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Abstract

One-shot talking face generation should synthesize high

visual quality facial videos with reasonable animations of

expression and head pose, and just utilize arbitrary driv-

ing audio and arbitrary single face image as the source.

Current works fail to generate over 256×256 resolution

realistic-looking videos due to the lack of an appropriate

high-resolution audio-visual dataset, and the limitation of

the sparse facial landmarks in providing poor expression

details. To synthesize high-definition videos, we build a

large in-the-wild high-resolution audio-visual dataset and

propose a novel flow-guided talking face generation frame-

work. The new dataset is collected from youtube and con-

sists of about 16 hours 720P or 1080P videos. We leverage

the facial 3D morphable model (3DMM) to split the frame-

work into two cascaded modules instead of learning a di-

rect mapping from audio to video. In the first module, we

propose a novel animation generator to produce the move-

ments of mouth, eyebrow and head pose simultaneously. In

the second module, we transform animation into dense flow

to provide more expression details and carefully design a

novel flow-guided video generator to synthesize videos. Our

method is able to produce high-definition videos and out-

performs state-of-the-art works in objective and subjective

comparisons*.

1. Introduction

Given one reference facial image and one driving audio,

one-shot talking face generation aims at synthesizing a talk-

ing avatar video with reasonable facial animations corre-

sponding to the driving audio. Talking face generation is of

importance for many applications, including virtual assis-

tants, mixed realities, animation movies, and so forth. Due

to its wide applications, talking face generation draws con-

*Yu Ding is the corresponding author.
*The HDTF dataset etc. for research purpose are at https://

github.com/MRzzm/HDTF
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Figure 1. Our method synthesizes high-resolution talking face

videos with one driving audio and one reference facial image.

siderable attention for a long time.

While many works[7, 6, 18, 13, 51, 5, 48, 29, 42, 49,

4] make great efforts to synthesize realistic-looking videos,

the generation of high-resolution videos is still a challenge.

Current best work[49] just generate videos with 256×256

resolution(see Figure10(e) for example), however, directly

employing their model on 512×512 image will get blurry

results (see Figure10(f) for example). Several factors result

in this challenge.

The first reason is that there are no appropriate datasets

for high-resolution talking face generation. Table 1 illus-

trates some common audio-visual datasets (all available

datasets are listed in [3]). As shown in Table 1, cur-

rent audio-visual datasets consist of in-the-wild datasets

and in-the-lab datasets. In-the-wild datasets contain larger

scale and more subjects, but they all lack video resolu-

tion. There are two main reasons: On one hand, their

videos are collected from the internet published in the past

2∼5 years, and at that time the internet videos generally

have low resolution. On the other hand, most in-the-wild

datasets do not focus on the task of talking face generation,

e.g., Voxceleb[26, 8] is built for speaker identification and

LRW[9] is built for word recognition, so they do not pay

attention to the video resolution. For in-the-lab datasets,

while they record high resolution face videos, the number

of subjects and sentences is limited because of the expen-

sive labor costs. The largest MEAD[43] only records 159

sentences with 60 actors.

The second reason is that previous works are not de-
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Table 1. Statistics of current common audio-visual datasets.
Dataset name Environment Year Resolution Subject Hours sentence

LRW [9] Wild 2016 360P∼480P 1k+ 173 1k

Voxceleb1[26] Wild 2017 360P∼720P 1251 352 100k

Voxceleb2[8] Wild 2018 360P∼720P 6112 2442 1128k

GRID[11] Lab 2006 720×576 34 27.5 51

RAVDESS[24] Lab 2018 1280×1024 24 7 8

MEAD[43] Lab 2020 1920×1080 60 40 159

Our HDTF Wild 2020 720P∼1080P 300+ 15.8 10k+

signed reasonably to handle high-resolution videos and are

limited by the input of sparse facial landmarks. Initial

works[7, 5, 42] directly utilize an end-to-end framework

to synthesize the video from audio. Their synthetic results

even have a low definition on 128×128 videos. Other re-

cent advances[6, 49, 13, 4] leverage facial landmarks to

split the pipeline into two cascaded modules. They pro-

duce sparse facial landmarks in the first module, and fur-

ther generate videos from synthetic landmarks in the second

module. Two modules are trained separately to alleviate

the pressure of the network, thus lead to high visual qual-

ity results. However, in the second module, their methods

are still hard to generate high resolution videos. We care-

fully discuss the reasons in Section 7. On one hand, some

works directly utilize the network to learn the sophisticated

mapping from landmark to image. This mapping become

too complex to handle on high-resolution videos, e.g., [49]

synthesize blurry results on 512×512 resolution(see Fig-

ure10(g) and Figure11(a) for example). On the other hand,

although some works carefully design their network to ex-

plicitly model the process of image synthesis, the sparse

landmark is too coarse and lose many facial expression

details, e.g., [34] synthesize facial image with inaccuracy

mouth shape and poor wrinkles(see Figure11(c) for exam-

ple).

