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Abstract

Existing explainable and explicit visual reasoning meth-

ods only perform reasoning based on visual evidence but do

not take into account knowledge beyond what is in the vi-

sual scene. To addresses the knowledge gap between visual

reasoning methods and the semantic complexity of real-

world images, we present the first explicit visual reasoning

method that incorporates external knowledge and models

high-order relational attention for improved generalizabil-

ity and explainability. Specifically, we propose a knowledge

incorporation network that explicitly creates and includes

new graph nodes for entities and predicates from external

knowledge bases to enrich the semantics of the scene graph

used in explicit reasoning. We then create a novel Graph-

Relate module to perform high-order relational attention on

the enriched scene graph. By explicitly introducing struc-

tured external knowledge and high-order relational atten-

tion, our method demonstrates significant generalizability

and explainability over the state-of-the-art visual reasoning

approaches on the GQA and VQAv2 datasets.

1. Introduction

Visual question answering (VQA) aims to answer nat-

ural language questions about a visual scene. It is a chal-

lenging task requiring a deep understanding of both vision

and language inputs, as well as knowledge to answer open-

ended questions. While deep neural networks (DNNs) are

extraordinarily powerful, most DNN-based VQA methods

are black boxes driven by superficial correlations between

questions and answers [2]. These models are therefore lim-

ited in making inferences or generalizations. They also

fall short in explaining their decision-making process, espe-

cially with complex questions requiring multiple reasoning

steps to answer. The lack of generalizability or explainabil-

ity in DNN models slows down their applications in many

domains, such as healthcare, security, and finance.

Recent studies aim to address these problems by rep-
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Figure 1. Explicit visual reasoning methods often fail when the

observation does not provide sufficient knowledge. Our method

addresses this problem by generating scene graphs with explicit

knowledge incorporation (e.g., suit-over-shirt) and inferring high-

order relations (e.g., man-wearing-suit-over-shirt) with a novel

G-Relate neural module.

resenting the visual information as a structured scene

graph [24] or converting the question into a program of ex-

ecutable neural modules [11, 12]. These explainable and

explicit reasoning models have achieved remarkable perfor-

mances on synthetic scenes and questions [14]. However,

due to the complexity of real-world images and questions,

they are still far from satisfactory when tested on more gen-

eral VQA datasets [5, 13]. These data-driven methods de-

pend on the accuracy and completeness of the detected ob-

jects and their relations, and are ignorant of commonsense

or other useful knowledge beyond visual observations. For

example, as shown in Fig. 1, to answer the question “Is the

man to the right of the hammer wearing a shirt?” visual

reasoning models need to detect the shirt and attend to it if

it exists. The reasoning task in this example is challenging

as the shirt is undetectable from the scene. On the other

hand, humans can easily integrate the observation that “the

man is wearing a suit” and the commonsense knowledge

that “suits are commonly dressed over shirts”, to infer the

high-order relation between man and shirt. In this work, to

achieve generalizability and explainability in visual reason-
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ing, we propose an explainable and explicit visual reasoning

method based on knowledge incorporation and high-order

relational attention. It depicts two major advantages over

existing approaches:

First, existing visual reasoning studies either implicitly

embed external knowledge as language features [12, 24] or

propagate information from external knowledge graphs into

a scene graph with static topology [32], which is not able

to address undetected objects or missing concepts from the

visual scene. Differently, in this work, we explicitly incor-

porate commonsense knowledge from an external knowl-

edge graph into the scene graph by adding entities and pred-

icates as new nodes. As shown in Fig. 1, with our proposed

method, the external relations shirt-under-suit and suit-over-

shirt can be added to the scene graph to enrich the scene

graph. This enriched scene graph offers richer semantics

enabling generalizable and explainable reasoning.

Second, existing methods depend on the detected binary

relations but lack a mechanism to infer high-order relations

between distant nodes in the scene graph. For example,

as shown in Fig. 1, existing neural module networks can-

not reason correctly with first-order Relate modules, be-

cause either no direct relations are detected between man

and shirt or the question does not specify both (e.g., wearing

and over) relations. We address this challenge by design-

ing a novel Graph-Relate module that enables high-order

relational reasoning. Despite there is no direct relation be-

tween man and shirt, G-Relate can infer the probability of

man-wearing-shirt based on the two direct relations man-

wearing-suit and suit-over-shirt. This allows our model to ef-

ficiently transfer attention to non-adjacent graph nodes and

answer the question correctly.

