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Abstract

Scene understanding is a critical problem in computer

vision. In this paper, we propose a 3D point-based scene

graph generation (SGGpoint) framework to effectively

bridge perception and reasoning to achieve scene under-

standing via three sequential stages, namely scene graph

construction, reasoning, and inference. Within the reason-

ing stage, an EDGE-oriented Graph Convolutional Net-

work (EdgeGCN) is created to exploit multi-dimensional

edge features for explicit relationship modeling, together

with the exploration of two associated twinning interac-

tion mechanisms between nodes and edges for the inde-

pendent evolution of scene graph representations. Overall,

our integrated SGGpoint framework is established to seek

and infer scene structures of interest from both real-world

and synthetic 3D point-based scenes. Our experimental

results show promising edge-oriented reasoning effects on

scene graph generation studies. We also demonstrate our

method advantage on several traditional graph representa-

tion learning benchmark datasets, including the node-wise

classification on citation networks and whole-graph recog-

nition problems for molecular analysis.

1. Introduction

Scene understanding is intrinsically close to the essence

of computer vision. It simulates human visual system in

recognizing the miscellaneous clues concealed in the com-

plex visual world, succeeded by understanding what we per-

ceive in the visual scenes surrounding us [8]. This process

could be integrated and assisted with an efficient use of se-

mantic scene graph (SG), which has its popularity well-

demonstrated within the computer graphics community, via

depicting the objects and their inner structural relationships

Our project page: https://SGGpoint.github.io

3

wall

10

wardrobe

2 

wall

4

wall

5 

bathtub

6

toilet

7 

door

8 

hanger

9 

wardrobe

11

rug

12

sink

13

shelving

14

mirror

15

chandelier

1 

floor

Support

Surround

Next-to

Figure 1. 3D Point-based Scene Graph Generation (SGGpoint)

takes as inputs real-world or synthetic 3D scenes S (left) and

class-agnostic instance mask M (middle) to inference a scene

graph G (right). M and G above are aligned to the same spatial

layout, sharing a unified instance color encoding.

(scene layouts) as its nodes and edges, respectively.

Unlike most of the successful works proposed for 2D

SG studies [49, 46, 24, 15], this paper focuses on 3D point-

based semantic SG analysis – an emerging 3D visual recog-

nition task that has not been well-explored yet. Such meth-

ods could provide great aid for arising cross-domain vi-

sion tasks including 2D-3D scene retrieval [38], 3D visual

grounding [4, 3], and scene captioning [5], which would

subsequently benefit real-life applications such as creative

interior decoration designs, self-driving autonomous vehi-

cles, or other AI-enriched indoor/outdoor industries.

Within the rising progression of 3D point-based se-

mantic SG analysis, the research interests have gradually

shifted from object-centric point cloud learning tasks, such

as 3D object detection [32, 48, 33], instance segmenta-
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tion [14, 54, 42], and semantic scene segmentation [13, 47],

to the joint recognition of both objects and inter-object

structural relationships, which could be further regressed

to generate SGs describing some desired scene layouts

(Fig. 1) for given point-based 3D scenes. Moreover, ex-

isting works [49, 38] have mostly treated the inter-object

structural relationships as by-products derived from graph

node recognition, losing sight of the visual cues lurking in-

side each SG representation and thus degrading their joint

recognition performance.

In this paper, we propose a 3D SGGpoint framework

capable of effectively bridging perception and reasoning to

achieve 3D scene understanding through three sequential

stages, namely scene graph construction, reasoning, and in-

ference. The contributions of this paper are summarized

as follows: 1) To endow the graph convolution networks

(GCNs) with edge-assisted reasoning capability, an edge-

oriented GCN (EdgeGCN) is proposed to exploit multi-

dimensional edge features for explicit inter-node relation-

ship modeling. 2) Two twinning interactions between SG

nodes and edges are further explored to conduct compre-

hensive SG reasoning for each individual SG representa-

tion evolution, so that the node- and edge-oriented visual

clues can be better perceived and utilized to assist the other

ones’ evolution via an attentional manner. 3) Our integrated

SGGpoint framework is demonstrated to be handy for gen-

erating 3D scene structures from either computer-aided 3D

scene synthesis or real-world 3D scans, while our edge-

driven interaction scheme is also proven beneficial to con-

ventional graph representation learning tasks.

2. Related Work

2D scene graph analysis. SGs were firstly introduced into

computer vision to capture more semantic information of

objects and their inter-relationships for image retrieval [16].

