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Abstract

We present a framework to generate manga from digital

illustrations. In professional mange studios, the manga cre-

ate workflow consists of three key steps: (1) Artists use line

drawings to delineate the structural outlines in manga story-

boards. (2) Artists apply several types of regular screentones

to render the shading, occlusion, and object materials. (3)

Artists selectively paste irregular screen textures onto the

canvas to achieve various background layouts or special ef-

fects. Motivated by this workflow, we propose a data-driven

framework to convert a digital illustration into three corre-

sponding components: manga line drawing, regular screen-

tone, and irregular screen texture. These components can

be directly composed into manga images and can be further

retouched for more plentiful manga creations. To this end,

we create a large-scale dataset with these three components

annotated by artists in a human-in-the-loop manner. We con-

duct both perceptual user study and qualitative evaluation of

the generated manga, and observe that our generated image

layers for these three components are practically usable in

the daily works of manga artists. We provide 60 qualitative

results and 15 additional comparisons in the supplemen-

tary material. We will make our presented manga dataset

publicly available to assist related applications.

1. Introduction

Generating manga from illustrations (Fig. 1-left) is an

important task in high demand. The expansion of manga

market and the rarity of manga artist have caused many

manga companies to recruit a large number of digital paint-

ing or illustration artists and train them as manga creators.

Training an artist to master the unique manga workflow, e.g.,

inking strategy, screentone management, texture applying,

Figure 1. Our framework automatically generate the right high-

quality manga given the left illustration. Zoom in to see details.

etc., is financially expensive and can often take weeks or

even months. To reduce such training costs and speed up

the producing, many manga companies have began to adopt

techniques that generate manga from generic art forms like

illustrations and digital paintings, so that the costs to train

artists can be saved, and those newly hired digital illustration

artists can be free from learning extra skills and can create

manga directly in their familiar digital illustration working

environments. The software Clip Studio Paints (CSP) [6]

and Adobe After Effects (AE) [1] are typical examples with

many plugins and online tutorials [10, 11, 7, 9, 8] for editing

illustrations to obtain manga manually. The widespread pop-

ularity of those tutorials and plugins verifies the significance

of the problem to generate manga from illustrations.

This paper starts with a key observation: the unique visual

appearance of manga comes from the unique manga creation

workflow. As shown in Fig. 2, we verify this observation
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Figure 2. Justification for our motivation: the classic professional manga creation workflow. Artists first ink structural line drawings, and

then apply regular screentones and irregular screen texture to obtain the final manga.

by studying the manga creation workflow in professional

studios. Firstly, artists draw line drawings as the initial

outlines in manga storyboards, e.g., the artist delineates the

line structure of the girl portrait in Fig. 2-(a). Secondly,

artists paste screentone sheets with different regular patterns

onto the regions between lines, e.g., the hair, eyes and dress

in Fig. 2-(b) are pasted with such screentone sheets. Thirdly,

artists fill the canvas with irregular screen textures to achieve

background layouts or special effects, e.g., the artist applies

the romantic background screen texture to set off the mood

of the girl character in Fig. 2-(c). We can see that these

three steps are sufficient and necessary to determine the

appearance of a manga image, and each step is indispensable

for preparing the high-quality manga product.

Might we be able to achieve a program that can mimic

the above workflow, producing manga images with simi-

lar appearance to the ones created by artists manually with

this workflow, and at the same time, yielding independently

usable result layers that can assist artists in each step of

this workflow? To achieve these goals, we present a deep

learning approach to mimic the manga creation workflow

step-by-step. Firstly, given an input illustration, our frame-

work estimates a line drawing map that plays a similar role

to the line drawings inked by artists manually. Secondly, our

framework segments the input image into a fixed number of

screentone classes, and pastes corresponding regular screen-

tone sheets onto the image regions of each class. Thirdly, our

framework predicts a texture mask to identify the areas that

need to be pasted with screen textures, and afterwards syn-

thesizes irregular textures in the identified areas. In this way,

our framework automatically produces the line drawings,

regular screentones, and screen textures. Those components

can be independently used by artists for further creation, or

can be directly composed into the manga outputs.

To this end, we invite artists to annotate a large-scale

dataset and learn a hierarchical neural network in a data-

driven manner. Our dataset contains 1502 image&annotation

pairs of {illustration image, line drawing annotation, regular

screentone segmentation annotation, and irregular screen tex-

ture mask annotation}. All annotations are achieved with a

human-in-the-loop approach, and checked by multiple artists

for quality assurance. We will make this dataset publicly

available to assist related applications.