In order to achieve above challenge and promote the

development of high-resolution talking face generation,

we first build a large in-the-wild high-resolution audio-

visual dataset, named High-definition Talking Face Dataset

(HDTF). The HDTF dataset is collected from youtube web-

site published in recent two years and consists of about 16

hours 720P∼1080P videos. There are over 300 subjects

and 10k different sentences in HDTF dataset. Our HDTF

dataset has higher video resolution than previous in-the-

wild datasets and more subjects/sentences than in-the-lab

datasets.

Next, we propose a novel flow-guided framework to syn-

thesize high visual quality videos. Figure 2 illustrates the

pipeline of our method. Our work first leverages 3DMM[1]

to split the framework into two cascaded modules, named

audio-to-animation module and animation-to-video mod-

ule. Compared with the facial landmarks, 3DMM is in-

sensitive to noise due to the prior knowledge of the face.

In audio-to-animation module, 3DMM is used to decouple

the face into facial animation parameters (mouth, eyebrow

and head pose) and we propose a novel style-specific anima-

tion generator to produce the full animation parameters with

multi-task learning strategy. Our generator considers the

difference of speaking style between different identity[50],

and has capacity to synthesize subject-dependent anima-

tions. In animation-to-video module, we propose a flow-

guided framework to synthesize high visual quality videos.

Our method utilizes 3DMM to transform animation param-

eters to dense flow. Dense flow has benefits of provid-

ing richer facial details than sparse landmarks. Then, a

novel video generator is proposed to synthesize talking face

videos from dense flow. Our generator is carefully designed

to explicitly control the process of frame generation, so it is

easy to generate more realistic results.

Our contributions are summarized as follows:

• We build a large in-the-wild audio-visual dataset,

with higher video resolution than previous in-the-wild

datasets and more subjects/sentences than in-the-lab

datasets.

• We propose a novel style-specific animation generator

to produce specific style animation parameters depend-

ing on the reference identity.

• To the best of our knowledge, we are the first to uti-

lize one animation generator with multi-task learning

to produce the animation parameters of mouth, eye-

brow and head pose simultaneously in one-shot talking

face generation.

• We propose a novel carefully-designed flow-guided

framework to synthesize higher visual quality videos

than previous landmark-based approaches.

2. Related Work

2.1. Talking Face Generation

One-shot talking face generation. One-shot talking

face generation is identity-independent. In the inference

stage, the reference identity and driving audio are not re-

stricted to appear in training data. Early works[7, 51,

5, 29, 42] always take two sub-encoders to extract iden-

tity features and spoken features from the reference image

and driving audio. Then, they fuse two features as input

into a decoder to synthesize talking face videos in an end-

to-end fashion. For more accurate lip-sync results, some

works use the audio-mouth mutual information loss[51],

audio-mouth correlation loss[5] and audio-visual disentan-

gle learning[48]. In order to improve the visual quality,

some works add an extra deblurring module[7] or just re-

pair the mouth region[51, 5, 29].

Recent advances[6, 4, 13, 49] utilize facial landmarks to

split the framework into two cascaded modules. In the first

module, PCA component[6, 4] or spatial displacement[13,

49] of the landmark are used to represent facial animation

parameters. [4] take two networks to synthesize the facial

expression and head motion. [49] utilize two branches to
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Figure 2. The pipeline of our method. Our method has two cascaded modules: audio-to-animation module (purple part) and animation-to-

video module (orange part).

synthesize mouth displacement and head pose/eyebrow dis-

placement. However, both above two works[4, 49] sepa-

rately train the two animation generators. In our work, we

use one animation generator to synthesize mouth, eyebrow

and head pose simultaneously with multi-task learning. In

the second module, they employ various landmark-to-video

generators to synthesize talking head videos. Different from

them, our method takes dense flow as input to generate more

realistic videos.