Thereafter, a string of image-based SG generation meth-

ods [46, 51, 22, 49, 21, 27] was substantially fostered by

the release of the Visual Genome [18] dataset, which in-

cludes large-scale SG annotations on images. Xu et al. [46]

adopted gated recurrent units (GRUs) [7] to propagate

messages iteratively between the primal and dual graphs

formed by SG nodes and edges, while MotifNet [51] gener-

ated SGs from global context parsed through bidirectional

LSTM [12]. Most methods [22, 21, 27] tackled SG predic-

tion problem within an object detector-cored framework for

node- and edge-specific feature extraction, whereas Graph

R-CNN [49] proposed an attentional variant of GCN [17]

and combined it with Faster R-CNN [31] to process contex-

tual information between objects and relationships. Unlike

most of them that treat edge features as by-products derived

from the 2D object recognition progress, we address this

issue by handling nodes and edges equivalently and simul-

taneously as a pair of twining representations among 3D

point-based scenes.

3D point-based scene understanding. Differing from

voxelization-based [26] or view-based approaches [35, 29],

point cloud processing techniques have been advanced to

support direct point-based manipulations on 3D objects or

scenes [28, 30, 43]. They transformed 3D scene under-

standing into several object-centric recognition tasks in-

cluding semantic scene segmentation [13, 47], scene in-

stance segmentation [14, 54, 42], and scene object detec-

tion [32, 48, 33], which ensures the deep learning advances

could be inherited from 2D vision to enhance 3D object-

oriented recognition performance. Additionally, other con-

current 3D scene understanding works have compiled a

few augmented reality focused applications such as indoor

scene synthesis and augmentation [19, 40, 39, 55], by pro-

ducing object recommendation lists for given query posi-

tions within 3D class-known scenes. GRAINS [19] adopted

recursive auto-encoders for semantic scene completion over

the SGs being organized in tree structures, while Scene-

GraphNet [55] achieved iterative scene synthesis by pass-

ing relationship-specific messages among SG nodes. Apart

from these investigations in object-oriented scene recogni-

tion, only a few works have spotlighted 3D scene-oriented

reasoning and understanding, by encoding the scene layouts

of interest or regressing the inter-object structural relation-

ships, due to the lack of 3D SG datasets. Recently, the

3RScan [37] dataset, which had been initially probed for 3D

object instance re-localization task, was later upgraded as a

newly established benchmark [38] for learning 3D semantic

SGs from point-based indoor environments. In this work,

we selected these two datasets to evaluate our approaches

on 3D real-world scans. Another synthetic dataset [34] with

scene layout annotations released in [55] was also adopted

for our method evaluation on 3D synthetic scenes.

Graph-based reasoning. Building upon GCNs [17] as

their core components, graph reasoning approaches conduct

graph-based information propagation to achieve global re-

lation reasoning effects among the graph nodes. GCU [20]

initiated a three-stage graph reasoning paradigm for 2D vi-

sion tasks with the graph projection, convolution, and re-

projection operations, while GloRe [6] and LatenGNN [53]

strengthened their global reasoning powers via flexible fea-

ture aggregations performed within their so-called interac-

tive (or latent) space. Meanwhile, SGR [23] and GIN [44]

inspected contextual reasoning over commonsense graph

structures and utilized external knowledge to improve per-

formance on several 2D segmentation benchmarks. How-

ever, most existing approaches focused on relation rea-

soning among graph nodes, neglecting their twinning rep-

resentations, i.e., graph edges. By contrast, inspired by

EGNN [10], we ameliorate GCN to make it compatible with

explicit relationship modeling as desired and further exploit

edge-oriented reasoning for SG representation learning.
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Figure 2. Our proposed 3D point-based scene graph generation (SGGpoint) framework consisting of three sequential stages.

3. Method

Suppose a 3D point cloud P consists of N points

{Pk}k=1,...,N . The ultimate goal of our point-based scene

graph generation (SGGpoint) framework is to create a

scene graph G = (V, E), where nodes V and edges E
depict the instance objects and their inner structural rela-

tionships, respectively. This objective can be investigated

through several stages: namely scene graph construction

(ConstructionSG in Sec. 3.1), reasoning (ReasoningSG in

Sec. 3.2), and inference (InferenceSG in Sec. 3.3).