We summarize the contributions of this work as follows:

1. We propose the first explicit visual reasoning model

that leverages external knowledge and neural modules to

achieve generalizability and explainability.

2. We design a Knowledge Incorporation Network (KI-

Net) that explicitly incorporates external knowledge as ad-

ditional nodes and edges into a scene graph to provide rich

semantics for reasoning.

3. We design a Graph-Relate module that achieves high-

order relational attention based on the scene graph topology

and semantics.

4. Our method outperforms state-of-the-art explicit rea-

soning methods on the GQA [13] and VQAv2 [5] datasets,

suggesting its superior generalizability and explainability.

2. Related Work

Scene graphs. Scene graphs have been pervasively adopted

in various vision tasks, such as image captioning [8, 30, 31]

and VQA [7, 24, 26]. A high-quality scene graph can accu-

rately and reliably describe the visual contents of an im-

age, and an incomplete or incorrect scene graph can de-

grade the performance of tasks of interest. To generate

more accurate scene graphs, several studies have implic-

itly included external knowledge by representing knowl-

edge as language features [28, 29, 33] or subject-predicate-

object triplets [1]. Wu et al. [29] directly embeds exter-

nal knowledge into language features and incorporates them

with visual features. Gu et al. [9] queries class-wise rela-

tions by matching detected objects to classes in Concept-

Net [19]. Zareian et al. [32] applies Graph Convolutional

Networks [17] to propagate information across the scene

graph and external knowledge graph. These methods only

refine the features of graph nodes but not the graph topol-

ogy, which cannot address issues about undetected objects

or external concepts. Differently, by explicitly adding graph

nodes for external entities and predicates, our method ex-

pands scene graphs to include richer semantics until the de-

sired amount of external knowledge is incorporated. More

importantly, it allows neural modules to be directly exe-

cuted on these additional graph nodes, bridging the research

gap of explainable visual reasoning with knowledge.

Explainable and explicit visual reasoning. Our method

is related to a series of explainable and explicit reasoning

methods [4, 10, 11, 12, 15, 20, 24]. Due to the remarkable

learning ability of deep neural networks, end-to-end VQA

models can easily learn the dataset bias without reason-

ing [14]. To address this problem, recent studies have devel-

oped composite reasoning models, by designing and execut-

ing neural modules based on image features [4, 10, 15, 20]

or scene graphs [12, 24]. Recently, Shi et al. [24] pro-

poses eXplainable and eXplicit Neural Modules (XNMs)

that not only achieve 100% accuracy on the CLEVR [14]

dataset but also allow to explicitly trace the attention shift

in the scene graph following the reasoning progress. Sim-

ilarly, Neural State Machine (NSM) [12] predicts a prob-

abilistic graph and performs sequential reasoning over the

graph with more generic modules. Our method differen-

tiates itself from these related studies by introducing ex-

ternal knowledge and high-order relational attention. Our

proposed Graph-Relate module propagates attention to non-

adjacent nodes in the scene graph, enabling the efficient in-

ference of high-order relations.

3. Approach

For the first time, we conduct explainable and explicit vi-

sual reasoning by leveraging scene graphs, external knowl-

edge, and neural modules. Our method first creates an

enriched scene graph by explicitly incorporating external

knowledge and then executes a program of neural modules

generated from the question. Fig. 2 highlights the two nov-

elties of our method, including a Knowledge Incorporation

Network (KI-Net) that explicitly incorporates entities and

predicates from the external knowledge graph to the scene

graph, and a Graph-Relate (G-Relate) module that infers
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Figure 2. Overview of our proposed method. Our main contributions, the Knowledge Incorporation Network (KI-Net) and the Graph-Relate

(G-Relate) module, are highlighted in yellow. Red nodes indicate the current attention.

high-order relations based on the enriched scene graph.