Experiments show that mimicking the manga creation

workflow yields several advantages. Firstly, in qualitative

analyse, our framework can produce not only single manga

image but also independent image layers at each workflow

step to assist artists. Then, in perceptual user study, our

framework tends to learn the artist decisions recorded in

our presented dataset for each workflow step, making our

framework preferred by the artists, as the manga creation

depends heavily on content semantics and even artist percep-

tion. Furthermore, we provide 60 qualitative results and 15

additional comparisons in the supplementary material.

In summary, our contributions are: (1) We propose a

data-driven framework to generate manga from illustrations

by mimicking the professional manga creation workflow,

including the steps of line drawing inking, regular screentone

pasting, and irregular screen texture pasting. (2) We present a

large-scale artistic dataset of illustration and annotation pairs

to facilitate the problem to generate manga from illustrations

and assist related applications. (3) Perceptual user study and

qualitative evaluations demonstrate that our framework is

more preferable by artists when compared to other possible

alternatives.

2. Related Work

Screentone and manga processing. The synthesis of

manga screentone or halftoned texture is a unique prob-

lem with considerable demand. Halftoning exploits the

spatial integration of human vision to approximate the in-

tensity over a small local region with black-and-white pix-

els [24, 16, 44, 21]. Path-based methods [45, 32] try to

reduce the artifact patterns by adjusting the scanning path

over images. Knuth et al. [24] enhance edges in a prepro-
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Figure 3. Overview of our framework. Given an input illustration, our framework separately estimates the line drawing, regular screentone

segmentation, and the irregular screen texture mask. These components are composed to produce the final manga result. All convolutional

layers use 3× 3px kernels and are processed by Batch Normalizations (BNs) and ReLU activations.

cessing step to preserve the edges. Afterwards, Buchanan et

al. [3] preserve the fine structure by optimising the structure

similarity. Perception-aware methods [51, 52, 34, 36] map

pixel-wise or region-wise luminance to screentone patterns

to achieve perceptually distinguishable salient screentone

structure. Learning-based method Li et al. [26] train neural

networks to predict the sketching texture in an end-to-end

manner. Variational-auto-encoder screentone filler [53] maps

the screened manga to an intermediate domain. Hatching

is another technique to halftoned effects. Winkenbach et

al. [50] synthesise pen-and-ink illustrations by rendering a

geometric scene with prioritised stroke textures. Our frame-

work not only focuses on the synthesis of screentones, but

also works with the practical workflow of manga creation,

including the steps of line drawing inking, screentone syn-

thesis, and texture blending.

Cartoon and digital painting techniques. Cartoon image

processing and computational digital painting have been

extensively studied in the past few decades. Manga struc-

ture extraction [25], cartoon inking [40, 38, 39], and line

closure [29, 31] methods analysis the lines in cartoon and

digital paintings. A region-based composition method can

be used in cartoon image animating [41]. Stylization meth-

ods [5, 48, 54, 56, 55] generate cartoon images or artistic

drawings from photographs or human portraits. Line draw-

ing colour filling applications [58, 43, 42] colourize sketch or

line drawings with optimization-based or learning-based ap-

proaches. Our approach generates manga from illustrations

and digital paintings, and can be used in manga products and

related cartoon or digital painting applications.

Image-to-image translation and stylization. The task of

generating manga from illustrations can also be seen as an

image-to-image translation or image stylization problem.

For example, paired image-to-image translation [20, 47, 4]

and unpaired methods [59, 22, 2, 57, 14, 30]. These meth-

ods can transform images across categories, e.g., maps-

to-aerials, edges-to-cats, and in our case, illustrations-to-

manga. Neural style transfer [17, 19, 27] can stylize images

via transferring low-level style features to the content im-

ages. Our experiments include typical candidates of these

methods, analysing the differences between our customized

framework and these generic methods.

3. Method

We present an overview of our framework as shown in

Fig. 3, where the input is an illustration X ∈ R
w×h×c

(Fig. 3-left), whereas the output is a manga image Y ∈
R

w×h (Fig. 3-right), with w, h, c being the image width,

height, and channel quantity. We train Convolutional Neural

Networks (CNNs) to mimic the professional manga creation

workflow with the following three steps:

Firstly, to mimic the behaviour that artists ink line draw-

ings to delineate the structural outlines in manga storyboards

(Fig. 2-(a)), our framework estimates a line drawing map

L̂ ∈ R
w×h (Fig. 3-(a)). Learnt from thousands of im-

ages, our neural network inks salient structural lines and

suppresses unwanted constituents like noises and shadow

interferences.