3.1. Scene Graph Construction

Compared to the existing work [38] that employed two

separate backbone networks to extract independent object-

and relationship-specific features, we reduce the superflu-

ous redundancies in scene understanding via sharing one

single backbone denoted as FB(·) to capture the point-wise

features XP ∈ RN×Cpoint from a specific P ∈ RN×Cinput

that forms scene S, where Cinput and Cpoint denote the

channel numbers for inputted point clouds and their ex-

tracted point-wise features, respectively. XP is further

propagated to facilitate the initial modeling of the repre-

sentations of m nodes and m2 one-to-one edges in G, as

XV ∈ Rm×Cnode and XE ∈ Rm×m×Cedge , respectively,

where Cnode and Cedge indicate the channel numbers for

node and edge features constructed within G, respectively.

Node feature generation. As suggested in [38], a sym-

metric pooling function g(·) [28] is performed on an un-

ordered set, along the class-agnostic point-to-instance indi-

cator M ∈ {1, ...,m}N to generate the instance-wise vi-

sual signatures XVi
∈ R1×Cnode for each object i inside S,

from the point-wise features XP obtained by FB(·). This

masking operation can be formally described as:

XVi
= g

({
δ(Mk, i) · XPk

}
k=1,...,N

)
, (1)

where δ(·, ·) denotes the Kronecker Delta. Our initial node

features can now be modeled as XV by stacking together all

m instance-wise visual signatures across S.

Edge feature initialization. In contrast to some SG stud-

ies on 2D images [15] or 3D point clouds [38] that reformu-

lated inter-object structural relationships as special kinds of

nodes, the SGGpoint framework would instead learn and

encapsulate this information as multi-dimensional edge fea-

tures XE . Each member XE(i,j)
∈ R1×1×Cedge records the

Cedge-dim status of each directional connection E(i,j) that

points from subject Vi toward object Vj , which can be ini-

tialized as XE(i,j)
=

(
XVi

++ (XVj
−XVi

)
)

using feature

engineering and concatenation scheme introduced in [43].

3.2. Scene Graph Reasoning via EdgeGCN

Previous SG works mostly acquired edge predictions

as by-products derived from node representation learning,

which might underestimate potential impacts of the visual

cues lurking inside both node and edge representations to-

ward their joint SGGpoint task. Instead, we posit that both

nodes and edges are expected to be treated equally and pro-

cessed simultaneously as pairs of twinning representations

within a given SG, and we thus assign each one with an

exclusive learning branch and investigate graph reasoning

techniques for their feature representation enhancements.

Recall the recently proposed global relation reasoning

approaches [6, 23, 44, 20] that applied GCNs to perform
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node-wise message propagation to obtain their so-called

evolved node features through graph-based reasoning [23].

We first borrow their ideas and naming rules to establish

our SG node evolution stream, where an edge-driven in-

teraction mechanism dubbed twinning edge attention, is

proposed to enhance node-wise reasoning. Similarly, an

edge evolution stream equipped with twining node atten-

tion scheme is next designed to extract node-specific cues

for conducting edge-wise reasoning.

3.2.1 Twinning Edge Attention for Node Evolution

Figure 3. Twinning edge attention AE design within our EdgeGCN

for modeling the edge-driven interactions toward node evolution.

Twinning edge attention. Our twinning edge attention

scheme is proposed to learn a multi-dimensional attention

mask AE ∈ Rm×C′

node to be applied over V in accordance

with their node-wise importance cues embedded in XE ,

where C′
node is pre-defined here to match the inner chan-

nel number within node evolution stream to be described

below. To make use of the directional status recorded in

XE , given a node Vi, we compute its edge interaction vector

aiE ∈ R1×C′

node by considering both circumstances when it

plays the roles of sources or targets in various connections.

Mathematically, the outgoing interaction signals emitted by

Vi (as sources) and the incoming interaction signals re-

ceived by Vi (as targets) can be captured and aggregated

as aiE(i,·)
and aiE(·,i)

, respectively, through:

aiE(i,·)
= Arow

(
{WT

ϕ XE(i,k)
| ∀Vk}

)
, (2)

aiE(·,i)
= Acol

(
{WT

ϕ XE(k,i)
| ∀Vk}

)
, (3)

where Wϕ ∈ RCedge×C′

node is a trainable transformation

matrix for converting each edge feature XE(·,·)
∈ RCedge

into the dimension C′
node, while Arow(·) and Acol(·) rep-

resent the channel-wise aggregation functions performed

along row- and column-directions, respectively. Hence, as

demonstrated in Fig. 3, the overall edge-driven interaction

score of node Vi can now be jointly learned as:

aiE = σ(aiE(i,·)
⊙ aiE(·,i)

), (4)

where ⊙ denotes the Hadamard Product and σ indicates the

sigmoid function to emphasize the meaningful interactions

and suppress the uninformative ones.

