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Abstract

Learning to detect novel objects from few annotated ex-

amples is of great practical importance. A particularly

challenging yet common regime occurs when there are ex-

tremely limited examples (less than three). One critical fac-

tor in improving few-shot detection is to address the lack

of variation in training data. We propose to build a bet-

ter model of variation for novel classes by transferring the

shared within-class variation from base classes. To this end,

we introduce a hallucinator network that learns to gener-

ate additional, useful training examples in the region of in-

terest (RoI) feature space, and incorporate it into a mod-

ern object detection model. Our approach yields significant

performance improvements on two state-of-the-art few-shot

detectors with different proposal generation procedures. In

particular, we achieve new state of the art in the extremely-

few-shot regime on the challenging COCO benchmark.

1. Introduction

Modern deep convolutional neural networks (CNNs) rely

heavily on large amounts of annotated images [29]. This

data-hungry nature limits their applicability to some practi-

cal scenarios such as autonomous driving, where the cost

of annotating examples is prohibitive, or which involve

never-before-seen concepts [9,51]. By contrast, humans can

rapidly grasp a new concept and make meaningful general-

izations, even from a single example [31]. To bridge this

gap, there has been a recent resurgence of interest in few-

shot or low-shot learning that aims to learn novel concepts

from very few labeled examples [8, 10, 34, 37, 42].

Despite notable successes, most of the existing work has

focused on simple classification tasks with artificial settings

and small-scale datasets [34, 37]. However, few-shot object

detection, a task of great practical importance that learns an

object detector from only a few annotated bounding box ex-

amples [18, 38, 39], is far less explored. Few-shot detection

requires determining where an object is as well as what it

is (and handling distracting background regions [13], etc.),

and is much harder than few-shot classification. The most

Region
Proposal
Network

Hallucinator

Test

Figure 1. Learning to detect a novel class, fennec fox, from a sin-

gle training example (i.e., 1-shot detection) using a serial detec-

tor. The region proposal network (RPN) generates a few high

intersection-over-union (IoU) boxes for the detector’s classifier.

The pink circle represents the classifier decision boundary learned

from these boxes. Due to a lack of sample variation, the decision

boundary is not accurately estimated. With hallucinated examples

(image in backslash) produced by our hallucinator, the classifier

learns a better decision boundary (the dotted circle), thus being

able to potentially correct previously misclassified instances.

difficult regime occurs when there are very limited exam-

ples (less than 3) for novel classes (Figure 1), which is a

common yet extremely challenging case in the real world.

While few-shot classification approaches are helpful

(e.g., [2, 4, 18, 33, 41]), few-shot detection is much more

than a straightforward application of few-shot classification

approaches. The state-of-the-art two-stage fine-tuning ap-

proach (TFA) [38] learns a better representation for few-

shot detection, through (1) pre-training on base classes with

abundant data and then only fine-tuning the box classifier

and regressor on novel classes, and (2) introducing instance-

level feature normalization to the box classifier during fine-

tuning. Despite the improvement, its performance in the

extremely low-data regime is still far from satisfying.

We argue that, to fully improve extremely-few-shot de-

tection performance, a key factor is to effectively deal with

the lack of variation in training data. This is because for an

object detector to be accurate, its classifier must build a use-

ful model of variation in appearance with very few exam-

ples. More concretely, a modern object detector first finds

promising image locations, typically boxes, using a region

proposal network (RPN) [28], then passes promising boxes
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through a classifier to determine what object is present, and

finally performs various cleanup operations such as non-

maximum suppression (NMS), aimed at avoiding duplicate

predictions and improving localization. Now assume that

the detector must learn to detect a novel category from a

single example (Figure 1). The only way the classifier can

build a model of the category’s variation in appearance is by

learning from the high intersection-over-union (IoU) boxes

reported by the RPN. Although there is variation of boxes

produced by the RPN, the variation from a single example

is too weak to train the classifier for the novel class.

To overcome this issue, one strategy is to adjust the

learning procedure for RPN, so that it reports highly infor-

mative boxes. Contemporary work [48] achieves this by

training multiple RPN’s be somewhat redundant and coop-

erating. Hence, if one RPN misses a highly informative box,

another will get it. This cooperating RPN’s (CoRPNs) ap-

proach, while helpful, is still insufficient. In the extremely-

few-shot regime, all positive novel class proposals produced

by the multiple RPN’s are only slightly modified from and

thus similar to the few available positive instances (with

light-weighted cropping and scaling operations); their vari-

ation is significantly limited for building a strong classifier.