Person-specific talking face generation. Person-

specific talking face generation has benefits of synthesizing

high-resolution talking face videos because the identity is in

training data. [36] carefully design a framework to synthe-

size Obama videos with about 17 hours footage. [16] uti-

lize dynamic programming algorithm to reduce the training

data to 1 hour. [35] train a shared generator for all identi-

ties and they only require 15 minutes footage. [39] leverage

a pre-trained audio-to-mouth model to reduce the required

footage to 2∼3 minutes. [23] use a motion capture dataset

to synthesize videos with emotion and rhythmic head pose.

In our work, we synthesize videos with competitive resolu-

tion and only need one reference image for a new subject.

2.2. Animation Synthesis

Animation synthesis aims at generating animation tra-

jectories to drive a pre-defined 3D talking avatar. In

mouth animation generation, the mouth shape is related

to spoken co-articulation[38]. Several works use CNN-

based[22, 37, 12] or LSTM-based[32, 30] framework to

capture co-articulation effects. Some works[22, 32, 30] fo-

cus on expressive animation generation. Other works[37,

12] focus on improving the generalization of input speech.

In head pose/eyebrow animation generation[15, 14], there

is a one-to-many mapping between speech and head

pose/eyebrow[31], so [31] utilize Generative Adversarial

Network(GAN)[17] to retain the diversity of head pose. Be-

sides, head pose/eyebrow animation is related to speech

prosody and syntactic structure[15, 14], so [49] take self-

attention module[41] to capture this long-time dependen-

cies.

3. Dataset

A large in-the-wild high resolution audio-visual dataset,

named High-definition Talking Face Dataset (HDTF), is

built for talking face generation. Some snapshots of HDTF

are shown in Figure 3. In order to collect high quality

videos, we only collect online videos published in recent

two years. HDTF dataset consists of about 362 different

videos for 15.8 hours. The resolution of origin video is

720P or 1080P. In our work, a landmark detector is first

leveraged to crop the face region. The crop window is fixed

during each video. Then, each cropped video is resized into

512 × 512 (the second row in Figure3). Due to the high

quality of origin videos, our final cropped videos also have

high visual quality.

Then, the 3DMM[1] is employed to decouple the

cropped face into facial shape parameters and facial ani-

mation parameters(mouth, eyebrow and head pose). The

3DMM is a bilinear morphable model. It is represented as

M(cs, ce) = M0 +

60
∑

i=1

csi · V
s
i +

33
∑

j=1

cej · V
e
j (1)

where M(cs, ce) represent the 3D facial mesh point. M0

is the average facial mesh. {V s
i }

60
i=1 and {V e

j }
33
j=1 are the

linear basis of facial shape and facial expression. cs and ce

represent the coefficient of the basis. {V e
j }

33
j=1 is combined

with 28 mouth basis and 5 eyebrow basis.

We take scaled orthogonal projection[19] to reconstruct

3D face according to facial landmark points, e.g., dlib. The

objective is

argmin
cs,ce,s,R,t

E(cs, ce, s, R, t)

= argmin
cs,ce,s,R,t

K
∑

k=1

δk[pk − (s

[

1 0 0
0 1 0

]

RM(cs, ce)(k) + t)]2
(2)

where pk is the kth landmark point and δk represent its

weight. K is the number of landmark points. R ∈ SO(3)
is rotation matrix and t ∈ R2 represents translation vector.

s is the scale value. In our paper, we solve above objective

with weighted least squares method.

After the 3D face restruction, in each video, we extract
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Figure 3. The snapshots of HDTF dataset.

the face shape parameter ps ∈ R60, mouth parameter se-

quence pmou = {pmou
t ∈ R28}Tt=1, eyebrow parameter se-

quence pebro = {pebrot ∈ R5}Tt=1 and head pose param-

eter difference sequence phed = {phedt ∈ R5}Tt=1. In our

method, we do not directly synthesize head pose but synthe-

size the difference. The main reason is that the initial head

pose in different videos are different. We also extract audio

feature sequence faudio = {faudio
t ∈ R15}Tt=1. The audio

feature consists of 13-dim MFCC feature and 2-dim pitch

feature. The video frames is denoted as I = {It}
T
t=1. T is

the length of frames in the video. Finally, our training data

is represented as {I, pmou, pebro, phed, faudio, ps} in each

video.

