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Abstract

Existing explainable and explicit visual reasoning meth-

ods only perform reasoning based on visual evidence but do

not take into account knowledge beyond what is in the vi-

sual scene. To addresses the knowledge gap between visual

reasoning methods and the semantic complexity of real-

world images, we present the first explicit visual reasoning

method that incorporates external knowledge and models

high-order relational attention for improved generalizabil-

ity and explainability. Specifically, we propose a knowledge

incorporation network that explicitly creates and includes

new graph nodes for entities and predicates from external

knowledge bases to enrich the semantics of the scene graph

used in explicit reasoning. We then create a novel Graph-

Relate module to perform high-order relational attention on

the enriched scene graph. By explicitly introducing struc-

tured external knowledge and high-order relational atten-

tion, our method demonstrates significant generalizability

and explainability over the state-of-the-art visual reasoning

approaches on the GQA and VQAv2 datasets.

1. Introduction

Visual question answering (VQA) aims to answer nat-

ural language questions about a visual scene. It is a chal-

lenging task requiring a deep understanding of both vision

and language inputs, as well as knowledge to answer open-

ended questions. While deep neural networks (DNNs) are

extraordinarily powerful, most DNN-based VQA methods

are black boxes driven by superficial correlations between

questions and answers [2]. These models are therefore lim-

ited in making inferences or generalizations. They also

fall short in explaining their decision-making process, espe-

cially with complex questions requiring multiple reasoning

steps to answer. The lack of generalizability or explainabil-

ity in DNN models slows down their applications in many

domains, such as healthcare, security, and finance.

Recent studies aim to address these problems by rep-
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Figure 1. Explicit visual reasoning methods often fail when the

observation does not provide sufficient knowledge. Our method

addresses this problem by generating scene graphs with explicit

knowledge incorporation (e.g., suit-over-shirt) and inferring high-

order relations (e.g., man-wearing-suit-over-shirt) with a novel

G-Relate neural module.

resenting the visual information as a structured scene

graph [24] or converting the question into a program of ex-

ecutable neural modules [11, 12]. These explainable and

explicit reasoning models have achieved remarkable perfor-

mances on synthetic scenes and questions [14]. However,

due to the complexity of real-world images and questions,

they are still far from satisfactory when tested on more gen-

eral VQA datasets [5, 13]. These data-driven methods de-

pend on the accuracy and completeness of the detected ob-

jects and their relations, and are ignorant of commonsense

or other useful knowledge beyond visual observations. For

example, as shown in Fig. 1, to answer the question “Is the

man to the right of the hammer wearing a shirt?” visual

reasoning models need to detect the shirt and attend to it if

it exists. The reasoning task in this example is challenging

as the shirt is undetectable from the scene. On the other

hand, humans can easily integrate the observation that “the

man is wearing a suit” and the commonsense knowledge

that “suits are commonly dressed over shirts”, to infer the

high-order relation between man and shirt. In this work, to

achieve generalizability and explainability in visual reason-

1356



ing, we propose an explainable and explicit visual reasoning

method based on knowledge incorporation and high-order

relational attention. It depicts two major advantages over

existing approaches:

First, existing visual reasoning studies either implicitly

embed external knowledge as language features [12, 24] or

propagate information from external knowledge graphs into

a scene graph with static topology [32], which is not able

to address undetected objects or missing concepts from the

visual scene. Differently, in this work, we explicitly incor-

porate commonsense knowledge from an external knowl-

edge graph into the scene graph by adding entities and pred-

icates as new nodes. As shown in Fig. 1, with our proposed

method, the external relations shirt-under-suit and suit-over-

shirt can be added to the scene graph to enrich the scene

graph. This enriched scene graph offers richer semantics

enabling generalizable and explainable reasoning.

