weighted and then fed into the target neuron-n, charging

the internal membrane potential un(t). Spikes will be fired

whenever un(t) > Uth. Due to the leakage mechanism, the

LIF neuron is able to filter out the isolated spikes, e.g. the

noise events scattered out in spatio-temporal dimensions.

Exploiting Eq. (5), the refocused event field can be

obtained E
A,ref = {EA,ref

θ }θ∈P where EA,ref
θ =

{erefi }Mi=1
= {(pi, x

ref
i , ti)}

M
i=1

and all events are projected

to the imaging plane of the reference camera at pose θref .

After refocusing, the events triggered by target A are suc-

cessfully aligned, while others, e.g. the events generated by

occlusions, are scattered out in both temporal and spatial

dimensions, achieving a preliminary de-occlusion effect.

4.2. Reconstruction with a Hybrid Network

According to Eq. (3), the brightness intensity of the oc-

cluded scene is closely related to the number of events.

Thus the visual image of the occluded scene can be re-

covered by event accumulation after the refocusing process

without removal of noises. Even though CNN-based meth-

ods can be further exploited to alleviate the noise problem,

the temporal information behind events cannot be effec-

tively used. In view of this, we propose a hybrid neural

network composed by a SNN encoder and a CNN decoder,

where both spatial and temporal information of events can

be efficiently considered and utilized.

SNN Encoder: Although the noise events are dispersed

during the refocusing process, their presence still affects the

quality of reconstruction. To deal with it, we implement the

SNN encoder using the leaky integrate-and-fire (LIF) model

[25]. As shown in Fig. 4, LIF neurons are usually acti-

vated when receiving more continuous spikes. If no new

spikes are fed, the internal membrane potential will gradu-

ally leak over time. Recall that all signal events are success-

fully aligned during the refocusing process, i.e. they appear

more continuously in the temporal dimension, while these

noise events are scattered in both time and space. Thus, the

leakage mechanism of LIF neuron is able to eliminate the
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Figure 5: Structure of the hybrid encoder-decoder network. The spatio-temporal information of events is first encoded by

SNN blocks, and then transformed to visual images by the CNN decoder. To reduce the information loss of events, we add

skip connections between the event frame and the output of the 1-st, 2-nd spiking convolution (S-Conv) layers.

influence of noise events, meanwhile preserving the infor-

mation of occluded targets.

LIF Neuron: Define ul
n(t) as the membrane potential of

the neuron-n on the l-th layer at time t. The update of mem-

brane potential can be described as

ul
n(t) = αul

n(t− 1) + cln(t), (6)

where α ∈ [0, 1] denotes the decay factor and cln(t) is the

input current corresponding to neuron-n. Considering the

convolution operation in spiking layers, Eq. (6) can be re-

formulated as:

ul
n(t) = αul

n(t− 1) +
∑

m

wmno
l−1

m (t− 1), (7)

where ol−1

m (t− 1) represents the output spike of neuron-m

on the (l − 1)-th layer at time t − 1, and wmn denotes the

synaptic weight between neuron-m and neuron-n. Further,

we add the reset & fire mechanism into Eq. (7),

ul
n(t) = αul

n(t− 1)(1− oln(t− 1))+
∑

m

wmno
l−1

m (t− 1),

(8)

where the output spike oln(t) is defined by

oln(t) =

{

1, if ul
n(t) > Uth,

0, otherwise,
(9)

and Uth represents the spiking threshold. Eq. (8) indicates

that the membrane potential of neuron-n is affected by both

its own state and the input spikes. If no new spikes are

fed, the membrane potential ul
n(t) will leak at a certain rate

related to the factor α. In contrast, if the potential ul
n(t) is

charged up to the spiking threshold Uth, the potential will

be immediately reset to the resting potential Urest = 0 and

simultaneously a spike will be emitted to other neurons.

SNN Structure: As illustrated in Fig. 5, our SNN encoder

consists of a three-layer structure composed of LIF neurons.

To make a balance between computational complexity and

information integrity, we present a spatio-temporal repre-

sentation for events. Given a pre-setting number of event

frames, e.g. N , the refocused event sequence are fairly di-

vided into N time intervals. In each interval, an event frame

can be generated by accumulating events over time, and

each frame contains two channels (positive and negative

events). Thus, every input group includes N event frames

and the temporal relationship between event frames is re-

tained. Over time, event frames sequentially pass through

the spiking layers, and the membrane potential of spiking

neurons updates between time intervals. Since noise events

are scattered during refocusing, their influence can be grad-

ually leaked out by the potential update of LIF neurons.