In this paper, we propose a different perspective on build-

ing a model of variation for novel classes, by transferring

the shared within-class variation from base classes. In fact,

many modes of variation in the visual world (e.g., cam-

era pose, lighting changes, and even articulation) are shared

across categories and can generalize to unseen classes [30].

While such within-class variation is difficult to be encoded

through the proposal generation procedure, it can be effec-

tively captured by learning to hallucinate examples [40].

To this end, we introduce a hallucinator network into

a modern object detection model. The hallucinator net-

work performs data hallucination for the box classifier in

the learned region of interest (RoI) feature space. We train

the hallucinator on data-abundant base classes, encoding the

rich structure of their shared modes of variation. We then

use the learned hallucinator to generate additional novel

class examples and thus produce an augmented training set

for building better classifiers, as shown in Figure 1.

Note that the existing strategy for training the hallucina-

tor in few-shot classification [40] is coupled with a com-

plicated meta-learning process, making it difficult to ap-

ply to state-of-the-art few-shot detectors like TFA [38] or

CoRPNs [48]. We overcome this challenge by introduc-

ing a much simpler yet effective training procedure: we

train our hallucinator and the detector’s classifier in an EM-

like (expectation-maximization) manner, where a “strongest

possible” classifier is trained first with all the available base

class data; the hallucinator is then trained under the guid-

ance of this already-trained classifier; and finally, the clas-

sifier is re-trained and refined based on the set of augmented

examples (with hallucinated examples) on novel classes.

Our contributions are three-fold. (1) We investigate a

critical yet under-explored issue in extremely-few-shot de-

tection (e.g., as few as one) – the lack of variation in train-

ing data. (2) We propose a novel data hallucination based

approach to address this issue, which effectively transfers

shared modes of within-class variation from base classes

to novel classes. Our approach is simple, general, and

can work with different region proposal procedures. (3)

Our approach significantly outperforms the state-of-the-art

TFA [38] and most recent cooperating RPN’s [48] detectors

in the extremely-few-shot regime. Our code is available at

https://github.com/pppplin/HallucFsDet.

2. Related Work

Object Detection: Modern detectors are typically based

on convolutional neural networks with two types of archi-

tectures – serial detection [12] and parallel detection [25].

Both families run a region proposal process [5, 36] that de-

termines whether an image region contains an object or not.

They differ in when to run the region proposal process. Se-

rial detectors (or two-stage detectors) first generate promis-

ing region proposals and then feed each proposal box to a

classifier that predicts if the region contains an object. Se-

rial detectors include R-CNN [13] and its variants, such as

Fast R-CNN [12], Faster R-CNN [28], Mask R-CNN [15],

SPP-Net [16], FPN [21], and DCN [3].

Parallel detectors (or one-stage detectors) run the region

proposal process and the classification process simultane-

ously. Parallel detectors are usually faster than serial detec-

tors at the expense of decreasing accuracy, since the clas-

sifier has no prior knowledge of whether a box contains

an object. Representative parallel detectors are variants of

YOLO [1, 25, 26, 27], SSD [23], CornerNet [19], and Ex-

tremeNet [49]. Our work introduces a general data halluci-

nation strategy to improve the detection performance in the

few-shot regime. While we mainly focus on serial detectors

in this paper since they achieve state-of-the-art few-shot de-

tection performance, we believe that our strategy applies to

parallel detectors as well, which we leave as future work.

Few-Shot Object Detection: Advanced few-shot detec-

tors are usually built in a serial fashion [7,38,39,43,44,45].

One line of work focuses on learning better feature rep-

resentations through metric learning [20, 33, 46], in ways

of modeling multi-modal distributions in each class [33],

restoring negative information [46], and reserving adequate

margin space among novel classes [20]. Modified fine-

tuning techniques have also been explored. For example,

a regularized fine-tuning approach is proposed to transfer

knowledge from a pre-trained detector to a few-shot de-

tector [2]. Recently, a simple two-stage fine-tuning ap-

proach has been shown to outperform more sophisticated

methods [38]. Other work seeks improvements by applying
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meta-learning techniques, such as learning a meta-model to

reweight pre-trained features given few-shot data [18] and

attaching meta-learned classifiers to Faster R-CNN [39,45].