Node evolution stream. Suppose AG as the adjacency ma-

trix defined over G. Based on the definition of edge-driven

twinning attention, our evolved SG node representation X ′
V

could now be learnt as:

X ′
V = f

(
ÂG

(
f(ÂGXVWG1)⊙AE

)
WG2

)
, (5)

where AE and f denote the edge-driven interactive score

and non-linear activation function, respectively, and ÂG is a

symmetric Laplacian matrix normalized from AG + I such

that all rows sum to one [17], while WG1 ∈ RCnode×C′

node

and WG2 ∈ RC′

node×Cnode are learnable weights for two con-

secutive graph convolution layers to squeeze and expend the

channels of node features through Cnode −→ C′
node −→ Cnode.

Note: The inner layer outputs in Eq. 5 and 7 are indicated

in dark brown for convenience. Unlike [55] which provides

detailed relationship categorical information to guide their

node evolution and employs several independent GRUs to

conduct the message passing for each kind of relationship,

we instead only reveal the class-agnostic relationship exis-

tences (i.e., AG) for our approach designs, leading to a flex-

ible scalability upon the various dataset-dependent inter-

object relationship annotations across datasets.

3.2.2 Twinning Node Attention for Edge Evolution

Figure 4. Twinning node attention AV design inside our EdgeGCN

for modeling the node-driven interactions toward edge evolution.

Twinning node attention. Similarly, the interactions made

by the source-nodes and target-nodes, toward their reaching

edges, are modeled by another multi-dimensional attention

mask AV ∈ Rm×m×C′

edge to be assigned upon E(·,·), where

C′
edge is pre-set here as the inner channel number of edge

evolution stream to be demonstrated below. Specifically,

given nodes i and j, together with the directional edge con-

necting them E(i,j), their resulting edge-wise node-driven

interaction score a
(i,j)
V ∈ R1×1×C′

edge can be learnt from

the concatenation of evolved node features that belongs to

the sources and targets, as:

a
(i,j)
V = σ

(
WT

θ f(WT
φ X ′

Vi
++WT

φ X ′
Vj
)
)
, (6)

where Wθ ∈ R2C′

edge×C′

edge and Wφ ∈ RCnode×C′

edge repre-

sent the learnable weight matrices of a two-layer structure
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for transforming channel number from 2C′
edge to C′

edge, and

from Cnode to C′
edge, respectively.

Edge evolution stream. With node-driven twinning atten-

tion defined, the other evolved edge feature X ′
V could now

be obtained through:

X ′
E = f

(
WT

FC2

(
f(WT

FC1
XE)⊙AV

))
, (7)

where AV is the node-driven interactive score, while

WFC1 ∈ RCedge×C′

edge and WFC2 ∈ RC′

edge×Cedge are train-

able parameters for two fully-connected layers to transform

edge features through Cedge −→ C′
edge −→ Cedge.

3.2.3 EdgeGCN

As illustrated in Fig. 2, a joint reasoning module dubbed

EdgeGCN capable of exploiting edge features for more

comprehensive graph reasoning performed over G is de-

signed to take as inputs XV and XE that are initially formed

in the ConstructionSG stage, conduct collaborative message

propagation between two twinning SG representations en-

riched by their corresponding edge- and node-driven inter-

actions, and produce the evolved ones to be used by the

InferenceSG stage. More specifically, EdgeGCN contains

two feature evolution streams for the nodes (XV −→ X ′
V ) and

edges (XE −→ X ′
E ), and the evolution stream of each repre-

sentation is endowed with an attentional interaction mech-

anism (AE or AV ) to escort the interdependence between

itself and its twinning representation. The detailed architec-

ture designs can be viewed in Sec. 3.4.

As its name suggests, the most distinctive attribute of

our EdgeGCN is the explicit modeling of multi-dimensional

edge features and their effective interactions with node fea-

tures for SG reasoning, compared to other node-wise graph

reasoning approaches [6, 44]. Noticeably, a Vanilla

EdgeGCN without any interactive designs, i.e., AE =
AV = 1, could be built as two isolated representation learn-

ing branches consisting of a two-layer GCN and a two-layer

MLP for the independent node and edge evolution.

3.3. Scene Graph Inference

The final SG recognition results are predicted on the

evolved node features X ′
V and edge features X ′

E . Two Mul-

tilayer Perceptron based inference streams are established

as NodeMLP and EdgeMLP to perform the recognition of

objects and their inner structural relationships, respectively.