Therefore, the noise issue is well alleviated, guaranteeing

the reconstruction quality of occluded targets. To avoid the

vanishing spike phenomenon in deep spiking layers [10],

we instead implement the decoder with a deep CNN block.

CNN Decoder: Due to the inherent difference between

the event feature map and the visual image, we regard the

decoding process as a style-transfer task. Here, we adopt

the decoder architecture from the generator network used in

[30], which shows remarkable results in image style trans-

ferring, and adjust the kernel size of the output layer to fit

the gray-scale images in our case. Benefiting from the hy-

brid structure, the spatio-temporal information of events can

be fully utilized by the SNN encoder, and the occluded tar-

gets can be effectively reconstructed by the CNN decoder,

guaranteeing the overall performance.

Training Hybrid Network: The synaptic weights in

SNN can be trained in a supervised fashion via the spatio-

temporal back propagation (STBP) technique [24, 25],

where the gradient of each pixel can be derived based on

time intervals. And CNNs can be trained via back propaga-

tion (BP). Thus the SNN and CNN in the proposed hybrid

network can be jointly trained.
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To guide the training, we first exploit the idea of per-

ceptual loss [4] for high-level feature learning. With a pre-

trained loss network φ, we denote φk(X) as the output of

the k-th convolution layer when network φ processes image

X . Assume that φk(X) has the shape Ck ×Hk ×Wk, we

can formulate the perceptual loss Lper as:

Lper(Y, Ŷ ) =
∑

k

λk

CkHkWk

‖φk(Y )− φk(Ŷ )‖2
2
, (10)

where Y represents the output of the hybrid network and

Ŷ is the corresponding ground truth; λk denotes the weight

of the k-th feature map. Rather than encouraging the pixel-

wise match between images, the perceptual loss encourages

the network to learn the similarity between high-level fea-

tures, leading to better visual results.

In the pixel level, we add the pixel loss Lpix to maintain

the similarity in low-level features like shape and texture.

We express the pixel loss as:

Lpix(Y, Ŷ ) =
‖Y − Ŷ ‖1
CHW

, (11)

where C × H × W represents the shape of Y and Ŷ . Be-

sides, the total variance loss Ltv(Y ) in [9] is exploited to

encourage the spatial smoothness of reconstruction. Thus,

the total loss can be summarized as follows.

L(Y, Ŷ ) = βperLper(Y, Ŷ )+βpixLpix(Y, Ŷ )+βtvLtv(Y ),
(12)

where βper, βpix and βtv are the weights that control the

importance of the corresponding loss function.

5. Experiments and Analysis

5.1. Experimental Settings

Event-based SAI Dataset: We build an event-based

SAI dataset where the event streams are captured by a

DAVIS346 camera [6] installed on a programmable slid-

ing trail. A large variety of targets are considered including

printed pictures, simple objects and real scenes. They are

occluded by the wooden fence installed parallel to the slid-

ing trail to imitate the very dense occlusions, as shown in

Fig. 2. By linearly sliding the DAVIS346 camera, the events

triggered by the brightness difference between the wooden

fence and the occluded targets are collected. The dataset

can be divided into two categories according to the shoot-

ing scenes: indoor and outdoor. The indoor dataset con-

tains printed pictures, simple objects and real scenes, while

the outdoor dataset only contains real complex scenes. The

gray-scale images are captured simultaneously as collecting

the events by DAVIS346 camera since it can output both

events and APS (active pixel sensor) frames. Moreover, we

collect the APS frames without occlusions and take them as

the ground truth of the occluded targets. In summary, the

event-based SAI dataset is built with 300 groups of data in-

cluding 250 groups for indoor and 50 groups for outdoor,

and each group contains a stream of events, a series of APS

frames with occlusions and one APS frame without occlu-

sions. For the extreme lighting scenes, there is no APS

frame without occlusions due to the over/under exposure

problem.