4. Proposed Method

Based on our HDTF dataset, as shown in Figure2, we

propose a novel high-quality one-shot talking face genera-

tion framework. The framework consists of one audio-to-

animation module and one animation-to-video module. In

the first module, a novel style-specific audio-to-animation

generator Gani is designed to translate reference image and

driving audio to full animation parameters. In the second

module, animation parameters are first transformed to ap-

proximate dense flow F app by the 3DMM. Then, F app

and reference image are input into a careful-designed flow-

guided video generator Gvid to synthesize the talking face

videos.

4.1. Audio­to­animation

Style-specific audio-to-animation generator G
ani.

The structure of Gani is illustrated in Figure 4. Gani aims

at translating reference image Iref and driving audio faudio

into the style-specific animation parameters corresponding

to reference face. The parameters consist of mouth pa-

rameter p̂mou, eyebrow parameter p̂ebro and head pose pa-

rameter p̂hed. Gani utilizes two steps to realize this pur-

pose. In the first step (the purple part in Figure4), the style-

specific audio representation f̂audio
ref is computed from Iref

and faudio. f̂audio
ref encodes the speaking content of faudio

and the speaking style of Iref . In the second step (orange

part in Figure 4), f̂audio
ref is used to synthesize animation pa-

rameters with specific speaking style.

In the first step, a CNN-based audio feature extractor is

first employed to extract audio representation f̂audio from

faudio. Then, considering that different identity has dif-
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Figure 4. Structure of audio-to-animation generator Gani.

ferent speaking style[50], AdaIN[20] operation is taken to

transform f̂audio into the f̂audio
ref . In specifically, a pre-

trained VGG-face model[2] is first used to extract identity

embedding vector from the reference image Iref . Then, the

identity embedding is input into fully-connected layers to

generate the scale and shift parameters of the AdaIN.

Furthermore, in the second step, with three branches of

the decoder, mouth, eyebrow and head pose are generated

simultaneously according to f̂audio
ref . In mouth branch, a

CNN-based mouth decoder is employed to decode f̂audio
ref

to p̂mou. In eyebrow and head pose branch, a long-time

temporal decoder is first employed to capture the long-time

dependencies. Different from [49], our long-time decoder

is based on an encoder-decoder network, which has bene-

fits of faster forward speed. Then, a CNN-based eyebrow

decoder and a CNN-based head pose decoder are taken to

synthesize p̂ebro and p̂hed.

Loss function. In training stage, Gani is trained with

multi-task learning strategy. In mouth synthesis, we use L1

loss and LSGAN loss[25].L1 loss is written as

Lmou
1 =

1

T

T
∑

t=1

‖pmou
t − p̂mou

t ‖1, (3)

where pmou
t and p̂mou

t are the real and synthetic mouth pa-

rameters. LSGAN loss is denoted as

Lmou
GAN = min

Gani

max
Dmou

LGAN (Gani, Dmou). (4)

In eyebrow and head pose generation, we utilize Struc-
tural Similarity (SSIM) loss[47] and LSGAN loss. SSIM
simulates the human visual perception and has benefits of
extracting structural information. In our work, SSIM ex-
tends to evaluate the eyebrow and head pose on each pa-
rameter. SSIM loss in eyebrow generation is written as

L
ebro
ssim = 1−

1

5

5∑

i=1

(2µiµ̂i + δ1)(2covi + δ2))

(µ2

i + µ̂2

i + δ1)(σ2

i + σ̂2

i + δ2))
, (5)

where µi/µ̂i and σi/σ̂i are the mean and standard deviation

of the ith dimension of pebro/p̂ebro. covi is the covariance.

δ1 and δ2 are two small constants. LSGAN loss in eyebrow

generation is denoted as

Lebro
GAN = min

Gani

max
Debro

LGAN (Gani, Debro). (6)

The loss in head pose generation has the same form (SSIM

& GAN) as in eyebrow generation except for the parameter

3664
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Figure 5. (a) Visualization of approximate dense motion flow F app

in pseudo color. (b) Different cropped parts in F app, including

inner face part (green), head-related part(blue) and upper torso part

(orange).

dimension. The final objective function is written as

L(Gani) = Lmou
GAN + Lebro

GAN + Lhed
GAN

+ λmouL
mou
1 + λebroL

ebro
ssim + λhedL

hed
ssim,

(7)

λmou, λebro and λhed represent the loss weights. All the

GAN structures are conditional GAN, i.e., Dmou/ebro/hed

takes {faudio, p̂mou/ebro/hed} as input. The structure de-

tails are in supplementary materials.