Another line of work focuses on improving the proposal

generation process, by introducing attention mechanisms

and generating class-aware features for classifiers [7, 17,

24, 35, 44, 48]. Some work modifies the proposal rank-

ing process and ranks proposals based on similarity with

query images [7,17]. An RPN ensemble method is proposed

to avoid missing highly informative proposal boxes [48].

Contrastive-aware object proposal encodings are further

learned to reduce the possibility of misclassifying novel

class objects to confusable classes [35]. Additional infor-

mation has also been shown helpful, such as semantic rela-

tions [50] and multi-scale representations [43]. Orthogonal

to existing work, we address few-shot detection by halluci-

nating additional data and enriching sample variation.

Data Hallucination: Despite recent progress on learn-

ing to hallucinate examples to deal with data scarcity [11,

14, 32, 40, 47], much of the work has focused on classifica-

tion tasks and performed in a learned feature space. Novel

class features are generated by learning shared feature trans-

formations from base classes [14]. Pairwise deformations

between examples of the same class are captured and used

to generate novel class instances [32]. A meta-learner and

a hallucinator are combined and jointly optimized to boost

recognition performance [40]. Our approach builds on the

feature space hallucination framework of [40], but makes

significant modifications to the hallucinator architecture and

the hallucination procedure. To the best of our knowledge,

our work is the first to demonstrate the effectiveness of data

hallucination for few-shot detection.

3. Our Approach

We believe that hallucination would improve any few-

shot detection models with standard architectures. In this

section, we focus on improving two state-of-the-art few-

shot detectors with different region proposal mechanisms.

Few-Shot Object Detection Setting and Evaluation

Procedure: We follow the few-shot detection setting and

the standard evaluation procedure introduced in [18, 38].

Classes are split into two sets: base classes Cb and novel

classes Cn. Both models which we study adopt a two-

stage fine-tuning procedure [38]. A model is trained on

base classes in the first stage and is then fine-tuned on novel

classes in the second stage. In the first stage, the model only

detects base classes – the model is a |Cb|-way detector. In

the second stage, the model is expanded as a (|Cb|+ |Cn|)-
way detector. In order to maintain performance on base

classes while learning to detect novel class instances, the

detector is fine-tuned on a balanced few-shot dataset con-

taining both novel and base classes. Finally, we compare

mean average precision (AP) on novel classes.

Stage 2: Fine-tuning on novel classes

Few-shot novel
class examples

Many-shot base
class examples

Backbone
Region

Proposal
Network

RoI
Pooling

Box
Classifier

Box
Regressor

Box Head

Backbone
Region

Proposal
Network

RoI
Pooling Box Head

Box
Regressor

Box
Classifier

RoI Head

Stage 1: Training on base classes

Figure 2. Illustration of the two-stage fine-tuning approach

(TFA) [38] under the Faster R-CNN framework. In stage 1, the

whole model is trained with base class images. In stage 2, only

the classifier and the bounding box regressor in the RoI head are

fine-tuned with novel class images. A module in blue is trained

during the corresponding stage, while a module in gray is frozen.

3.1. FewShot Object Detection Models

Two-stage Fine-tuning Approach (TFA): A two-stage

fine-tuning approach is introduced [38] under the widely-

used Faster R-CNN framework, which significantly im-

proves few-shot detection performance. As a serial detec-

tor, Faster R-CNN consists of a backbone, a region proposal

network (RPN), a region of interest (RoI) pooling layer,

an RoI feature extractor, a bounding box classifier, and a

bounding box regressor (Figure 2). The last four compo-

nents together construct the RoI head. The backbone ex-

tracts image features, which are passed through the RPN to

produce promising areas with potential objects. The RoI

head then transforms, classifies, and refines potential object

boxes into labeled boxes. TFA modifies the standard Faster

R-CNN by using a cosine similarity based classifier to re-

duce intra-class variance for few-shot learning. TFA uses an

ImageNet [29] pre-trained ResNet-101 with a feature pyra-

mid network [21] as the backbone. As shown in Figure 2,

in the first stage, TFA trains the whole model using base

class images. In the second stage, only the classifier and the

bounding box regressor in the RoI head are fine-tuned using

novel class instances, with the rest of the model frozen.