Training Details: We augment the event-based SAI

dataset by flipping (horizontal, vertical, and horizontal-

vertical) and rotating (random angles ranging from -10 to

10 degree). Finally, 216 groups (180 indoor groups and 36

outdoor groups) are augmented to 1296 groups for training,

while the rest in dataset are left for the testing phase. All

networks are trained on NVIDIA TITAN RTX GPUs with

batch size 8 for around 500 epochs, and the Adam optimizer

[5] is used, where the initial learning rate is set as 5× 10−4

and the step decay learning rate schedule is applied after the

250 epochs. The 16-layer VGG network [16] pretrained on

the ImageNet dataset [15] is employed as the loss network,

where the perceptual loss is calculated at the 2-nd, 4-th, 7-th

and 10-th convolution layers.

SAI Methods: For the frame-based SAI, the approach

proposed in [18] (F-SAI) is employed, where 35 images are

collected with frame-based cameras from different view-

points. In addition, we design a learning-based F-SAI using

CNNs (F-SAI+CNN) with the same 35 images. For the

event-based SAI, we evaluate three different reconstruction

methods, including accumulating method (E-SAI+ACC),

pure CNN method (E-SAI+CNN) and the proposed hybrid

network (E-SAI+Hybrid). In the E-SAI+CNN method, the

refocused event streams are stacked as a 2N -channel tensor

(2 represents the polarity) for network input. To evaluate

the effectiveness of our hybrid network, a pure CNN coun-

terpart is designed by simply replacing the SNN encoder

with a 3-layer CNN which has the same network setting as

the SNN. By applying the pure CNN model to F-SAI+CNN

and E-SAI+CNN, we can fairly compare these learning-

based SAI methods.

5.2. Qualitative Analysis

As shown in Fig. 6, the reconstruction results of F-SAI

methods are severely contaminated by dense occlusions

where a lot of details are missing. For the extreme lighting

scenes, the performance is even worse since the light from

the occluded target cannot be correctly measured due to

the over/under exposure problems encountered with frame-

based cameras. On the contrary, E-SAI methods are able

to produce results with better visual effects and retain more

details. Due to the inherent high dynamic range of event

camera, E-SAI methods do not suffer from over/under ex-

posure problems, thus the occluded target can be effectively

reconstructed under extreme lighting conditions.
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Figure 6: Qualitative comparisons between F-SAI and E-SAI algorithms under very dense occlusions (row 1-4) and extreme

lighting conditions (row 5-6) for indoor (row 1,2 and 6) and outdoor (row 3-5) dataset.

To reveal the advantages of our hybrid network, we com-

pare the visual results of E-SAI with different reconstruc-

tion techniques in Fig. 7. It is obvious that the result of

E-SAI+ACC is often noisy because both signal and noise

events are indiscriminately accumulated for reconstruction.

In the learning-based approaches, the E-SAI+CNN fed di-

rectly with the stacked event frames cannot efficiently deal

with the temporal information of asynchronous events, and

thus degrading the visual quality with detail losses, artifacts

and saturation. But these issues can be mitigated by the hy-

brid architecture, where the temporal information is utilized

by the SNN encoder. Over time, LIF spiking neurons can

efficiently leak out the influence of noise events which are

either emitted randomly or scattered out after the refocusing

process. Consequently, the proposed hybrid network gener-

ates images with the best visual quality.

5.3. Quantitative Analysis

In Table 1, we evaluate the quantitative results of the

proposed system. In the dense occlusion experiment, the
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Figure 7: Comparisons of F-SAI and E-SAI with different reconstruction methods. Details are zoomed in for better view.

Method

Dense Occlusion Extreme Exposure

Indoor Outdoor Over Under

PSNR SSIM PSNR SSIM Entropy STD Entropy STD

F-SAI [18] 13.89 0.4482 10.96 0.3124 4.855 16.86 5.022 26.06

F-SAI+CNN 26.44 0.8077 13.93 0.3744 5.684 20.77 4.165 4.264

E-SAI+ACC 14.71 0.2272 8.654 0.1887 5.706 41.16 5.314 50.10

E-SAI+CNN 31.27 0.8373 17.62 0.5237 6.921 56.16 6.105 33.84

E-SAI+Hybrid 33.04 0.8429 24.02 0.6524 7.417 61.95 6.204 34.87

Table 1: Quantitative comparisons between F-SAI and E-SAI algorithms. PSNR(dB) and SSIM are exploited for dense

occlusion cases. No-reference metrics, i.e. 2D entropy and STD are exploited for extreme exposure cases due to the absence

of the corresponding APS frames.

metrics PSNR and SSIM [22] are employed for quantita-

tive comparison, where the aligned APS images captured

by DAVIS346 are considered as the ground truth. In the

extreme exposure part, the no-reference assessment metrics

two-dimensional (2D) entropy [31] and standard deviation

(STD) are exploited to evaluate the image quality. 2D en-

tropy measures the amount of image information and higher

value indicates more information. STD is used to assess the

contrast of image and larger value means higher contrast.