3.1. Knowledge Incorporation Network

Neural module networks are typically trained on datasets

containing a specific set of semantics [13, 14], which makes

them difficult to generalize and scale to a broader scope of

knowledge. The proposed KI-Net aims to support explicit

reasoning with richer semantics and allows the neural mod-

ules to trace the reasoning process beyond the visual ob-

servation. It is designed to explicitly incorporate external

knowledge as scene graph nodes (see Fig. 3): Based on the

topology of the external knowledge graph, it first performs

topological extension to incorporate external relations into

the scene graph (e.g., man-wearing-shirt and man-wearing-

helmet in Fig. 3, by explicitly adding new candidate entities

shirt and helmet to the scene graph). Then, taking the vi-

sual and semantic features into account, it performs seman-

tic refinement to selectively discard the candidate entities

with low relevance to the visual observation (e.g., the shirt

in Fig. 3). The KI-Net results in an enriched scene graph

that allows the neural modules to perform explicit reasoning

on the incorporated semantics. It is supervised with ground-

truth scene graph annotations using a cross-entropy loss.

Scene graph and knowledge graph. The KI-Net operates

on an initial scene graph GS = (VS ,PS , ES) and an ex-

ternal knowledge graph GK = (VK,PK, EK). The scene

graph consists of entity nodes (i.e., object instances, de-

noted as VS ) and predicate nodes (i.e., relations or interac-

tions between entities, denoted as PS ) detected from the im-

age. The knowledge graph consists of class nodes (i.e., gen-

eral concepts, denoted as VK) and predicates (i.e., relations

between concepts, denoted as PK) acquired from exter-

nal knowledge bases. Both graphs can connect entities or

classes with multiple predicates. They organize relations

between entities or classes as a set of subject-predicate-

object triplets, in which ES and EK contain directed edges

linking from a subject to a predicate or from a predicate to

an object. Each node is associated with a dh-dimensional

feature vector. Node features of the scene graph are initial-

ized with regional features of the detected objects [3], while

those of the knowledge graph are initialized with word em-

beddings [22]. The visual and external node features are

fused with message passing following the GB-Net [32].

Topological extension. Based on the semantic matching

between scene entities and external classes and the graph

topology, we propose candidate entities to be added to the

scene graph. First, each existing entity e ∈ VS in the scene

graph is bridged with a class node g(e) ∈ VK with the

same semantic meaning (i.e., the highest feature similarity

above a threshold ǫcls). The bridging forms message pass-

ing paths between the scene graph and the knowledge graph.

Next, we create candidate entity nodes to allow knowledge

about unobserved but directly related concepts to be added

to the scene graph. Let d(·, ·) denote the minimum num-

ber of predicates between a pair of input entities. We add

a candidate entity e′ along with its adjacent predicates p′
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Figure 3. The knowledge incorporation process.

connecting to entity e if

∃ e ∈ VS , d(g(e′), g(e)) = 1. (1)

Finally, the features of e′ and p′ are directly copied from

the corresponding nodes in the knowledge graph, and entity

node e′ is bridged with its class node g(e′) as they share

the same features. This topological extension ensures that

the candidate entities (e.g., shirt and helmet in the scene

graph of Fig. 3) are directly related to the visual observation

(e.g., man in Fig. 3) and semantically consistent with cor-

responding classes (e.g., Shirt and Helmet in the knowledge

graph of Fig. 3). It builds abundant connections between the

scene graph and the knowledge graph, so that their features

can be jointly considered to compute the relevance between

the new entities and the observed scene context.

Semantic refinement. The candidate entities have been

added to the scene graph based on the knowledge graph

topology, but their semantic relevance with the observed

scene context is unknown. Therefore, we perform semantic

refinement to maintain a compact scene graph while incor-

porating the most relevant external knowledge. To achieve

this goal, with message passing, we compute a relevance

matrix M measuring the feature relevance between differ-

ent entities. The relevance weights in the matrix M are

jointly decided by the visual features and the semantics

from external knowledge.

Given two adjacent nodes vi, vj ∈ VS∪PS∪VK∪PK and

their features hi,hj , the message passing is implemented as

a Graph Attention Network [27]:

mij = MLP(hi,hj), (2)

φij = softmaxN (vi)(mij), (3)

h
′
i =

∑

N (vi)

φijhj , (4)

where N (vi) denotes the set of adjacent nodes of vi. The

message passing results in the updated features h′
i for each

node vi, and a relevance matrix M contains all the pair-

wise relevance scores mij . We repeat this message passing

KGAT times to thoroughly propagate the features.