Moreover, NodeMLP and EdgeMLP share the same net-

work structure of two fully-connected layers, but with in-

dividual learnable parameters to convert channel numbers

through Cin −→ Cin

2 −→ Cout, where Cin indicates their cor-

responding input channels and Cout equals to the number of

object classes or relationship classes.

3.4. Implementation Details

For the specific instances of FB(·) adopted in

ConstructionSG stage, we chose the pioneering Point-

Net [28] and its promising follower DGCNN [43] for their

concise but effective architecture design philosophy, as well

as the dynamic and powerful context modeling of each lo-

cal neighborhood in semantic spaces, respectively. Con-

cretely, we set Cinput to 9 including 3-dim coordinates, 3-

dim RGB colors and 3-dim normal vectors, while Cpoint
set to 256 for unified point-wise feature extraction. Within

the ReasoningSG stage, we set Cnode = 2 × C′
node = 256,

and Cedge = 2×C′
edge = 512 for SG node and edge evolu-

tion streams, respectively, while we used ReLU for f(·) and

adopted the Synchronized BatchNorm [52] for multi-GPU

training. Regarding the InferenceSG stage, two multi-class

cross entropy losses Lnode and Ledge were applied for their

corresponding SG representation learning, and hence, the

integrated SGGpoint framework could be supervised via a

joint loss LSG = Lnode+Ledge. Please refer to the supple-

mentary materials1 for the training details for each dataset.

Before being fed into the InferenceSG stage, the evolved

SG representations obtained from EdgeGCN are combined

with the initial ones via a residual connection [11], to fur-

ther enhance the discriminative power of graph-based rea-

soning approaches for SGGpoint studies, which is unnec-

essary for conventional graph representation learning tasks

and thus omitted to match up with other GNN setups.

4. Experiments

We evaluated the SGGpoint framework on both real-

world (Sec. 4.1) and synthetic 3D scenes (Sec. 4.3), with

extensive ablation studies conducted on real-world ones

(Sec. 4.2) to demonstrate the individual contribution of each

proposed component toward the overall quality of gener-

ated SGs. Despite the studies of SG representation learn-

ing, we also verify the proposed EdgeGCN on five conven-

tional graph representation learning tasks (Sec. 4.4), includ-

ing three node-wise classification problems and two whole-

graph recognition problems.

4.1. 3D SGGpoint on RealWorld 3D Scans

Dataset and evaluation details. We first validated the ef-

fectiveness of our proposed methods on real-world 3D scans

using the 3RScan [37] dataset. Extending [37] with [38]

results in over one thousand 3D indoor point cloud recon-

structions, as well as their corresponding semantic 3D SG

annotations including 27 object classes and 16 relationship

categories (details in supplementary materials). For evalua-

tion, we applied the same scene-level split specified in [38]

on the point cloud representations, which were densely

sampled from their released surface reconstructions using

1https://SGGpoint.github.io/supplementary.pdf
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Graph Reasoning Approach
Object Class Prediction Predicate Class Prediction Relationship Triplet Prediction

R@5 R@10 F1@3 F1@5 R@50 R@100

FB(·) alone 87.40 96.26 68.55 82.79 34.97 45.86

+ GCN (SGPN) [38] ∗ 89.61↑ 96.98↑ 63.58↓ 77.79↓ 32.45↓ 41.65↓

+ GloRePC [25] 84.06↓ 95.17↓ 69.23↑ 80.01↓ 31.87↓ 42.21↓

+ GloReSG [6] 85.27↓ 96.62↑ 72.57↑ 83.42↑ 29.58↓ 38.64↓

+ EdgeGCN (our SGGpoint) 90.70↑ 97.58↑ 78.88↑ 90.86↑ 39.91↑ 48.68↑

Table 1. Results on real-world 3D scans. Note: ∗ denotes the usage of two separate FB(·) within ConstructionSG stage, for independent

feature extractions of initial node and edge representations in G.

CloudCompare [1], with all mesh information discarded

and surface density set as 10k points per square unit.

Following [46, 49, 38], the scene graph prediction per-

formance of the SGGpoint framework was evaluated upon

the three perspectives, namely object class prediction, pred-

icate class prediction, and relationship triplet prediction.

More specifically, we adopted the top-k recall metric used

in [24] for object class prediction and computed the macro-

F1 score for predicate class prediction, due to the imbal-

anced predicate class distribution in [38]. The relation-

ship triplet prediction was jointly generated as an ordered

list of (subject, predicate, object) triplets, whose

triplet-level confidence scores were obtained by multiply-

ing each respective score [49], and the most confident ones

are separated for evaluation against the ground truth anno-

tations [38].