Exploiting learning-based techniques, F-SAI+CNN is

able to produce better results than F-SAI under dense oc-

clusions. But both frame-based methods cannot deal with

the over/under exposure problem due to the low dynamic

range of traditional camera. On the contrary, event-based

approaches can effectively reconstruct visual images with

more information and better contrast. However, it is hard

for E-SAI+ACC to produce satisfactory PSNR and SSIM

results since the emission of events is based on the bright-

ness change in the logarithmic domain, which differs from

the intensity directly recorded in reference images. Through

learning the mapping relationship between the event do-

main and the image domain, this problem can be well solved

by the E-SAI+CNN and E-SAI+Hybrid. Regarding the

learning-based E-SAI, the hybrid network excels its pure

CNN counterpart over 6 dB in PSNR and 0.12 in SSIM un-

der complex outdoor scenes. This demonstrates that the use

of SNN encoder not only achieves the denoising purpose,

but also maintains the integrity of overall structure. In sum-

mary, our E-SAI+Hybrid method largely outperforms other

algorithms under dense occlusions, and can produce more

natural visual results in extreme lighting environments.

6. Conclusion

In this work, we proposed a novel SAI algorithm based

on event cameras. With extremely low latency and high

dynamic range of event cameras, our method is able to han-

dle the disturbance of dense occlusion and does not suffer

from the over/under exposure problem. This greatly ex-

pands the usage of SAI algorithm, enabling the application

under harsh conditions like daytime astronomical observa-

tion and nighttime penetrating imaging. Moreover, a hy-

brid SNN-CNN network is proposed to process the output

of event camera. Benefiting from the combination of SNN

and CNN, the spatio-temporal information of events is well

utilized and the reconstruction quality of occluded targets

is guaranteed. To test our method, we build an event-based

SAI dataset including scenes under heavy occlusions and

extreme lighting conditions. The result verifies that our ap-

proach is effective to these harsh environments and can re-

construct the occluded target with impressive visual effects.

14242



References

[1] Guillermo Gallego, Tobi Delbruck, Garrick Michael Or-

chard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan

Leutenegger, Andrew Davison, Jorg Conradt, Kostas Dani-

ilidis, and Davide Scaramuzza. Event-based vision: A sur-

vey. IEEE Trans. Pattern Anal. Mach. Intell., pages 1–1,

2020. 2, 3

[2] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.

A unifying contrast maximization framework for event cam-

eras, with applications to motion, depth, and optical flow es-

timation. In IEEE Conf. Comput. Vis. Pattern Recog., June

2018. 4

[3] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003. 4

[4] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Eur. Conf. Comput. Vis., pages 694–711, 2016. 6

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[6] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck.

A 128×128 120 dB 15 µs Latency Asynchronous Tempo-

ral Contrast Vision Sensor. IEEE J. Solid-State Circuits,

43(2):566–576, 2008. 2, 3, 6

[7] Wolfgang Maass. Networks of Spiking Neurons: The Third

Generation of Neural Network Models. Neural Networks,

10(9):1659–1671, 1997. 2

[8] Wolfgang Maass and Christopher Bishop. Pulsed neural net-

works. MIT Press, 1998. 2

[9] Aravindh Mahendran and Andrea Vedaldi. Understanding

deep image representations by inverting them. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 5188–5196, 2015. 6

[10] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy.

Toward Scalable, Efficient, and Accurate Deep Spiking

Neural Networks With Backward Residual Connections,

Stochastic Softmax, and Hybridization. Frontiers in Neu-

roscience, 14:653, 2020. 2, 5

[11] Zhao Pei, Yanning Zhang, Xida Chen, and Yee-Hong Yang.