With the computed relevance matrix M , a candidate en-

tity e′′ is discarded when the sum of the top-Kp relevance

scores between e′′ and its adjacent nodes are smaller than a

threshold ǫp. All its adjacent predicate nodes are also dis-

carded. Finally, we remove all bridges and obtain an en-

riched scene graph with only the relevant nodes incorpo-

rated from the external knowledge graph. The topological

extension and semantic refinement can be performed itera-

tively depending on the amount of knowledge required.

3.2. Reasoning with Neural Modules

Neural module networks are a class of reasoning meth-

ods that achieve explainable reasoning by composing and

executing a set of handcrafted neural modules on top of im-

age features [4, 10, 15, 20] or scene graphs [12, 24]. Recent

neural module networks [24] have achieved perfect accu-

racy on synthetic visual reasoning datasets [14], but their

generalization to semantically-rich real-world images is still

an unsolved problem. Our KI-Net has generated an en-

riched scene graph with a broader scope of semantics, al-

lowing explainable reasoning methods to generalize beyond

the scope of training data. In this section, we focus on intro-

ducing the novel G-Relate module that can infer high-order

relations by shifting attention to non-adjacent graph nodes.

To perform explicit reasoning on the enriched scene

graph, we design three categories of neural modules: atten-

tion, logic, and output. These neural modules are grounded

on four meta-types of atom modules that can represent all

the question types in VQA datasets [5]. The attention mod-

ules compute the relative importance of different image

contents (e.g., image features or scene graph nodes) during

the reasoning process, which are essential to the answering

of many questions. Attend computes the attention weights

of entities based on their features, and G-Relate shifts at-

tention to other related entities through a queried predicate.

Besides the two attention modules, logic modules (i.e., And,

Or, and Not) perform logical operations based on the at-

tention weights, and output modules (i.e., Compare, Count,

Exist, Choose, Describe, and Verify) compute output fea-
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Modules Category Operation

Attend Attention a = softmax(MLP(h, q))
G-Relate Attention a,h, q −→ a′ (see Equ. (5))

Or Logic a′ = min(a1,a2)
And Logic a′ = max(a1,a2)
Not Logic a′ = 1− a

Compare Output h′ = MLP(h1 − h
2)

Count Output h′ = MLP(sum(a))
Exist Output h′ = MLP(sum(a))

Choose Output h
′ = softmax(MLP(q))W (a ◦ h)

Describe Output h
′ = softmax(MLP(q))W (a ◦ h)

Verify Output h
′ = softmax(MLP(q))W (a ◦ h)

Table 1. Our neural modules. MLP(·) indicates a multi-layer per-

ceptron consisting of several fully-connected and ReLU layers,

and W is a matrix of learnable weights. The parameters a, h,

and q indicate attention, features, and query, respectively.

tures according to different question types. Tab. 1 summa-

rizes the specific neural modules and their implementations.

The three categories of neural modules are composed into

a program to reason over the enriched scene graph. Taking

both the graph topology and rich semantics into account,

the neural program can explicitly trace the attention over

the reasoning process to infer the answer.

Graph-Relate module. In neural module studies, relational

inference is commonly implemented by reallocating atten-

tion considering the relevance to a predicate query [12].

Existing methods [24] either only shift attention between

adjacent scene graph nodes, or learn a transfer matrix to

propagate attention across all nodes regardless of the graph

topology. In complex scene graphs, as the numbers of en-

tities and predicates increase, high-order attention becomes

a critical need that the existing neural modules cannot han-

dle. For example, to answer the question “What is the phone

on?”, attention should be transferred from phone to both

the adjacent entity table and the non-adjacent entity coffee

(see Fig. 4). The features of coffee provide extra informa-

tion about the table type. With first-order relate module,

transferring attention to coffee is rather difficult, because no

direct relation between phone and coffee can be extracted

from the inputs. To address this challenge, we design a

Graph-Relate module to infer high-order relations in the

enriched scene graph, so that attention can be transferred

along a path of relations to reach a distant entity.