Cooperating RPN’s (CoRPNs): An improved proposal

generation mechanism based on RPN ensemble is proposed

in CoRPNs [48], which produces highly informative pro-

posal boxes for few-shot detection. As shown in Figure 3,

CoRPNs train multiple distinct but cooperating RPN’s so

that if one RPN misses a highly informative proposal box,

another one will get it. Except the proposal generation

procedure, CoRPNs share the same model architecture and

training strategy with TFA. Specifically, CoRPNs train N

RPN’s by a modified RPN classification loss

L = Lj∗

CE + Ldiv + Lcoop, (1)

where Lj∗

CE is a binary cross-entropy loss of a selected RPN
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Figure 3. Illustration of cooperating RPN’s (CoRPNs) [48]. Left:

the standard RPN structure in Faster R-CNN. Right: CoRPNs

with N RPN classifiers.
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Figure 4. Illustration of the RoI head structure with a hallucinator

module. The hallucinator is inserted right before the classifier.

The hallucinated examples are appended to the original training

examples to train the classifier. The bounding box regressor is not

affected by the hallucinator.

j∗. CoRPNs select the most certain RPN for every box. For

instance, each anchor box will get the RPN j∗’s score that

has a probability closer to either 0 or 1. The selected RPN

j∗ gets this box’s gradient at training.

The divergence loss Ldiv encourages RPN’s to be differ-

ent, and the cooperation loss Lcoop enforces RPN’s to coop-

erate by setting a lower bound for every RPN’s response to

a foreground box. Ldiv is defined as

Ldiv = − log(det(Σ(F))), (2)

which is the negative log of the covariance matrix on every

RPN’s prediction to proposal boxes. For foreground box i

and RPN j, the cooperation loss is

Li,j
coop = max{0, φ− f

j
i }, (3)

where φ is the lower bound of every RPN’s response to a

foreground box, and f
j
i is RPN j’s response to the box i.

Lcoop is averaged over all RPN’s and foreground boxes.

3.2. FewShot Object Detection with Hallucination

We introduce a hallucinator network H with parame-

ters φ that learns to generate additional examples for novel

classes by leveraging the shared within-class feature vari-

ation from base classes. As shown in Figure 4, hallucina-

tion happens in the RoI head feature space. The hallucinator

takes as input available training examples and generates hal-

lucinated examples. The set of hallucinated examples Sgen

is then treated as additional training examples for learning

the classifier on novel classes. Specially, given a seed ex-

ample xck
i of category ck, the hallucinator generates a hal-

lucinated example by

x̃ck
i = H(µck , x

ck
i , ε;φ), (4)

RoI
Pooling Box Head

Box
Regressor

Box
Classifier

Hallucinator

S

RoI
Pooling Box Head

Box
Regressor

Box
Classifier

Hallucinator

Sgen

Training Hallucinator 

Training Classifier and Regressor 

Sgen

S

Figure 5. Our EM-style training procedure for an RoI head with a

hallucinator module. Upper: how to train the hallucinator. The

hallucinator is trained based on the classification loss on the hallu-

cinated examples. All other modules are frozen when training the

hallucinator. Lower: how to train the classifier and the bounding

box regressor. Both the original training examples and the hallu-

cinated examples are used to train the classifier. Only the original

training examples are used to train the bounding box regressor.

The EM-style training iterates between the two processes. A gray

module indicates that it is frozen.

where µck is the class prototype of ck, which is the mean

of all instances from ck, and ε is a per-example noise

vector. Note that our hallucinator formulation is different

from [40]: we introduce an additional input µck to explicitly

capture the global category information. For x̃ck
i , its label

yi is the same as the seed example’s category ck. Assum-

ing that we already have a trained box classifier, we directly

use the classifier’s (cross-entropy) classification loss on all

hallucinated examples to train the hallucinator:

Lhalluc(φ) =
∑

i∈Sgen

(
−wT

yi
x̃ck
i + log

∑

k

ew
T

k

˜
x
ck

i

)
, (5)

where wyi
and wk are the already-learned classifier’s

weights on corresponding categories. This hallucination

loss enforces the hallucinated examples to loosely “agree

with” the trained classifier. In addition, since we take as in-

put class prototypes, our hallucinator is implicitly regular-

ized and thus not simply copying the seed examples. Com-

pared with [40] which uses a complicated meta-learning

process, we substantially simplify the training procedure.