Experimental results. We first set the FB(·) alone base-

line without invoking any graph reasoning modules. Note:

FB(·) was implemented as PointNet [28] here to make fair

comparisons with the current benchmark [38] and justify

various graph reasoning effects, while we also demonstrated

that our method could be further enhanced consistently by

changing the backbone in the coming ablation studies.

We then reproduced SGPN [38], which was similar

to [15] that treated both objects and their interrelation-

ships as graph nodes to conduct message propagation with

GCN [17], to generate the acquired triplets. As shown in

Table 1, employing GCN for scene graph reasoning in an

intuitive way as presented in [38] could improve the ob-

ject class recognition but may harm the performance in

other two SG tasks, which confirms the empirical find-

ings reported in [38] on over-smoothing issue caused by

multi-layer GCNs. We next verified GloRe modules to per-

form global relation reasoning on scene graph represen-

tation learning using official implementations in their re-

leased repository [6]. The GloRe module could be applied

at various positions to reach reasoning effects at two differ-

ent levels, namely the point cloud level (GloRePC) [25] and

scene graph level (GloReSG) [6]. In contrast to SGPN, both

GloRePC and GloReSG tend to benefit the predicate class

prediction and may damage the recognition under two other

metrics as a trade-off. Our EdgeGCN achieved the best re-

sults under all evaluation metrics, which demonstrated the

superiority of edge-oriented relationship modeling, as well

as its associated twinning attentions between graph nodes

and edges, for scene graph reasoning. The qualitative visu-

alization can be viewed in Fig. 5.

4.2. Ablation Studies

To reveal the precise performance gain of each pro-

posed component, we instead reported the respective recog-

nition results of objects and relationships in top-1 manner

within our ablation studies. Models A-C were raised to

establish the baselines of the SGGpoint framework, es-

pecially for the ConstructionSG and InferenceSG stages,

while models D-G were built to demonstrate the effec-

tiveness of adopting multi-dimensional edge features XE for

scene graph reasoning, together with two associated twin-

ning interactions between nodes and edges.

Model designs. More specifically, model A indi-

cates the baseline performance of utilizing backbone net-

works for object classification in the SG context, leav-

ing the initialization of XE , edge evolution stream, and

ID Task
ReasoningSG SG Recognition

GNNs AE AV node R@1 edge F1@1

A w/ ⋄ N - - - 48.6 -

B w/ ⋄ N GCN - - 54.4 -

C w/ ⋄ N+E - - - 48.4 38.7

D w/ ⋄ N+E EdgeGCN × × 54.8 4© 41.9 3©
E w/ ⋄ N+E EdgeGCN

√ × 56.9 2© 41.1 4©
F w/ ⋄ N+E EdgeGCN × √

56.4 3© 50.0 1©
G w/ ⋄ N+E EdgeGCN

√ √
57.1 1© 48.7 2©

A w/ ⋆ N - - - 58.0 -

B w/ ⋆ N GCN - - 61.3 -

C w/ ⋆ N+E - - - 57.1 39.6

D w/ ⋆ N+E EdgeGCN × × 60.8 4© 43.9 3©
E w/ ⋆ N+E EdgeGCN

√ × 61.7 2© 41.1 4©
F w/ ⋆ N+E EdgeGCN × √

61.0 3© 47.4 2©
G w/ ⋆ N+E EdgeGCN

√ √
62.5 1© 49.7 1©

Table 2. Ablation studies of SGGpoint framework. Task (N)

and Task (E) represent the node and edge recognition tasks for

SGGpoint studies, respectively, while dash lines indicate ’not ap-

plicable’. Two specific FB(·) implementations include PointNet

(⋄) and DGCNN (⋆). k© denotes rankings within each sub-block.
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Figure 5. Qualitative analysis of the SGGpoint framework. For visualization purpose, misclassified object or structural relationship

predictions are indicated with ground truth (GT) values in red, while the correct ones are shown in green with GT values omitted.

EdgeMLP untouched in ConstructionSG, ReasoningSG,

and InferenceSG stages, respectively. Model B enhances

model A via the same two-layer GCN adopted in our

EdgeGCN to perform a XE -uninvolved graph reasoning,

which relies on the node information alone, where as

model C enriches model A to be compatible with the

joint recognition tasks for SG objects and relationships via

adding edge-wise supervisions into the model training. Fur-

thermore, a Vanilla EdgeGCN is trained, as model D,

to fulfill model B with the necessary components for re-

lationship recognition. Then, two twinning interactive at-

tention schemes are equipped to model D, investigating

the independent impacts of edge-driven and node-driven in-

teractions from model E and F, respectively. At the end,

with the aim of reaching a comprehensive XE -involved SG

reasoning effect, model G is constructed with collabora-

tive improvements invoked from both node and edge sides

for SG representation evolution.