Given the attention a computed by the previous mod-

ules in the neural program, the G-Relate module computes

a transfer matrix W h to propagate the attention over the

scene graph. With this transfer matrix, the attention of the

graph can be updated as:

a′ = norm(W T
ha), (5)

where norm(·) casts all attention weights of entity nodes

Question:	What	is	the	phone	on?
Answer:	coffee	table

coffeecup

locationOf

under

table

phone on

locationOfonunder

leftOf
rightOf

Figure 4. An example of attention transfer along different paths

of high-order relations. Red nodes indicate the current attention,

and red arrows indicate different paths to transfer attention from

phone to coffee.

into [0, 1] using a softmax function.

The transfer matrix W h can be computed in various

ways. For example, in XNM [24], the encoded query q

and the edge features hij are processed with a MLP to

compute the transfer matrix. The edge features come from

either the first-order ground-truth relations or the concate-

nation of two adjacent entity features. Differently, our G-

Relate module considers high-order composite relations in

the scene graph: we extract all possible relation paths Uij =
{U1, U2, · · · , UN} connecting between ei and ej (within

a maximum length L). For example (see Fig. 4), we ex-

tract two paths that describe the composite relation between

coffee and phone: coffee-locationOf-cup-rightOf-phone and

coffee-locationOf-cup-on-table-under-phone. Both paths

consist of a set of first-order relations and contribute to the

high-order relations between both entities. The transfer ma-

trix is computed by considering different situations based

on the topological distance lij = d(ei, ej) between the enti-

ties ei and ej (i.e., the number of predicates along the path).

Formally, we compute the transfer weights wij between

entities ei and ej based on predicate features and graph

topology:

wij =























softmaxN (ei)( max
Uk∈Uij

(MLP(hk, q))), lij = 1

∑

Uk∈Uij

∏

(ea,eb)∈Uk

wab, 1 < lij ≤ L

0, lij > L

(6)

where hk represents the features of the k-th predicate be-

tween entities ei and ej , and wab is the weight between ad-

jacent entities ea and eb. The transfer weights of first-order

relations (i.e., lij = 1) are computed directly based on the

relevance between the predicate features and the query. A

high transfer weight indicates that the predicate features

are closely related to the query, and vise versa. Different

from XNM, our graph structure allows multiple predicates

to connect between two entities, and here we adopt their

maximum weight. To measure the transfer weights of high-

order relations (1 < lij ≤ L), we compute the product of

the first-order transfer weights along each path and linearly
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combine them across multiple paths. We store the computed

transfer weights wij into the relation matrix W h and up-

date the attention at each entity node by propagating these

weights across the whole graph. This process is integrated

into the end-to-end training of neural modules.

4. Experiments and Results

We demonstrate our method with experiments on the

GQA [13] and VQAv2 [5] datasets. Our method outper-

forms the state-of-the-art explicit reasoning methods, sug-

gesting its superior ability to generate neural modules to

explicitly reason over the enriched scene graph. Qualitative

examples show that the complex reasoning process can be

completely traced across multiple graph nodes. Our results

also demonstrate the superior performance and generaliz-

ability of KI-Net on scene graph generation thanks to the

incorporated external knowledge.

4.1. Implementation Details

Datasets. We conduct an extensive set of experiments to

evaluate the proposed method on two VQA datasets: The

GQA [13] dataset is a visual reasoning and compositional

VQA dataset offering questions and answers about various

real-world images. We conduct experiments on its balanced

subset that includes 1.7M questions. The VQAv2 [5] dataset

is particularly designed to test the generalizability of VQA

models, which consists of 1.1M questions, each annotated

with 10 ground-truth answers. These two datasets maintain

a large size of versatile questions and rich annotations of the

scene structure (e.g., ground truth scene graph) and reason-

ing process (e.g., semantic structure of question).

Scene graph and knowledge graph. We generate ini-

tial scene graphs with a VCTree [25] trained on Visual

Genome [18]. To generate an external knowledge graph,

we extract relations from three knowledge bases: Concept-

Net [19], WordNet [21], and Visual Genome [18]. We ini-

tialize class nodes based on the nouns in the vocabulary of

the training set. From ConceptNet and WordNet, we re-

trieve the first-order relations and add the corresponding

classes and predicates to the knowledge graph. From the

Visual Genome dataset, for each subject-object pair, we in-

clude the top-3 predicates according to their frequency of

occurrence. For both the scene graph and the knowledge

graph, the feature dimension is set to dh = 300.