3.3. Training the Hallucinator and the Classifier

As illustrated in Figure 5, we propose an EM-style (ex-

pectation–maximization) training procedure to train the hal-

lucinator and the detector’s classifier: when training the hal-

lucinator, the classifier is frozen; when training the classifier

(and the box regressor), the hallucinator is frozen. Com-

pared with end-to-end joint training, this iterative strategy

improves the cooperation between the hallucinator and the

classifier, thus producing examples that are more useful for

building the few-shot classifier.
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Training on Base Classes: In the stage of training on

base classes, we first train the plain detector without the

hallucinator in a standard way as before. We then insert the

hallucinator into the detector, and freeze all model compo-

nents except the hallucinator. Now, the hallucination will be

performed in the pre-trained, fixed RoI head feature space.

And the classifier is already trained on base classes using all

available examples. We then use this base class classifier to

guide the training of the hallucinator.

Note that, different from few-shot classification, the pro-

posal generation process in detection produces several pro-

posal boxes around an object, making a few training exam-

ples available even in the 1-shot scenario. We randomly

sample these training examples as seed examples for the

hallucinator. Consider a training batch S which consists of

n base classes. For each class in the batch, the hallucina-

tor generates m examples, and m is fixed for all batches.

The set of hallucinated examples Sgen is used to train the

hallucinator based on the loss function (5).

Fine-Tuning on Novel Classes: After training the hal-

lucinator on base classes, we move on to the stage of fine-

tuning the classifier and hallucinator on a few-shot dataset

containing both base and novel classes. We freeze all model

components prior to the hallucinator. Each training batch S

initially consists of an imbalanced set of foreground box ex-

amples Spos and background box examples Sneg, with back-

ground examples being the majority: S = [Spos;Sneg]. The

hallucinator generates a set of additional examples Sgen for

novel classes. Without changing the number of examples in

total, we randomly replace |Sgen| background examples by

Sgen to obtain a refined training batch

S̃ = [Spos, Sgen;S
′

neg]. (6)

By doing so, we also partially alleviate the imbalance issue

between foreground and background examples. After train-

ing the classifier on the refined dataset with hallucinated

examples, we fine-tune the hallucinator using the classifier

based on Eq. (5), then we use the fine-tuned hallucinator to

fine-tune the classifier again, and so on. We stop this pro-

cedure after one or two iterations (i.e., the classifier is fine-

tuned at most twice); empirically, we found that additional

iterations do not further improve the performance.

4. Experiments

4.1. Implementation Details

Datasets and Evaluation Metrics: We evaluate on

two widely-used few-shot detection benchmarks: MS-

COCO [22] and PASCAL VOC (07 + 12) [6]. For a fair

comparison, the same base/novel category splits, train/test

splits, and novel class instances [18, 38] are used for train-

ing and evaluation. Consistent with recent work [18,38], we

report AP50 for three different base/novel splits under shots

1, 2, 3, 5, and 10 on PASCAL VOC; we report AP, AP50,

and AP75 under shots 1, 2, and 3 on COCO. Note that we

particularly focus on the extremely-few-shot regime.

Baselines: We mainly focus on the comparison with

two state-of-the-art few-shot detectors – TFA [38] and

CoRPNs [48], and evaluate the effectiveness and general-

izability of our hallucinator when combined with them. For

both our models and the main baselines, we use Faster R-

CNN [28] as our base model. Following [38], we use an

ImageNet pre-trained ResNet-101 with a feature pyramid

network [21] as the backbone. All our experiments, includ-

ing those with the main baselines, have ground-truth boxes

appended as training examples in the RoI head. As reported

in [38], including ground-truth boxes leads to a 0.5% AP

gain on COCO. In addition, we compare with a variety of

baselines, including concurrent work on few-shot detection.

Evaluation Procedure: Both our models and the main

baselines are (|Cb|+ |Cn|)-way few-shot detectors. And we

evaluate them on both base and novel classes under the stan-

dard evaluation procedure [38], as described in Section 3.

Some other baselines like [17] were initially evaluated un-

der different procedures. For a fair comparison, all reported

numbers for those methods are the re-evaluated results un-

der the standard evaluation procedure.