4.2. Animation­to­video

In animation-to-video module, the animation parame-

ters are first transformed to approximate dense motion flow

F app by 3DMM. However, limited by the ability of 3DMM,

F app is not accurate enough. Then, to solve above problem,

a novel flow-guided video generator Gvid is proposed. Gvid

is carefully designed to revise F app and synthesize high vi-

sual quality videos.

Approximate dense motion flow F
app. F app describes

the approximate motion direction of each pixel between two

frames. Figure 5 (a) visualizes the F app in pseudo color. In

the generation of F app, given a pair of facial animation pa-

rameters, 3DMM is able to generate accurate dense motion

flow in the inner face (the green part in Figure 5 (b)). How-

ever, 3DMM is incapable of describing the motion out of

the face region(the blue and orange part in Figure 5 (b)).

In order to solve this problem, we estimate the approximate

motion flow out the facial region.

As shown in Figure 5 (b), we crop the facial image into

three parts: the inner face part (green), the upper torso part

(orange) and the head-related part (blue). In the inner face

part, the dense motion flow is computed from 3DMM. In the

upper torso part, we assume the upper torso moves with the

head, so we take the average movements of inner face as the

motion value in upper torso part. In the head-related part,

we focus on the hair, ear and other ornaments, and assume

they move rigidly follow the nearest facial edge. The flow

of each pixel in head-related part is as same as its nearest

facial edge pixel. Combining the flow of three parts, we

obtain the final F app. However, the background is ignored

in the construction of F app, so the flow value in background

is absolutely incorrect. This incorrectness will be revised in

Appro dense flow
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Down sample

Synthetic image
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Down sample

Matting mask

Matting

Dense flow

Foreground mask

Appro dense flow

Reference image 

Encoder

Decoder

Warp

Down sample

Synthetic image

:Concat

Houglass

Down sample

Matting mask

Matting

Dense flow

Foreground mask

Figure 6. Structure of flow-guided video generator Gvid.

Gvid.

Flow-guided video generator G
vid.The structure of

Gvid is shown in Figure 6. Gvid is designed to revise F app

and further synthesize high-resolution talking face videos.

In order to realize above purpose, Gvid also contains two

steps inside the network. In the first step (purple part in

Figure 6), the network revises the F app, and produces an

accurate dense motion flow F , an intermediate matting im-

age g and a matting mask Mm. In the second step (orange

part in Figure 6), F , g and Mm are used to synthesize high

quality videos.

In the first step(purple part in Figure 6), to revise the

incorrect flow in background of F app, we assume that the

background is static, which is also used in many recent

works[33, 34]. Upon this assumption, a foreground mask

Mf is generated to transform F app to accurate dense mo-

tion flow F . Mf is a soft mask with a range 0 ∼ 1. The

transformation is written as

F = F app ∗Mf (8)

Mf revises the background to static. In order to generate

Mf , inspired from [34], we first warp reference image Iref

with F app to get warped image Irefwarp. Then, Iref , F app

and Irefwarp are concatenated into a Hourglass network[28]

to generate Mf . Besides, Hourglass network also outputs g

and Mm for the second step.

In the second step(orange part in Figure 6), inspired from

[45, 44], we synthesize the image by combining the warped

version of Iref and g. The combination is balanced by a

matting mask Mm. To reduce the parameters of the net-

work, inspired from [34], above combination is done in fea-

ture map space, and is written as

f̂ref = F (fref ) ∗Mm + g ∗ (1−Mm) (9)

fref represents the encoded feature map of Iref by a CNN-

based encoder. F (.) is the warp operation with F . f̂ref

is the combined result. Finally, f̂ref is input into a CNN-

based decoder to synthesize facial image.

Loss function. In training stage, Gvid is trained with
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Figure 7. Our synthetic results driving by the same audio.

LSGAN loss, perceptual loss[21] and feature matching

loss[46]. The GAN loss is represented as

Lvid
GAN = min

Gvid

max
Dvid

LGAN (Gvid, Dvid). (10)

The perceptual loss is written as

Lvid
perc =

n
∑

i=1

1

WiHiCi
‖Ni(It)−Ni(Ît)‖1, (11)

where Ni(.) denotes the ith layer with Wi∗Hi∗Ci elements

of a specific VGG-19 network. The feature matching loss is

written as

Lvid
FM =

m
∑

j=1

1

WjHjCj
‖Dvid

j (It)−Dvid
j (Ît)‖1, (12)

where Dvid
j (.) is the jth layer in Dvid. The final loss func-

tion of Gvid is written as

L(Gvid) = Lvid
GAN + λpercL

vid
perc + λFMLvid

FM . (13)

λperc and λFM are the weights of loss. The structure details

of Gvid and Dvid are in supplementary materials.