Secondly, to mimic the behaviour that artists paste regular

screentones to depict the manga shading and object materials

(Fig. 2-(b)), our framework estimates a panoptic segmenta-

tion map, namely the regular screentone segmentation map

Ŝ ∈ R
w×h×N (Fig. 3-(b)), with N representing the number

of screentone classes. Such segmentation yields a set of re-

gion labels, and each label indicates one type of screentone

that should be pasted to each region. Our framework then
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pastes the screentones according to such region-wise labels.

Thirdly, to mimic the behaviour that artists paste irregular

screen textures to achieve background layouts or special

effects (Fig. 2-(c)), our framework estimates an irregular

texture mask M̂ ∈ R
w×h (Fig. 3-(c)) to identify the areas

that should be covered with irregular textures, and afterwards

synthesizes manga textures for those identified areas.

Finally, the output manga image Y can be composed with

Y = L̂⊙ ϕtone(Ŝ)⊙ ϕtex(M̂ ,X) , (1)

where ⊙ is Hadamard product, ϕtone(·) is a tone transform

(described in § 3.2) that pastes screentone sheets according

to the given screentone segmentation Ŝ, and ϕtex(·, ·) is

a texture transform (described in § 3.3) that synthesizes

textures given the texture mask M̂ and the illustration X .

In order to train this framework, we invite artists to anno-

tate a dataset containing 1502 pairs of {illustration X , line

drawing map L, regular screentone segmentation map S,

and irregular texture mask M}. These data are annotated in

a human-in-the-loop manner, i.e., artists create annotations

for our framework to learn, and our framework estimates

coarse annotations for artists to refine. The annotating ap-

proach is detailed in § 4.

3.1. Inking line drawing

When creating manga in real life, artists ink line drawings

to outline the object structures in manga storyboards. Our

framework estimates a line drawing map L̂ to mimic this

artist behaviour. Given the ground truth line drawing L and

the estimation L̂, we customize a likelihood Link with

Link=
∑

p

(

||L̂p −Lp||
2
2 + λi||φ(L̂)p − φ(L)p||

2
2

)

, (2)

where p is pixel position, || · ||2 is Euclidean distance, and λi
is a weighting parameter. The operator φ(·) is a high-pass

transform that penalizes the line patterns — we observe that

the line patterns in line drawings routinely come with sparse

and discrete high-amplitude/frequency transitions over pixel

intensities, and we tailor-make the transform φ(·) to identify

such line patterns that are “darker” than their surrounding

low-frequency domain with

φ(L̂)p =

{

||L̂p − g(L̂)p||2, if L̂p < g(L̂)p;

0, others,
(3)

where g(·) is a Gaussian filter with a sigma of 3.0. With this

transform, the likelihood Link not only describes how close

the estimation L̂ is to the ground truth L, but also penalizes

the lines guided by the transform φ(·).

3.2. Pasting regular screentone

Manga artists paste screentone sheets with regular pat-

terns onto their canvases to render the shading, occlusion,

Figure 4. Pasting regular screentone. (a) Examples of real-life

screentone sheets. (b) Standard manga screentone classes and cor-

responding label colours. (c) Example illustration. (d) Screentone

segmentation map annotated by artists manually. (e) Screentones

pasted according to the segmentation.

and object materials. A widely-used commercial screentone

standard “JAPAN-DELETER-SE” [13] (Fig. 4-(a)) includes

8 types of manga screentone sheets (Fig. 4-(b)). Based on

this standard, our framework estimates a screentone segmen-

tation map Ŝ (Fig. 4-(d)) with 8 classes corresponding to

these 8 types of screentones. With the estimated logits Ŝ and

the ground truth label S, we measure the likelihood Lseg

with the Softmax Cross Entropy [49] as

Lseg = −
∑

p,i

log(ψ(Ŝp)⊙ Sp)i , (4)

where ψ(·) is Softmax [49] operation, p is pixel position, and

i is class channel index. We further observe how artists paste

screentone sheets, and find that artists are accustomed to

paste screentones in a region-wise manner instead of in pixel-

wise, i.e., artists paste screentone sheets region-by-region

rather than pasting independent sheets for each individual

pixel. To achieve such region-wise consistency, we use

the Felzenszwalb [15] super-pixel algorithm to segment the

input image X into a set of over-segmented regions Ω =
{ω1...n}, and penalize the region-wise variation Lvar with

Lvar =
∑

p

||Ŝp − Ŝω(p)||
2
2 , (5)

where ω(p) is a super-pixel region in Ω that the pixel p

belongs to, and Ŝω(p) is the average value of Ŝ in the re-

gion ω(p). By encouraging the region-wise consistency,

this penalty mimics the artist behaviour of region-by-region
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Figure 5. Pasting irregular screen texture. (a) Example illustration.