KI-Net training. Our KI-Net is trained on the GQA dataset

using its ground-truth scene graphs. The KI-Net parameters

are optimized with Adam optimizer [16] at a learning rate of

10−4 and a weight decay rate of 10−4. We bridge entity and

class nodes with top feature similarity and empirically set

the feature similarity threshold ǫcls = 0.7 following [32].

For the message passing, we set the number of iterations

KGAT = 3. We set the parameters Kp = 3 and ǫp = 0.8 to

limit the size of the enriched scene graph. Ablation studies

of the hyper-parameters are reported in the Supplementary

Materials.

Neural program generation and training. We convert the

input question into a program of neural modules follow-

ing StackNMN [10]. The question is first converted into

a sequence of T = 4 feature vectors (with dimensionality

ds = 300) using a bi-directional LSTM [23]. At each step

t, we generate textual parameters qt and weight parame-

ters wt using several layers of MLP in a time-dependent

manner. The textual parameters are used as queries and the

weight parameters are used for soft module selection. We

feed the output features of the program into a softmax layer

to predict the answer. The neural modules are trained by

minimizing the cross-entropy loss of the predicted proba-

bilities for the top 3000 answers. We use the Adam opti-

mizer with a learning rate of 10−4 and a decay rate of 10−4.

The training process is approximately 20 epochs with early

stopping based on validation accuracy. We set the max path

length L = 3 to balance computational complexity and per-

formance. Ablation studies of the hyper-parameters are re-

ported in the Supplementary Materials.

Model evaluation and comparison. We compare our

method with state-of-the-art neural module methods. While

XNM [24] and NSM [12] are graph-based explicit reason-

ing models, StackNMN [10] and N2NMN [11] are based on

image features. For a fair comparison, all compared mod-

els are trained and evaluated under the same settings, except

that N2NMN requires ground truth layout policies to super-

vise the generation of neural programs.

4.2. Model Performance

Comparison with the state of the art. As shown in Tab. 2,

our method achieves a 64.21% overall accuracy on the GQA

test-dev dataset [13] and a 67.32% overall accuracy on the

VQAv2 validation dataset [5], outperforming the state-of-

the-art neural module models on both datasets. Our method

also ranks the top regarding answer consistency, validity,

and plausibility, while achieving the second-best distribu-

tion score. Among the compared models, NSM performs

the second best thanks to its specifically designed state tran-

sition function that can be trained end-to-end to represent all

possible neural modules. This end-to-end learning of neural

modules improves the model performance at the expense of

interpretability, as the semantic meaning of the learned neu-

ral modules is unclear.

It is noteworthy that our method shows a considerable

improvement in the plausibility metric. The plausibility

measures whether objects are described with a general level

of world-knowledge (e.g., the color of an apple can be red or

green, but not blue). The higher plausibility score demon-

strates that our method can effectively reason about com-

monsense knowledge based on the enriched scene graph.

Comparison with the baselines. Tab. 2 compares three
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Method
GQA test-dev VQAv2 val

Binary Open Consistency Validity Plausibility Distribution Overall Yes/No Number Other Overall

N2NMN [11] 74.68 41.33 87.78 96.03 84.15 6.07 56.97 77.54 40.38 56.39 63.28

StackNMN [10] 75.92 43.21 86.41 96.30 84.29 5.69 58.55 79.28 41.06 56.43 64.09

XNM [24] 76.88 43.24 88.24 96.21 84.92 5.81 59.01 79.92 41.16 57.12 64.70

NSM [12] 78.94 49.25 93.25 96.41 84.28 3.71 63.17 79.77 41.75 59.40 65.77

Baseline I 73.97 41.28 85.24 96.17 83.85 6.13 56.61 77.65 41.29 57.82 64.11

Baseline II (G-Relate) 76.22 43.31 88.25 96.12 84.71 5.48 58.74 79.80 40.97 58.73 65.38

Baseline III (KI-Net) 77.79 45.60 89.31 96.21 85.77 5.72 60.69 79.64 42.89 59.71 65.98