5. Experiments and Results

In this section, we first display some synthetic results

of our method. Then, we compare our method with state-

of-the-art talking face generation works. Next, to validate

the effectiveness of each sub-module, we also do quantita-

tive and qualitative comparisons with other related works.

Next, we do ablation study to evaluate the components in

two sub-modules. Finally, an online user study is conducted

to validate our proposed method.

5.1. Synthetic results

Figure 7 shows some high-resolution synthetic frames

driven by the same audio. Our method synthesizes high

visual quality results. We further draw the curve of ani-

mation parameters of three different identities driven by the

same audio in Figure 8. Figure 8(a) draws the sequence of

mouth parameter controlling the opening of mouth. While
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Figure 8. Animation parameters of three different subjects driven

by the same audio. Different color represent different identity. The

ordinate represents the value of parameter in (a)(b), the degree of

head rotation in (c) and the pixel of head translation in (d).

there exist slight temporal shift and slight scale variance on

mouth parameters, the tendency of the sequence is still sim-

ilar on different subjects. It implies that the mouth shape

mainly depends on the speech content. Figure 8 (b-d) draw

the eyebrow parameter (eyebrow down), head rotation (roll)

and head translation (horizontal) respectively. Obviously,

there has more variance in these parameters. It demon-

strates that our Gani has ability to synthesize identity-

dependent speaking styles for different reference subjects.

We also visualize the intermediate results, including

F app, Irefwarp, Mf , F , Mm and synthetic frame, of the

animation-to-video module in Figure9. The Mf focuses

on separating the moving foreground and static background.

The Mm leads to the matting operation impacts on the fore-

ground. With the joint action of Mf and Mm, our Gvid

synthesizes high visual quality videos.

5.2. Comparison with State­of­the­art

We compare our method with state-of-the-art one-shot

talking face generation works[42, 4, 6, 49, 29] in Figure

10. Vougioukas et al.[42](Figure 10(a)) and Chen et al.[4,
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Figure 9. Visualization of intermediate results in animation-to-

video module.

Table 2. Quantitative comparison of lip synchronization. Lower

AV offset and higher AV confidence represents better lip synchro-

nization.
Method Real video Chen et al.[6] Prajwal et al.[29] Zhou et al.[49] Ours

AVOff↓ -1 -2 -2 -2 -2

AVConf↑ 9.627 4.122 5.227 2.770 5.166

Reference Image

(a) Vougioukas et al. 

2019[42]

(c) Chen et al. 

2019[6]

(b) Chen et al. 

2020[4]
(d) Prajwal et al. 

2020[29]

Ours(e) Zhou et al. 2020 [49]

(train/test on 256)

(g) Zhou et al. 2020 [49]

(train/test on 512)

(f) Zhou et al. 2020 [49]

(train on 256, test on 512)

Reference Image

(a) Vougioukas et al. 

2019[42]

(c) Chen et al. 

2019[6]

(b) Chen et al. 

2020[4]
(d) Prajwal et al. 

2020[29]

Ours(e) Zhou et al. 2020 [49]

(train/test on 256)

(g) Zhou et al. 2020 [49]

(train/test on 512)

(f) Zhou et al. 2020 [49]

(train on 256, test on 512)

Figure 10. comparison with state-of-the-art works.

6] (Figure 10(b),(c)) synthesize low-resolution(128×128)

talking face videos. The visual quality gap is obvious. Pra-

jwal et al.[29](Figure 10(d)) has ability to synthesize videos

with 512×512 resolution, but they just focus on repairing

the mouth region. The eyebrow and head pose keep static

when just given one reference image. Zhou et al.[49] is able

to synthesize 256×256 resolution videos (in Figure10(e)).

However, they fail to generate 512×512 videos. We try

to directly test their model on 512×512 reference image

(shown in Figure10(f)) or reproduce the model train/test on

HDTF dataset (shown in Figure10(g)), but still synthesize

blurry results. The reason is carefully discussed in section

7. Compared with previous works, our method synthesizes

higher visual quality results.