Discussions. As details revealed in Table 2, graph

reasoning could benefit the object recognition process

(A⋄/⋆ −→B⋄/⋆), while roughly adding edge-wise supervi-

sion may harm the outcomes by contrast (A⋄/⋆ −→C⋄/⋆)

and we attribute it as the potential distractions on the uni-

fied extraction of point-wise features via FB(·). These dis-

tractions could be partially alleviated by adding extra train-

able parameters such that more degree of freedom might be

positively introduced into the edge representation learning

(B⋄ −→D⋄; C⋄/⋆ −→D⋄/⋆), which thus forms the edge evo-

lution stream in our Vanilla EdgeGCN. The effective-

ness of AE could be somewhat controversial, as it brings

improvements on node recognition results yet reduces the

edge ones as a trade-off (D⋄/⋆ −→E⋄/⋆), and we blame it

as similar distractions discussed above. The other twin-

ning interaction module AE could accelerate the edge evo-

lution as expected, without distressing the edge evolution

(D⋄/⋆ −→F⋄/⋆). Stunningly, combining AE and AV not only

achieves the best performance in terms of object classifica-

tions ({E,F}⋄/⋆ −→G⋄/⋆), but also practically curbs the dis-

tractions made by AE (E⋄ −→G⋄) and even produces the best

outcomes (E⋆ −→G⋆) in terms of relationship predictions.

4.3. 3D SGGpoint on Synthetic 3D Scenes

Dataset and evaluation details. We further analyzed our

methods on the SUNCG [34] dataset, to verify its general-

ization ability on synthetic 3D scenes. The SUNCG dataset

is comprised of over 45k 3D virtual scenes, which were

manually created with the Planner5d platform [2] in four

room categories, i.e., office, bedroom, bathroom, and liv-

ing room. As suggested in [55], we filtered out the non-

rectangular scenes to maintain fair comparisons with pre-

vious studies [19, 40, 55], then repeated the whole exper-

imental procedure independently for each synthetic room

category [40, 39], as each category owns unique objects.

For evaluation, we followed the same dataset split-

ting and preprocessing policy in [55] and adopted three-

class inter-object relationship annotations (support, sur-

round, and next-to) [55, 19] as the predicate ground truth

to train SGGpoint on synthetic 3D scenes, with point

cloud sampling settings unchanged to previous studies. The

SG object classification accuracy was reported to compare

SGGpoint with other existing SOTAs on SUNCG dataset.

Results and discussions. Some early methods [19, 40] on

this dataset were merely designed for scene synthesis stud-

ies, where they firstly removed the target objects from the

scenes and then utilized their surrounding contexts to pre-

dict the missing labels for scene synthesis evaluations. We

thus recognized their approaches as missing object predic-

tion studies and included their results as reference bench-

marks (in Table 3) for comparisons with traditional ob-

ject recognition methods such as [35] and [55]. Unlike

these missing object predictions who treat target objects

Method Bed Living Bath Office

GRAINs [19] ∗ 45.1 43.7 42.4 45.6

Wang et al. [40] ∗ 48.9 46.6 61.4 46.6

MVCNN [35] 69.6 55.8 43.4 67.8

SceneGraphNet [55] ∗ 66.8 67.6 69.8 64.8

SceneGraphNet [55] 79.9 74.7 56.4 73.0

SGGpoint w/ ⋄ 79.5 76.2 61.6 74.1
Table 3. Results on synthetic 3D scenes, where ∗ denotes missing

object predictions achieved by scene synthesis based approaches.
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as empty nodes and take as inputs the contextual scene

formed by other available nodes in G, the traditional ones in-

cluding ours would instead extract visual features from tar-

get objects themselves for further usage (e.g., EdgeGCN).

As shown in Table 3, our SGGpoint outperformed exist-

ing SOTAs on Living and Office datasets, and we achieved

on-par result on Bed category. In contrast to [55], our

EdgeGCN employed multi-dimensional edge features and

it is thus insensitive to specific types of inter-object rela-

tionships. Besides, compared to the multi-view based ap-

proaches [35, 55], SGGpoint supports direct point-wise

manipulations on 3D scenes via a more efficient manner,

in terms of the time and space complexity [28].