(b) Screen texture mask annotated by artist manually. (c-h) Dif-

ferent types of halftone transforms. The “*” indicates the default

transform used by our framework.

screentone sheet pasting. Afterwards, our framework pastes

the screentones according to the segmentation Ŝ with a tone

transform ϕtone(·) as

ϕtone(Ŝ)p =
∑

i

ψ(Ŝp)i ⊙ (Ti)p , (6)

where Ti ∈ R
w×h is a screentone image computed by tiling

the i-th screentone patch in Fig. 4-(b). We show an ex-

ample of the transform ϕtone(·) in Fig. 4-(e), where the

screentone segmentation (Fig. 4-(d)) is transformed using

the screentone-label correspondence in Fig. 4-(b).

3.3. Pasting irregular screen texture

The screen texture pasting is an indispensable step in the

manga creation workflow. Such screen textures have irreg-

ular patterns and can be used in scenarios like background

layouts or special effects. Our framework identifies the areas

that need to be pasted with screen texture by estimating a

texture mask M̂ (Fig. 5-(b)). We minimize the likelihood

Lmask between the estimation M̂ and the ground truth M

with

Lmask =
∑

p

||M̂p −Mp||
2
2 , (7)

where p is pixel position. Furthermore, we observe how

artists paste screen textures, and find that artists tend to paste

identical texture in consecutive and monotonic areas, e.g.,

large backgrounds, full-screen effects, big fonts, etc. To

achieve the spacial coherency in such areas, we introduce an

anisotropic penalty Lani with

Lani =
∑

p

∑

i∈o(p)

∑

j∈o(p)

(

δ(X)ij ||M̂i − M̂j ||
2
2

)

, (8)

where o(p) is a 3 × 3 window centred at the pixel po-

sition p, with δ(·) being an anisotropic term δ(X)ij =
exp(−||Xi −Xj ||

2
2/κ

2), and κ is an anisotropic weight.

The term δ(X)ij increases when o(p) is located at consec-

utive and monotonic areas with uniform pixel intensities,

and decreases when o(p) comes across salient contours like

edges. Afterwards, given the estimated mask M̂ , our frame-

work synthesizes manga textures in the masked areas with a

texture transform ϕtex(·, ·) as

ϕtex(M̂ ,X)p =
∑

p

ξ(X)p ⊙ M̂p , (9)

where ξ(·) is a halftone transform to synthesize texture. Our

framework allows the transform ξ(·) to be chosen from many

popular halftone synthesizing algorithms [24, 16, 44, 21,

45, 32] as shown in Fig. 5-(c-h), and we use the dotted

transform [44] (Fig. 5-(h)) by default.

3.4. Neural architecture and learning objective

Our neural network architecture consists of three con-

volutional decoders: inking decoder, segment decoder, and

mask decoder (Fig. 3). We apply Batch Normalization [18]

and ReLU activation [33] to each convolutional layer. The

sampling layers have skip connections in U-net [37] style.

The three decoders are trained jointly with the loss term L
with

L=λ1Link+λ2Lseg+λ3Lmask+λvarLvar+λaniLani , (10)

where λ1...3, λvar, λani are weighting parameters. Given

that the architecture is fully convolutional, this model is

applicable to images with adjustable resolutions.