Ours 81.02 49.36 93.81 96.84 86.31 4.41 64.21 81.92 43.16 60.47 67.32

Table 2. Quantitative results on the GQA and VQAv2 datasets. The best results are highlighted in bold.

baseline models to evaluate the effectiveness of the pro-

posed KI-Net and G-Relate. Baseline I replaces G-

Relate with a basic Relate module following the XNM

method [24], and performs reasoning without external

knowledge incorporation. Baseline II (G-Relate) only uses

G-Relate to infer high-order relations, and Baseline III (KI-

Net) only uses KI-Net to incorporate knowledge. The re-

sults suggest that KI-Net and G-Relate can independently

improve the VQA performance on both datasets. Alto-

gether, they achieve total improvements of 7.6% on GQA

and 3.2% on VQAv2, better than the sum of their inde-

pendent improvements. This observation suggests that G-

Relate is more effective on the enriched scene graph struc-

ture by resolving its semantic complexity. In particular, by

improving the scene graph and attention transfer, KI-Net

and G-Relate allow the attention to be more efficiently and

accurately allocated to the correct nodes. As a result, our

method significantly improves the accuracy of answers to

attention-sensitive questions (e.g., yes/no questions). For

further analyses of the attention distribution, please refer to

the Supplementary Materials.

Qualitative results. Fig. 5 presents qualitative examples

and key relations incorporated from external knowledge that

help the reasoning model to predict the correct answer. As

shown in the examples, our method predicts more accurate

answers than the state-of-the-art methods. With the help of

multi-source external knowledge, our method is more gen-

eralizable to questions with out-of-domain knowledge and

answers more specifically and correctly to open questions

(see Fig. 5a) and binary questions (see Fig. 5b-d). The per-

formance improvement comes from the explicitly incorpo-

rated entities and predicates that allow the reasoning pro-

cess to attend to these nodes and infer the correct answer.

For example, in Fig. 5a-b, our method answers correctly

because it can explicitly allocate attention to the incorpo-

rated entities (i.e., bedroom and cheese). These examples

also demonstrate the importance of reasoning with high-

order relations. Since the entities (i.e., pole, propeller, and

aircraft, see Fig. 5c-d) are added from the external knowl-

edge, it is not possible to directly generate multiple first-

order Relate modules from the questions. Instead, our G-

Relate can propagate attention directly along the high-order

relation paths (e.g., man-in-ski-requiring-pole in Fig. 5c and

aircraft-has-airplane-has-propellers in Fig. 5d). These ex-

amples demonstrate the collaboration between KI-Net and

G-Relate that improves the overall reasoning performance

Question: Which room is it?  Are there both cheese and salad?  Are there any propellers on the aircraft? Is the man holding ski poles? 

Image:

(a) (b) (c) (d)

Answers: GT: Bedroom
XNM: Indoors
NSM: Indoors

GT: Yes
XNM: No
NSM: No

GT: Yes
XNM: No
NSM: No

GT: Yes
XNM: No
NSM: No

Ours: Bedroom
StackNMN: Indoors
N2NMN: Indoors

Ours: Yes
StackNMN: No
N2NMN: No

Ours: Yes
StackNMN: No
N2NMN: No

Ours: Yes
StackNMN: No
N2NMN: No

Knowledge: bed-locationOf-bedroom pizza-has-cheese airplane-typeOf-aircraft
propellers-partOf-airplane

ski-requiring-pole

Neural
Modules:

Attend[room], Describe[name] Attend[cheese], Attend[salad],
And, Exist

Attend[aircraft], G-Relate[on],
Attend[propeller], Exist

Attend[man], G-Relate[hold],
Attend[pole], Exist

Figure 5. Qualitative examples of our method with the incorporated knowledge and the generated neural modules. Highlighted entities and

predicates are incorporated from external knowledge.
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Method mR@50 mR@100 R@50 R@100

GB-Net [32] 6.1 6.9 25.5 29.8

KI-Net 6.2 7.3 25.7 30.6

Improvement 0.1 0.4 0.2 0.8

Table 3. Comparison between KI-Net and GB-Net on the VQAv2

validation set.

and model explainability.