Second, existing methods depend on the detected binary

relations but lack a mechanism to infer high-order relations

between distant nodes in the scene graph. For example,

as shown in Fig. 1, existing neural module networks can-

not reason correctly with first-order Relate modules, be-

cause either no direct relations are detected between man

and shirt or the question does not specify both (e.g., wearing

and over) relations. We address this challenge by design-

ing a novel Graph-Relate module that enables high-order

relational reasoning. Despite there is no direct relation be-

tween man and shirt, G-Relate can infer the probability of

man-wearing-shirt based on the two direct relations man-

wearing-suit and suit-over-shirt. This allows our model to ef-

ficiently transfer attention to non-adjacent graph nodes and

answer the question correctly.

We summarize the contributions of this work as follows:

1. We propose the first explicit visual reasoning model

that leverages external knowledge and neural modules to

achieve generalizability and explainability.

2. We design a Knowledge Incorporation Network (KI-

Net) that explicitly incorporates external knowledge as ad-

ditional nodes and edges into a scene graph to provide rich

semantics for reasoning.

3. We design a Graph-Relate module that achieves high-

order relational attention based on the scene graph topology

and semantics.

4. Our method outperforms state-of-the-art explicit rea-

soning methods on the GQA [13] and VQAv2 [5] datasets,

suggesting its superior generalizability and explainability.

2. Related Work

Scene graphs. Scene graphs have been pervasively adopted

in various vision tasks, such as image captioning [8, 30, 31]

and VQA [7, 24, 26]. A high-quality scene graph can accu-

rately and reliably describe the visual contents of an im-

age, and an incomplete or incorrect scene graph can de-

grade the performance of tasks of interest. To generate

more accurate scene graphs, several studies have implic-

itly included external knowledge by representing knowl-

edge as language features [28, 29, 33] or subject-predicate-

object triplets [1]. Wu et al. [29] directly embeds exter-

nal knowledge into language features and incorporates them

with visual features. Gu et al. [9] queries class-wise rela-

tions by matching detected objects to classes in Concept-

Net [19]. Zareian et al. [32] applies Graph Convolutional

Networks [17] to propagate information across the scene

graph and external knowledge graph. These methods only

refine the features of graph nodes but not the graph topol-

ogy, which cannot address issues about undetected objects

or external concepts. Differently, by explicitly adding graph

nodes for external entities and predicates, our method ex-

pands scene graphs to include richer semantics until the de-

sired amount of external knowledge is incorporated. More

importantly, it allows neural modules to be directly exe-

cuted on these additional graph nodes, bridging the research

gap of explainable visual reasoning with knowledge.

Explainable and explicit visual reasoning. Our method

is related to a series of explainable and explicit reasoning

methods [4, 10, 11, 12, 15, 20, 24]. Due to the remarkable

learning ability of deep neural networks, end-to-end VQA

models can easily learn the dataset bias without reason-

ing [14]. To address this problem, recent studies have devel-

oped composite reasoning models, by designing and execut-

ing neural modules based on image features [4, 10, 15, 20]

or scene graphs [12, 24]. Recently, Shi et al. [24] pro-

poses eXplainable and eXplicit Neural Modules (XNMs)

that not only achieve 100% accuracy on the CLEVR [14]

dataset but also allow to explicitly trace the attention shift

in the scene graph following the reasoning progress. Sim-

ilarly, Neural State Machine (NSM) [12] predicts a prob-

abilistic graph and performs sequential reasoning over the

graph with more generic modules. Our method differen-

tiates itself from these related studies by introducing ex-

ternal knowledge and high-order relational attention. Our

proposed Graph-Relate module propagates attention to non-

adjacent nodes in the scene graph, enabling the efficient in-

ference of high-order relations.

3. Approach

For the first time, we conduct explainable and explicit vi-

sual reasoning by leveraging scene graphs, external knowl-

edge, and neural modules. Our method first creates an

enriched scene graph by explicitly incorporating external

knowledge and then executes a program of neural modules

generated from the question. Fig. 2 highlights the two nov-

elties of our method, including a Knowledge Incorporation

Network (KI-Net) that explicitly incorporates entities and

predicates from the external knowledge graph to the scene

graph, and a Graph-Relate (G-Relate) module that infers
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Figure 2. Overview of our proposed method. Our main contributions, the Knowledge Incorporation Network (KI-Net) and the Graph-Relate

(G-Relate) module, are highlighted in yellow. Red nodes indicate the current attention.

high-order relations based on the enriched scene graph.