Note that, following [38], the fine-tuning stages on PAS-

CAL VOC and COCO are slightly different. On PASCAL

VOC, the classifier’s weights on novel classes are randomly

initialized and directly trained using a balanced dataset with

base and novel classes. On COCO, we first train a |Cn|-way

classifier on novel class instances. The trained classifier is

used as an initialization of the classifier’s weights on novel

classes. We then train a (|Cb|+ |Cn|)-way classifier using a

balanced few-shot dataset with base and novel classes.

Hallucinator Architecture: We use a two-layer MLP

(multi-layer perceptron) with ReLU as the hallucinator.

Given that the inputs to the hallucinator are a class proto-

type, a seed example, and random noise, the input size is

three times the feature size; the output size of each linear

layer is the same size as the input feature. The seed example

is randomly sampled from all examples in a training batch.

The input noise is dataset-dependent. For each dataset, we

calculate the mean and standard deviation of pre-trained in-

put features and use those to sample the input noise.

We pre-compute base class prototypes using all available

examples before training the hallucinator. During training

the hallucinator, we do not update these base class proto-

types. In a different manner, we construct novel class pro-

totypes dynamically, when using the learned hallucinator to

train classifiers on novel classes. Specifically, novel class

prototypes are computed by using both the training and hal-

lucinated examples (in contrast to that only training exam-

ples are used for base class prototypes). For a novel class,

whenever a new training example comes in or a new ex-

ample is generated, its corresponding prototype will be up-
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Novel Set 1 Novel Set 2 Novel Set 3

Method shot=1 2 3 5 10 shot=1 2 3 5 10 shot=1 2 3 5 10

Ours CoRPNs w/ cos + Halluc 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6

Main baseline CoRPNs w/ cos [48] 44.4 38.5 46.4 54.1 55.7 25.7 29.5 37.3 36.2 41.3 35.8 41.8 44.6 51.6 49.6

Ours TFA w/ cos + Halluc 45.1 44.0 44.7 55.0 55.9 23.2 27.5 35.1 34.9 39.0 30.5 35.1 41.4 49.0 49.3

Main baseline TFA w/ cos [38] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

FRCN+ft-full [38] 15.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1

Meta R-CNN [45] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

CoAE* [17] 12.7 14.6 14.8 18.2 21.7 4.4 11.3 20.5 18.0 19.0 6.3 7.6 9.5 15.0 19.0

MPSR [43] 41.7 43.1 51.4 55.2 61.8 24.4 29.5 39.2 39.9 47.8 35.6 40.6 42.3 48.0 49.7

Other baselines FsDetView [44] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

NP-RepMet [46] 37.8 40.3 41.7 47.3 49.4 41.6 43.0 43.4 47.4 49.1 33.3 38.0 39.8 41.5 44.8

FSCE [35] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

CME [20] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

SRR-FSD [50] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

Table 1. Few-shot detection performance (AP50) on PASCAL VOC novel classes under three base/novel splits. We follow the standard

evaluation procedure in [38]. The main comparison focuses on combining hallucination (denoted as ‘Halluc’) with two state-of-the-art

few-shot detectors: TFA and CoRPNs with cosine classifier (denoted as ‘w/ cos’). All models build upon Faster R-CNN with ResNet-101

backbone. ‘CoRPNs + Halluc’ and CoRPNs share the same hyper-parameter settings; and the RPN outputs in ‘CoRPNs + Halluc’ are the

same as CoRPNs. Similarly, ‘TFA + Halluc’ and TFA share the same RPN outputs. Hallucination yields significant improvements in the

extremely-few-shot regime (1-shot and 2-shot). In higher shots, hallucination maintains comparable results to its baselines. In addition, we

compare with other state-of-the-art methods, including some concurrent work. *Model re-evaluated under the standard procedure. Results

in red are the best, results in blue are the second-best, and results in bold are the better ones in comparison with the corresponding baseline.

dated. Despite somewhat inconsistency between base and

novel classes for constructing prototypes, we found that

this strategy exploits all available examples and empirically

achieves the best performance.

Hallucinator Initialization: Following a similar strat-

egy as in [40], we initialize the hallucinator by using block

diagonal identity matrices plus small random noise. The ini-

tialization noise is sampled from a normal distribution with

a zero mean and a standard deviation of 0.02. As a form

of regularization, this identity initialization ensures that the

initially hallucinated examples are not too far away from the

seed examples and thus do not degrade the performance.