4.4. Graph Representation Learning

The effectiveness of our EdgeGCN could also be verified

on graph representation learning studies, such as node-wise

classification and whole-graph recognition problems. More

specifically, our method was evaluated on three popular ci-

tation network datasets (Cora, CiteSeer, and Pubmed) [50]

and two molecular datasets (Tox21 and BBBP) [45].

Since these conventional graph representation learning

tasks do not provide edge annotation, we thus omitted our

edge evolution stream, together with its associated twin-

ning node attention mechanism, and compared the resulting

EdgeGCN (AE ) with its counterparts including GCN [17],

GAT [36], and EGNNs, i.e., EGNN(A) and EGNN(C),

which were reproduced in accordance to their reported set-

tings [10]. We applied a Pytorch Geometric [9] script and a

DGL [41] script, for evaluations conducted on citation net-

work datasets and molecular datasets, respectively. We kept

all specific training settings unchanged for all method eval-

uations, except for repeating their procedure 50 times for

each approach and reporting the averaged accuracy (Accu.),

or area under the ROC curve (AUC), with standard devia-

tion to reach reliable comparisons.

Node-wise classification for citation analysis. The GCN,

GAT, and our EdgeGCN (AE ) were constructed as two-

layer networks. Since [9] does not provide a universal GAT

implementation, we reproduced GAT with various settings

GNNs
Node Accu. Graph AUC

Cora CiteSeer Pubmed Tox21 BBBP

GCN 80.3±0.7 67.7±0.8 78.5±0.5 73.1±1.1 64.3±3.5

GAT (8, 4) 79.8±0.8 68.1
+0.4↑
±0.9 76.7±0.7

68.3±1.8 65.1
+0.8↑
±1.9

GAT (8, 8) 79.5±0.7 68.0±1.1 76.4±0.8

GAT (16, 4) 79.7±1.0 67.9±1.0 76.4±0.9

GAT (16, 8) 79.8±1.0 67.5±1.6 76.1±1.1

EGNN(A) 81.1
+0.8↑
±0.7 68.5

+0.8↑
±0.8 79.4±0.5 73.3

+0.2↑
±1.2 64.5

+0.2↑
±3.1

EGNN(C) 80.9±0.7 67.9±0.6 79.5
+1.0↑
±0.4 73.2

+0.1↑
±1.2 63.9±2.9

EdgeGCN 81.6
+1.3↑
±0.7 69.4

+1.7↑
±0.9 78.7

+0.2↑
±0.4 73.7

+0.6↑
±0.9 64.6

+0.3↑
±3.8

Table 4. Conventional graph representation learning tasks, includ-

ing node classification on citation network datasets and graph

recognition for molecular analysis.

Figure 6. GNN comparisons on various graph representation learn-

ing tasks on Cora, CiteSeer, Pubmed, Tox21, and BBBP datasets.

#Params denotes the number of trainable parameters (K).

according to [36], where GAT (Cinner, K) denotes its net-

work settings, i.e., Cinner inner channels and K attention

heads. Cinner was set by default to 16 for all other graph

networks. As shown in Table 4, our EdgeGCN (AE ) has

shown its superior performance over all competitors un-

der the same training settings on Cora and CiteSeer, and

achieved on-par result on Pubmed. Unlike other designs

such as GAT and EGNN, our method does not rely on the

hyper-parameter settings or different types of layer instance.

Whole-graph recognition for molecular analysis. We

adopted the universal three-layer instances of GCN and

GAT provided by [41] and extended our EdgeGCN to three

layers as well, with AE inserted to the second layer. As

shown in Table 4, the significance of our EdgeGCN(AE )

design could be verified on both Tox21 and BBBP datasets

under the same evaluation protocol applied. Fig. 6 demon-

strates the trade-off between effectiveness and efficiency.

5. Conclusion

To endow GCNs with edge-assisted reasoning capability,

we introduced an edge-oriented GCN dubbed EdgeGCN to

learn a pair of twinning interactions between nodes and

edges, so that comprehensive SG reasoning could thus

be conducted to enhance each individual evolution. Tak-

ing EdgeGCN as the core component, we proposed an in-

tegrated SGGpoint framework to tackle 3D point-based

scene graph generation problems through three sequen-

tial stages. Overall, our integrated SGGpoint framework

was established to seek and infer scene structures of in-

terest from both real-world and synthetic 3D point-based

scenes. Moreover, we also validated our edge-driven rea-

soning scheme on conventional graph representation learn-

ing benchmark datasets for citation network and molecular

analysis.
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