4. Dataset

Our dataset contains 1502 pairs of {illustration X , line

drawing map L, regular screentone segmentation map S,

and irregular texture mask M} in 1024px resolution. We

provide examples in the supplemental material. We invite

5 artists to annotate the dataset. The data preparation starts

with a relatively small set of 56 illustration and line drawing

pairs collected by searching the key word “illustration with

line drawing” in Pixiv [35]. Artists align and retouch those

56 line drawings into usable annotations. Next, artists manu-

ally create 56 paired screentone segmentation maps using a

commercial segmentation annotation tool [28] and 56 texture

masks using Adobe Photoshop “quick select” tool. We train

our framework on these initial data for 20 epochs and esti-

mate coarse annotations for 1446 high-quality illustrations in

Danbooru [12]. Artists refine those coarse estimations into fi-

nal annotations. We view 100 refinements as one loop. When

each loop is finished, we train our framework on the new

data for 50 epochs and all old-and-new data for 20 epochs,

and then re-estimate coarse annotations for the remaining
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Input Line drawing Screentone Screentone Screen texture Screen texture Output

illustration X L̂ segmentation Ŝ ϕtone(Ŝ) mask M̂ ϕtex(M̂ ,X) manga Y

Figure 6. Qualitative results. We show the generated manga image layers. 60 additional results are available in the supplementary material.

Method Li 2019 [26] Qu 2008 [36] CSP 2020 [6] Xie 2020 [53] Ours

AHR ↓ 3.11 ± 0.53 4.66 ± 0.31 2.66 ± 0.37 4.11 ± 0.29 1.33 ± 0.24

Table 1. Average Human Ranking (AHR) of the manga images

generated by different methods. The arrow (↓) indicates that lower

is better. Top 1 (or 2) score is marked in blue (or red).

Method Li 2019 [26] Qu 2008 [36] CSP 2020 [6] Xie 2020 [53] Ours

AMTFR ↑ 9.52% 1.16% 11.52% 5.06% 24.54%

Table 2. Amazon Mechanical Turk Fooling Rate (AMTFR) on

generated manga images. This metric reflects how indistinguishable

the generated manga images are from real ones. Top 1 (or 2) score

is marked in blue (or red). Higher (↑) is better.

unrefined illustrations. In parallel, all 5 artists are invited to

check the annotation quality in that loop. Artists are allowed

to remove any annotations when they find low-quality ones.

This human-in-the-loop annotation workflow finishes when

the quality of each annotation has been assured by at least

three artists.

5. Evaluation

5.1. Experimental setting

Compared approaches. We test several typical manga

generation methods of (1) the traditional optimization-based

manga screentone method Qu et al. 2008 [36], (2) the com-

mercial manga software CSP 2020 [6], (3) the learning-based

stylization framework Li et al. 2019 [26], (4) the state-of-

the-art manga effect ScreenVAE from Xie et al. 2020 [53],

(5) Pix2Pix [20], and (6) our framework.

Implementation details. Our framework is trained using

the Adam optimizer [23] with a learning rate of lr = 105,

β = 0.5, a batch size of 16, and 100 epochs. Training

samples are randomly cropped to be 224× 224 pixels and

augmented with random left-and-right flipping. Besides,

Qu [36] supports arbitrary screentone types, and we set it to

use the same screentones with us. CSP [6] supports a vast

majority of screentones with commercial standards, and we

choose the same screentones as ours in the their interface.

Li [26], Xie [53], and Pix2Pix [20] are learning-based meth-

ods with official implementations, and we train them on the

illustration-to-manga pairs composed with our dataset.

Hyper-parameters. We use the default (and recom-

mended) configuration of our framework: λi = 0.5, κ =
0.1, λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λvar = 0.1, and

λani = 0.1.

Testing samples. The tested images are Pixiv [35] and

Danbooru [12] illustrations sampled randomly in different

experiments. We make sure that all tested images are unseen

from the training dataset.

5.2. Perceptual user study

The user study involves 15 individuals, where 10 individ-

uals are non-artist students, and the other 5 are professional
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Illustration Greyscale CSP 2020 [6] Qu 2008 [36] Pix2Pix [20] Li 2019 [26] Xie 2020 [53] Ours

Figure 7. Comparisons to possible alternative methods. 15 additional full-resolution comparisons are available in the supplementary material.

artists. Each artist has at least three months of manga cre-

ation experience. We randomly sample 150 unseen illustra-

tions in Danbooru [12], and then use the involved 5 methods

([53, 36, 26, 6] and ours) to generate 150 result groups, with

each group containing 5 results from 5 methods. The partic-

ipants are invited to rank the results in each group. When

ranking the results in each group, we ask users the question

– “Which of the following results do you prefer most to use

in commercial manga? Please rank the following images

according to your preference”. We use the Average Human

Ranking (AHR) as the testing metric. For each group in

the 150 groups, one random user ranks the 5 results in the

current group from 1 to 5 (lower is better). Afterwards, we

calculate the average ranking obtained by each method.