We also carry out quantitative comparisons with

state-of-the-art works[6, 49, 29] to evaluate the accu-

racy of lip synchronization. The experiments are con-

ducted on HDTF dataset with the metric of audio-visual

synchronization[10]†. Table 2 illustrate the experimental

results. Our method synthesizes competitive synchronous

lip compared with previous works.

†https://github.com/joonson/syncnet_python

Table 3. Quantitative evaluation of audio-to-animation module.
MSE(mouth)↓ LMD3D(mouth)↓ SSIM(eyebrow)↑ CCA(head pose)↑

Taylor et al.[37] 0.1237 0.2355 - -

Cudeiro et al.[12] 0.1235 0.2350 - -

Karras et al.[22] 0.1251 0.2365 0.0801 -

Sadoughi et al.[30] 0.1347 0.2470 0.0372 -

Sadoughi et al.[31] - - - 0.7615

Ours (w/o style) 0.1153 0.2308 0.0747 0.7609

Ours (w/o multi-task) 0.0912 0.1922 0.0978 0.7779

Ours 0.0875 0.1899 0.1023 0.7860

Table 4. Quantitative evaluation of animation-to-video module.
PSNR↑ SSIM↑ CPBD↑

Zhou et al.[49] 23.2454 0.8020 0.1226

Zhou et al.[49](interpolate to 512) 23.3482 0.8128 0.0936

Zhou et al.[49](add layer) 22.8777 0.7995 0.1112

Zhou et al.[49](dense) 24.1604 0.8102 0.1273

Zhou et al.[49](dense & add layer) 23.7314 0.8045 0.1209

Siarohin et al.[34, 33] 23.4079 0.8167 0.1345

Siarohin et al.[34, 33] (add layer) 23.1355 0.8062 0.1204

Ours w/o F app 23.9650 0.8220 0.1399

Ours w/o matting 24.3691 0.8384 0.1500

Ours 24.4174 0.8400 0.1530

5.3. Evaluation of Submodules

To validate our audio-to-animation module, we repro-

duce state-of-the-art animation generation works[22, 37, 30,

12, 31]. For fair comparison, we keep the input and struc-

ture setting of their model unchanged and synthesize our

animation parameters. To evaluate pmou, we measure MSE

on mouth parameters and compute lips landmark distance

(LMD3D) on 3D facial mesh. LMD3D has benefits of han-

dling the variance of head posture. In the evaluation of

pebro and phed, we employ SSIM and Canonical Correla-

tion Analysis(CCA)[40] as metrics respectively. Quantita-

tive results are shown in Table 3. Our method performs

better than the above works.

To validate the superiority of our animation-to-video

module on high-resolution one-shot talking video genera-

tion. We reproduce previous landmark based works[33, 34,

49] on our HDTF dataset, and do quantitative and qualita-

tive comparisons with them. In [49], all setting is as same

as original paper. In [34, 33] we replace key points with fa-

cial landmarks and ignore the affine transformation in their

work. However, considering that above frameworks are de-

signed for 256×256 resolution videos, to make the experi-

ments more convincing, we also conduct extra experiments

that make their framework easy to handle 512×512 videos.

We add one extra convolutional layer with stride=2 before

their network to downsample the input image to 256×256.

Figure 11(a-d,g) illustrate the qualitative results. Our ap-

proach synthesizes frames with higher visual quality. Table

4 also show the quantitative compared results. PSNR, SSIM

and CPBD[27] are utilized as metrics to measure the visual

quality. Our approach also acquires the best results.

5.4. Ablation Experiments

Ablation Experiments are conducted to evaluate each

component in two sub-modules. In audio-to-animation

module, we set two conditions: (1) removing the style-
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(a) Zhou et al. [49]

(h) Real image

(b) Zhou et al.[49] (add layer) (c) Siarohin et al. [34](d) Siarohin et al.[31] (add layer)

(e) Ours (w/o      ) (f) Ours (w/o matting) (g) Ours (full model)

(a) Zhou et al. [49]

(h) Real image

(b) Zhou et al.[49] (add layer) (c) Siarohin et al. [34](d) Siarohin et al.[31] (add layer)

(e) Ours (w/o      ) (f) Ours (w/o matting) (g) Ours (full model)

Figure 11. Qualitative results of animation-to-video module.