3.1. Knowledge Incorporation Network

Neural module networks are typically trained on datasets

containing a specific set of semantics [13, 14], which makes

them difficult to generalize and scale to a broader scope of

knowledge. The proposed KI-Net aims to support explicit

reasoning with richer semantics and allows the neural mod-

ules to trace the reasoning process beyond the visual ob-

servation. It is designed to explicitly incorporate external

knowledge as scene graph nodes (see Fig. 3): Based on the

topology of the external knowledge graph, it first performs

topological extension to incorporate external relations into

the scene graph (e.g., man-wearing-shirt and man-wearing-

helmet in Fig. 3, by explicitly adding new candidate entities

shirt and helmet to the scene graph). Then, taking the vi-

sual and semantic features into account, it performs seman-

tic refinement to selectively discard the candidate entities

with low relevance to the visual observation (e.g., the shirt

in Fig. 3). The KI-Net results in an enriched scene graph

that allows the neural modules to perform explicit reasoning

on the incorporated semantics. It is supervised with ground-

truth scene graph annotations using a cross-entropy loss.

Scene graph and knowledge graph. The KI-Net operates

on an initial scene graph GS = (VS ,PS , ES) and an ex-

ternal knowledge graph GK = (VK,PK, EK). The scene

graph consists of entity nodes (i.e., object instances, de-

noted as VS ) and predicate nodes (i.e., relations or interac-

tions between entities, denoted as PS ) detected from the im-

age. The knowledge graph consists of class nodes (i.e., gen-

eral concepts, denoted as VK) and predicates (i.e., relations

between concepts, denoted as PK) acquired from exter-

nal knowledge bases. Both graphs can connect entities or

classes with multiple predicates. They organize relations

between entities or classes as a set of subject-predicate-

object triplets, in which ES and EK contain directed edges

linking from a subject to a predicate or from a predicate to

an object. Each node is associated with a dh-dimensional

feature vector. Node features of the scene graph are initial-

ized with regional features of the detected objects [3], while

those of the knowledge graph are initialized with word em-

beddings [22]. The visual and external node features are

fused with message passing following the GB-Net [32].

Topological extension. Based on the semantic matching

between scene entities and external classes and the graph

topology, we propose candidate entities to be added to the

scene graph. First, each existing entity e ∈ VS in the scene

graph is bridged with a class node g(e) ∈ VK with the

same semantic meaning (i.e., the highest feature similarity

above a threshold ǫcls). The bridging forms message pass-

ing paths between the scene graph and the knowledge graph.

Next, we create candidate entity nodes to allow knowledge

about unobserved but directly related concepts to be added

to the scene graph. Let d(·, ·) denote the minimum num-

ber of predicates between a pair of input entities. We add

a candidate entity e′ along with its adjacent predicates p′
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Figure 3. The knowledge incorporation process.

connecting to entity e if

∃ e ∈ VS , d(g(e′), g(e)) = 1. (1)

Finally, the features of e′ and p′ are directly copied from

the corresponding nodes in the knowledge graph, and entity

node e′ is bridged with its class node g(e′) as they share

the same features. This topological extension ensures that

the candidate entities (e.g., shirt and helmet in the scene

graph of Fig. 3) are directly related to the visual observation

(e.g., man in Fig. 3) and semantically consistent with cor-

responding classes (e.g., Shirt and Helmet in the knowledge

graph of Fig. 3). It builds abundant connections between the

scene graph and the knowledge graph, so that their features

can be jointly considered to compute the relevance between

the new entities and the observed scene context.