The results of this user study is reported in Table 1. We

have several interesting discoveries: (1) Our framework out-

performs the secondly best method by a large margin of

1.33/5. (2) The commercial software CSP 2020 [6]reports

the secondly best score. (3) The two learning-based methods

[26, 53] reports similar perceptual quality, with [53] slightly

better than [26]. (4) Qu 2008 [36] reports a relatively low

user preference, possibly due to its hard threshold when

segmenting screentone regions.

We also conduct a user study with the Amazon Mechan-

ical Turk Fooling Rate (AMTFR). The turk workers first

watch a few real manga on the VIZ-manga [46] website,

and then play with all the tested tools for 15 minutes to get

familiar with the appearance of the “real/fake” manga. We

randomly shuffle the 150 fake manga images (generated by

the 5 tested methods as described in § 5.2) and another 150

images cropped from the real VIZ manga. We afterwards ask

the turk workers to tell whether each image is real manga.

The workers’ mistake rate (fooling rate) reflects how the

generated manga is indistinguishable from the real manga

products. The result is presented in Table 2. We can see

that our framework reports the highest fooling rate, more

than twice that of the secondly best method. This is because

our framework mimics the real manga creation workflow to

simulate the manga created by artists manually.

5.3. Qualitative result

We present decomposed qualitative results in Fig. 6 and

60 additional results in the supplementary material. We can

see that our framework not only generates satisfactory manga

results, but also produces independent image layers of line

drawing, screentone, and screen texture. These layers are
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(a) Illustration (b) W/o inking (c) W/o segment (d) W/o masking (e) W/o φ(·) (f) W/o Lvar (g) W/o Lani (h) Ours

Figure 8. Ablative study. We study the impact of each individual component within our framework by removing components one-by-one.

practically usable in the daily works of manga artists.

5.4. Visual comparison

We present comparisons with previous methods [26, 36,

6, 53, 20] in Fig. 7 and 15 additional comparisons in the

supplementary material. We also provide greyscale images

for reference. We can see that CSP 2020 [6] and Qu et

al. 2008 [36] can only map region-wise or pixel-wise inten-

sity to screentone dots. Li et al. 2019 [26] causes bound-

ary/detail distortion, e.g., the girl eyes. Xie et al. 2020 [53]

and Pix2Pix [20] suffer from severe blurring/halo artifacts

(when zooming in), e.g., the cake decoration. Our framework

mimics the artist workflow and yields sharp and clean manga

products.

5.5. Ablative study

As shown in Fig. 8, the ablative study includes the fol-

lowing experiments. (1) We remove the inking decoder and

train our framework without line drawing maps. We can

see that the removal of line drawing fails our framework in

outlining the object structure (Fig. 8-(b)). (2) If trained with-

out the screentone segmentations (with the segment decoder

removed), the framework cannot mimics the artist behaviour

of region-by-region screentone pasting, yielding screentone

distortions (Fig. 8-(c)). (3) If trained without the screen tex-

ture masks (with the mask decoder removed), the framework

fails to capture appropriate textures, resulting in dull and

defective tone transitions (Fig. 8-(d)). (4) If trained with-

out the line pattern penalty φ(·), the lines become blurred

(Fig. 8-(e)). (5) If trained without the region-wise variation

penalty Lvar, the framework suffer from screentone type in-

consistency (Fig. 8-(f)). (6) If trained without the anisotropic

penalty Lani, the textured areas become uncontrolled and

noisy (Fig. 8-(g)). (7) The full framework suppresses these

types of artifacts and achieves a satisfactory balance over the

line drawing, screentone, and screen texture (Fig. 8-(h)).

5.6. Influence of hyper­parameters

A weak region-wise variation penalty (Lvar = 0.01)

causes inconsistency tone over adjacent regions, whereas

a too strong penalty (Lvar = 1.0) causes texture vanishing.

Besides, a weak anisotropic penalty (Lani = 0.01) causes

textural distortion, whereas a too strong penalty (Lani = 1.0)

causes low contrast in detailed constituents. See also the

supplement for examples.

6. Conclusion

We present a framework to generate manga from illustra-

tions by mimicking the manga creation workflow, including

the steps of line drawing inking, regular screentone pasting,

and irregular screen texture pasting. We invite artists to an-

notate a large-scale dataset to train the neural networks, and

the dataset will be publicly available. Both quantitative and

qualitative experiments elaborate that the users prefer our

layered manga products compared to possible alternatives.
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