4.3. Evaluation of Scene Graphs

To further demonstrate the effectiveness of KI-Net, we

evaluate the enriched scene graphs on the VQAv2 dataset.

We measure the quality of scene graphs with the Recall

(R@50, R@100) and mean Recall (mR@50, mR@100) fol-

lowing the common practice [6]. The R@K measures how

many ground-truth relations are hit in the top K predictions,

and mR@K balances the uneven distribution of relations by

measuring the average R@K across all relations.

Effectiveness of explicit knowledge incorporation. We

compare KI-Net with GB-Net [32], a state-of-the-art scene

graph generation model that implicitly distills semantic fea-

tures from the external knowledge graph without adding

graph nodes. In this experiment, both GB-Net and KI-

Net are based on the same initial scene graph and external

knowledge graph. Tab. 3 shows that the explicit incorpo-

ration of relevant entities and predicates allows KI-Net to

generate better scene graphs on all metrics. Its performance

gain over the GB-Net is more significant on the R@100 and

mR100 metrics. This suggests that the less confident pre-

dictions of the original scene graph benefit the most from

the KI-Net, due to the incorporated external relations.

Comparison of knowledge bases. To demonstrate the

ability of KI-Net on the inclusion of multiple knowl-

edge sources for the generation of enriched scene graphs,

we compare the effectiveness of WordNet [21], Concept-

Net [19], Visual Genome [18] or a combination of all three.

Tab. 4 shows that the KI-Net can significantly improve the

quality of the scene graph even with only one external

knowledge base. With a combination of all three, KI-Net

achieves the highest accuracy in scan-path generation, de-

spite the semantic similarity of the knowledge bases and the

training of KI-Net on the VQAv2.0 dataset.

4.4. Generalization across neural module networks

To validate the generalizability of the proposed KI-Net,

we apply state-of-the-art graph-based neural module net-

works (i.e., NSM [12] and XNM [24]) to the same scene

graphs and compare their performances before and after

knowledge incorporation. Specifically, since the NSM and

XNM methods are based on different scene graph struc-

tures, for a fair comparison, we customize them to run on

the same initial scene graph (i.e., VCTree [25]) and the en-

Knowledge Base mR@50 mR@100 R@50 R@100

None 5.5 6.7 25.3 28.9

WordNet [21] 5.9 7.0 25.4 30.2

ConceptNet [19] 6.1 7.2 25.5 30.1

Visual Genome [18] 6.0 7.2 25.6 30.4

All 6.2 7.3 25.7 30.6

Table 4. KI-Net performances with different knowledge bases on

the VQAv2 validation set. The best results are highlighted in bold.

Method
Accuracy

w/o KI-Net w/ KI-Net Improvement

NSM [12] 63.41 63.68 0.27

XNM [24] 64.89 65.93 1.04

Ours 65.38 67.32 1.94

Table 5. Generalization results of KI-Net to other neural module

networks on the VQAv2 validation set.

riched scene graph (i.e., with KI-Net) as ours. As shown in

Tab. 5, our KI-Net is generalizable to many neural module

methods. It effectively enriches the scene graphs with rele-

vant semantics and improves the accuracy of answers. Due

to its more general neural module design, NSM is less sensi-

tive to the quality improvement of scene graphs. Therefore,

KI-Net is the least effective working with NSM. Similar to

our method, XNM offers a set of explicitly defined neural

modules, but it can only transfer attention along first-order

relations. Therefore, with XNM, the enriched scene graph

has a moderate level of effect on the VQA accuracy. Com-

pared with NSM and XNM, our novel G-Relate module can

better leverage the rich semantics in the scene graph and

obtain a more significant performance improvement.

5. Conclusion

In this paper, we address the generalizability and ex-

plainability of visual reasoning by introducing an explain-

able and explicit visual reasoning method that emphasizes

the explicit integration of external knowledge and high-

order relational attention. It consists of a novel Knowl-

edge Incorporation Network (KI-Net) that explicitly incor-

porates new entities and predicates to enrich the semantics

of scene graphs, and a Graph-Relate (G-Relate) module to

infer high-order relations. With these novel contributions, it

can answer general questions about real-world images with

both generalizability and explainability. Our method out-

performs the state-of-the-art visual reasoning approaches on

the GQA and VQAv2 datasets.
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