Table 5. The results of user study.
Method Chen et al.[6] Prajwal et al.[29] Zhou et al.[49] Ours

Mean 2.96 2.88 3.12 3.60

Std 0.95 1.03 0.95 0.74

specific operation (w/o style), i.e., delete the transformation

from faudio to faudio
ref ; (2) synthesizing animation parame-

ters separately (w/o multi-task). Table 3 illustrates the re-

sults of two conditions. Both style-specific operation and

multi-task training strategy are beneficial to animation gen-

eration and our full model synthesizes the best animation

results. The style-specific operation significantly improves

the synthetic animation. It implies that it is important to

consider the speaking style of different identities in anima-

tion generation.

In animation-to-video module, we also set two condi-

tions: (1) removing F app and generating F from dense flow

in inner face with one network (w/o F app). This condition

discard the assumption of motion flow out of the face; (2)

removing the matting operation (w/o matting), thus lead to

equation 9 as

f̂ref = F (fref ). (14)

Table 4 shows the quantitative results of two conditions.

Our full model presents the best results. Figure 11 (e)(f)

also illustrate the synthetic results of two conditions. With-

out F app, the network is possible to generate inaccurate

dense motion flow out of facial region, thus leads to blurry

results, e.g., the hair region in figure 11(e). Without mat-

ting operation, as shown in figure 11(f), the facial region

lose some texture details. This indicates that the matting

operation is capability to refine the foreground.

5.5. User Study

An online user study is also conducted to validate our

proposed approach. We compare our method with previous

state-of-the-art one-shot talking face generation works[49,

6, 29]. For fair comparison, 5 reference images are down-

load from internet to obtain 4×5 = 20 videos with 5 dif-

ferent driving audio. 25 volunteers are invited to rate the

realism of each video between 1(pretty fake)-5(pretty real).

Table 5 illustrates the results of user study. Our method

achieves the highest scores and lowest standard deviation.

Zhou et al.2020 [49] Siarohin et al.2019[34] 

explicitly modeling

dense flow input

Ours 
(a)

explicitly modeling

dense flow input

explicitly modeling

dense flow input

explicitly modeling

dense flow input

(b) (c) (d)
Zhou et al.2020 [49]Zhou et al.2020 [49] Siarohin et al.2019[34] 

explicitly modeling

dense flow input

Ours 
(a)

explicitly modeling

dense flow input

explicitly modeling

dense flow input

explicitly modeling

dense flow input

(b) (c) (d)
Zhou et al.2020 [49]

Figure 12. Results of control variate experiments.

6. Limitations

Our work has many limitations. In the generation of

F app, the cropped region is very coarse. The synthetic

videos largely depend on the Mf . Inaccurate Mf causes

the failure results. Our method does not consider the tempo-

rally coherent, so if given one reference image with mouth

close, the generated face may has flicker tooth. The style-

specific operation in animation generator is still hard to syn-

thesize the speaking style as same as real value. We only

utilize rule-based method to generate the eye blink move-

ments. The head pose is not extreme enough.

7. Discussion and Conclusion

Discussion. We utilize control variate method to ex-

ploring the reason that our flow-guided animation-to-video

module performs better than previous landmark-to-video

module[33, 34, 49] on high-resolution video generation. We

set two conditions: (1)whether to carefully design the net-

work to explicitly model the process of image synthesis; (2)

whether to take dense flow as the network input. Figure12

shows the experimental results. Compared with Figure12

(a) and (c), both [49] and [34] take facial landmark as input,

[34] utilize explicitly modeling in their network to synthe-

size more realistic results. Compared with Figure12 (a) and

(b), we just replace the landmark input with F app in [49],

and generate more realistic frames, especially the richer tex-

ture and accurate expression in inner face. Compared with

Figure12 (c) and (d), fixing the explicitly modeling in net-

work, our method takes dense flow as input and also gener-

ate facial image with richer wrinkles. The experiments in-

dicate that both two conditions are beneficial to improve the

visual quality of synthetic videos. Table 3 also illustrate the

quantitative results with consistent conclusion. Our frame-

work consists of above two conditions, so the results are

more realistic.

Conclusion. In this paper, we build a large in-the-wild

high-resolution audio-visual dataset, named HDTF dataset,

with higher resolution than previous in-the-wild datasets

and more subjects/sentences than in-the-lab datasets. We

also propose a novel flow-guided framework, including one

style-specific animation generator and one careful-designed

flow-guided video generator, to synthesize high visual qual-

ity videos. Our method outperforms the state-of-the-art

works in high-resolution talking face generation. In the fu-

ture, we will make great efforts to solve above limitations.
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