Semantic refinement. The candidate entities have been

added to the scene graph based on the knowledge graph

topology, but their semantic relevance with the observed

scene context is unknown. Therefore, we perform semantic

refinement to maintain a compact scene graph while incor-

porating the most relevant external knowledge. To achieve

this goal, with message passing, we compute a relevance

matrix M measuring the feature relevance between differ-

ent entities. The relevance weights in the matrix M are

jointly decided by the visual features and the semantics

from external knowledge.

Given two adjacent nodes vi, vj ∈ VS∪PS∪VK∪PK and

their features hi,hj , the message passing is implemented as

a Graph Attention Network [27]:

mij = MLP(hi,hj), (2)

φij = softmaxN (vi)(mij), (3)

h
′
i =

∑

N (vi)

φijhj , (4)

where N (vi) denotes the set of adjacent nodes of vi. The

message passing results in the updated features h′
i for each

node vi, and a relevance matrix M contains all the pair-

wise relevance scores mij . We repeat this message passing

KGAT times to thoroughly propagate the features.

With the computed relevance matrix M , a candidate en-

tity e′′ is discarded when the sum of the top-Kp relevance

scores between e′′ and its adjacent nodes are smaller than a

threshold ǫp. All its adjacent predicate nodes are also dis-

carded. Finally, we remove all bridges and obtain an en-

riched scene graph with only the relevant nodes incorpo-

rated from the external knowledge graph. The topological

extension and semantic refinement can be performed itera-

tively depending on the amount of knowledge required.

3.2. Reasoning with Neural Modules

Neural module networks are a class of reasoning meth-

ods that achieve explainable reasoning by composing and

executing a set of handcrafted neural modules on top of im-

age features [4, 10, 15, 20] or scene graphs [12, 24]. Recent

neural module networks [24] have achieved perfect accu-

racy on synthetic visual reasoning datasets [14], but their

generalization to semantically-rich real-world images is still

an unsolved problem. Our KI-Net has generated an en-

riched scene graph with a broader scope of semantics, al-

lowing explainable reasoning methods to generalize beyond

the scope of training data. In this section, we focus on intro-

ducing the novel G-Relate module that can infer high-order

relations by shifting attention to non-adjacent graph nodes.

To perform explicit reasoning on the enriched scene

graph, we design three categories of neural modules: atten-

tion, logic, and output. These neural modules are grounded

on four meta-types of atom modules that can represent all

the question types in VQA datasets [5]. The attention mod-

ules compute the relative importance of different image

contents (e.g., image features or scene graph nodes) during

the reasoning process, which are essential to the answering

of many questions. Attend computes the attention weights

of entities based on their features, and G-Relate shifts at-

tention to other related entities through a queried predicate.

Besides the two attention modules, logic modules (i.e., And,

Or, and Not) perform logical operations based on the at-

tention weights, and output modules (i.e., Compare, Count,

Exist, Choose, Describe, and Verify) compute output fea-
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Modules Category Operation

Attend Attention a = softmax(MLP(h, q))
G-Relate Attention a,h, q −→ a0 (see Equ. (5))

Or Logic a0 = min(a1,a2)
And Logic a0 = max(a1,a2)
Not Logic a0 = 1− a

Compare Output h0 = MLP(h1 − h
2)

Count Output h0 = MLP(sum(a))
Exist Output h0 = MLP(sum(a))

Choose Output h
′ = softmax(MLP(q))W (a ◦ h)

Describe Output h
′ = softmax(MLP(q))W (a ◦ h)

Verify Output h
′ = softmax(MLP(q))W (a ◦ h)

Table 1. Our neural modules. MLP(·) indicates a multi-layer per-

ceptron consisting of several fully-connected and ReLU layers,

and W is a matrix of learnable weights. The parameters a , h ,

and q indicate attention, features, and query, respectively.

tures according to different question types. Tab. 1 summa-

rizes the specific neural modules and their implementations.