Synthetic aperture imaging using pixel labeling via energy

minimization. Pattern Recognition, 46(1):174–187, 2013. 1,

2

[12] Zhao Pei, Yanning Zhang, Tao Yang, Xiuwei Zhang, and

Yee-Hong Yang. A novel multi-object detection method in

complex scene using synthetic aperture imaging. Pattern

Recognition, 45(4):1637 – 1658, 2012. 4

[13] Henri Rebecq, Guillermo Gallego, Elias Mueggler, and

Davide Scaramuzza. Emvs: Event-Based Multi-View

Stereo—3D Reconstruction with an Event Camera in Real-

Time. Int. J. Comput. Vis., 126(12):1394–1414, 2018. 4

[14] Henri Rebecq, Rene Ranftl, Vladlen Koltun, and Davide

Scaramuzza. Events-To-Video: Bringing Modern Computer

Vision to Event Cameras. In IEEE Conf. Comput. Vis. Pat-

tern Recog., pages 3852–3861, 2019. 3

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, and others. Imagenet

large scale visual recognition challenge. Int. J. Comput. Vis.,

115(3):211–252, 2015. 6

[16] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[17] Vaibhav Vaish, Marc Levoy, Richard Szeliski, C Lawrence

Zitnick, and Sing Bing Kang. Reconstructing Occluded Sur-

faces Using Synthetic Apertures: Stereo, Focus and Robust

Measures. In IEEE Conf. Comput. Vis. Pattern Recog., vol-

ume 2, pages 2331–2338, 2006. 1

[18] Vaibhav Vaish, Bennett Wilburn, Neel Joshi, and Marc

Levoy. Using plane + parallax for calibrating dense cam-

era arrays. In IEEE Conf. Comput. Vis. Pattern Recog., vol-

ume 1, pages 2–9, 2004. 1, 2, 6, 8

[19] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschae-

fer, and Davide Scaramuzza. Ultimate SLAM? Combin-

ing Events, Images, and IMU for Robust Visual SLAM in

HDR and High-Speed Scenarios. IEEE Robot. Auto. Letters,

3(2):994–1001, 2018. 3

[20] Bishan Wang, Jingwei He, Lei Yu, Gui-Song Xia, and Wen

Yang. Event enhanced high-quality image recovery. In Eur.

Conf. Comput. Vis., 2020. 3

[21] Yingqian Wang, Tianhao Wu, Jungang Yang, Longguang

Wang, Wei An, and Yulan Guo. DeOccNet: Learning to See

Through Foreground Occlusions in Light Fields. In IEEE

Conf. Wint. Applic. Comput. Vis., pages 118–127, 2020. 2

[22] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

IEEE Asilomar Conf. Sign. Syst. Comput., volume 2, pages

1398–1402, 2003. 8

[23] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-

vala, Emilio Antunez, Adam Barth, Andrew Adams, Mark

Horowitz, and Marc Levoy. High performance imaging us-

ing large camera arrays. In ACM SIGGRAPH, pages 765–

776, 2005. 2

[24] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping

Shi. Spatio-temporal backpropagation for training high-

performance spiking neural networks. Frontiers in Neuro-

science, 12:331, 2018. 5

[25] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and

Luping Shi. Direct Training for Spiking Neural Networks:

Faster, Larger, Better. In AAAI Conf. Artif. Intell., volume 33,

pages 1311–1318, 2019. 4, 5

[26] Zhaolin Xiao, Lipeng Si, and Guoqing Zhou. Seeing Beyond

Foreground Occlusion: A Joint Framework for SAP-Based

Scene Depth and Appearance Reconstruction. IEEE J. Se-

lected Topics in Signal Processing, 11(7):979–991, 2017. 1,

2

[27] Tao Yang, Yanning Zhang, Xiaomin Tong, Xiaoqiang Zhang,

and Rui Yu. Continuously tracking and see-through oc-

clusion based on a new hybrid synthetic aperture imaging

model. In IEEE Conf. Comput. Vis. Pattern Recog., pages

3409–3416, 2011. 2

[28] Lei Yu, Wei Liao, You-Long Zhou, Wen Yang, and Gui-

Song. Xia. Event camera based synthetic aperture imaging.

Acta Automatica Sinica, 45(x):1–14, 2020. 4

14243



[29] Xiaoqiang Zhang, Yanning Zhang, Tao Yang, and Yee-

Hong Yang. Synthetic aperture photography using a mov-

ing camera-IMU system. Pattern Recognition, 62:175 – 188,

2017. 1, 2

[30] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Int. Conf. Comput. Vis.,

pages 2223–2232, 2017. 5

[31] Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, and

Yonghong Tian. Retina-like visual image reconstruction via

spiking neural model. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 1438–1446, 2020. 8

14244