The three categories of neural modules are composed into

a program to reason over the enriched scene graph. Taking

both the graph topology and rich semantics into account,

the neural program can explicitly trace the attention over

the reasoning process to infer the answer.

Graph-Relate module. In neural module studies, relational

inference is commonly implemented by reallocating atten-

tion considering the relevance to a predicate query [12].

Existing methods [24] either only shift attention between

adjacent scene graph nodes, or learn a transfer matrix to

propagate attention across all nodes regardless of the graph

topology. In complex scene graphs, as the numbers of en-

tities and predicates increase, high-order attention becomes

a critical need that the existing neural modules cannot han-

dle. For example, to answer the question “What is the phone

on?”, attention should be transferred from phone to both

the adjacent entity table and the non-adjacent entity coffee

(see Fig. 4). The features of coffee provide extra informa-

tion about the table type. With first-order relate module,

transferring attention to coffee is rather difficult, because no

direct relation between phone and coffee can be extracted

from the inputs. To address this challenge, we design a

Graph-Relate module to infer high-order relations in the

enriched scene graph, so that attention can be transferred

along a path of relations to reach a distant entity.

Given the attention a computed by the previous mod-

ules in the neural program, the G-Relate module computes

a transfer matrix W h to propagate the attention over the

scene graph. With this transfer matrix, the attention of the

graph can be updated as:

a0 = norm(W T
ha), (5)

where norm(·) casts all attention weights of entity nodes

Question:���:�K�D�W���L�V���W�K�H���S�K�R�Q�H���R�Q�"
Answer:���F�R�I�I�H�H���W�D�E�O�H

�F�R�I�I�H�H�F�X�S

�O�R�F�D�W�L�R�Q�2�I

�X�Q�G�H�U

�W�D�E�O�H

�S�K�R�Q�H �R�Q

�O�R�F�D�W�L�R�Q�2�I�R�Q�X�Q�G�H�U

�O�H�I�W�2�I

�U�L�J�K�W�2�I

Figure 4. An example of attention transfer along different paths

of high-order relations. Red nodes indicate the current attention,

and red arrows indicate different paths to transfer attention from

phone to coffee.

into [0, 1] using a softmax function.

The transfer matrix W h can be computed in various

ways. For example, in XNM [24], the encoded query q

and the edge features hij are processed with a MLP to

compute the transfer matrix. The edge features come from

either the first-order ground-truth relations or the concate-

nation of two adjacent entity features. Differently, our G-

Relate module considers high-order composite relations in

the scene graph: we extract all possible relation paths Uij =
{U1, U2, · · · , UN} connecting between ei and ej (within

a maximum length L). For example (see Fig. 4), we ex-

tract two paths that describe the composite relation between

coffee and phone: coffee-locationOf-cup-rightOf-phone and

coffee-locationOf-cup-on-table-under-phone. Both paths

consist of a set of first-order relations and contribute to the

high-order relations between both entities. The transfer ma-

trix is computed by considering different situations based

on the topological distance lij = d(ei, ej) between the enti-

ties ei and ej (i.e., the number of predicates along the path).

Formally, we compute the transfer weights wij between

entities ei and ej based on predicate features and graph

topology:

wij =























softmaxN (ei)( max
Uk∈Uij

(MLP(hk, q))), lij = 1

∑

Uk∈Uij

∏

(ea,eb)∈Uk

wab, 1 < lij ≤ L

0, lij > L

(6)

where hk represents the features of the k-th predicate be-

tween entities ei and ej , and wab is the weight between ad-

jacent entities ea and eb. The transfer weights of first-order

relations (i.e., lij = 1) are computed directly based on the

relevance between the predicate features and the query. A

high transfer weight indicates that the predicate features

are closely related to the query, and vise versa. Different

from XNM, our graph structure allows multiple predicates

to connect between two entities, and here we adopt their

maximum weight. To measure the transfer weights of high-

order relations (1 < lij ≤ L), we compute the product of

the first-order transfer weights along each path and linearly
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