Hyper-Parameter Settings: On PASCAL VOC, we

train the hallucinator with batch size 16 and learning rate

0.02 for 8,000 iterations. We decay the learning rate by ra-

tio 0.1 at 2,000 and 6,000 iterations. On COCO, we train

the hallucinator with batch size 64 and learning rate 0.02

for 21,200 iterations. We decay the learning rate by ratio

0.1 at 6,400 and 19,200 iterations.

Number of Hallucinated Examples: When training

the classifier on novel classes, the hallucinator produces a

fixed number (m) of examples per category in each train-

ing batch. For simplicity, we set m to be the same as the

average number of per-class training examples (i.e., RoI

features), averaged over the training batches. On PASCAL

VOC, there are roughly 20 training examples per class (with

batch size 16), and we thus hallucinate 20 examples per

class accordingly for all experiments. We keep this num-

ber on COCO as well. In the ablation study, we show that

by tuning the number of hallucinated examples, the perfor-

mance gets further improved. Note that this number should

change when the number of images per batch varies.

4.2. Main Results

Comparison with Main Baselines TFA and CoRPNs:

Tables 1 and 2 summarize the results for novel classes on

PASCAL VOC and COCO, respectively. We have the fol-

lowing key observations.

(1) Hallucination improves the performance over the

main baselines by large margins in the extremely-few-shot

regime. On PASCAL VOC, hallucination yields substantial

improvements in 1-shot and 2-shot scenarios. On the more

challenging COCO benchmark, hallucination consistently

improves performance when combined with both baselines.

(2) Our hallucination strategy is general and applica-

ble to different types of detectors regardless of RPN out-

puts. This is because hallucination provides additional, use-

ful sample variation that is independent of RPN outputs.

(3) On PASCAL VOC (Table 1), hallucination demon-

strates slightly different behaviors when combined with

CoRPNs or TFA: while hallucination consistently improves

CoRPNs in the extremely-few-shot regime, it is not always

helpful for TFA in some cases (though hallucination also

does not hurt). A possible explanation is that our hallu-

cinator tends to be conservative, making the hallucinated

examples still close to the original seed training examples.

Hence, in the cases (e.g., novel sets 2 and 3) where the train-

ing and test examples are quite distinct, the hallucinated

examples produced from the training examples could not

help build a better classifier for detecting the test examples.

In such cases, a more aggressive hallucinator is desired to

generate examples that are further away from the seed ex-
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1-shot 2-shot 3-shot

Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours CoRPNs w/ cos + Halluc 4.4 7.5 4.9 5.6 9.9 5.9 7.2 13.3 7.4

Main baseline CoRPNs w/ cos [48] 4.1 7.2 4.4 5.4 9.6 5.6 7.1 13.2 7.2

Ours TFA w/ cos + Halluc 3.8 6.5 4.3 5.0 9.0 5.2 6.9 12.6 7.0

Main baseline TFA w/ cos [38] 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5

Other baselines
MPSR** [43] 2.3 4.1 2.3 3.5 6.3 3.4 5.2 9.5 5.1

FsDetView [44] 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9

Table 2. Few-shot detection performance on COCO novel classes in 1, 2, and 3-shot scenarios. See the caption of Table 1 for details.

Hallucination consistently improves both baselines in all settings. ‘CoRPNs + Halluc’ achieves the state-of-the-art results in most cases.

**Model evaluated using the public code and the pre-trained detector on base classes.

1-shot fine-tuned 2-shot fine-tuned 3-shot fine-tuned

Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours CoRPNs w/ cos + Halluc 32.3 52.4 34.4 34.5 55.3 37.0 34.7 55.1 37.5

Main baseline CoRPNs w/ cos [48] 34.1 55.1 36.5 34.7 55.3 37.3 34.8 55.2 37.6

Ours TFA w/ cos + Halluc 31.5 50.8 33.9 32.8 52.4 35.4 33.3 52.8 36.4

Main baseline TFA w/ cos [38] 34.1 54.7 36.4 34.7 55.1 37.6 34.7 54.8 37.9

Other baselines
MPSR** [43] 12.1 17.1 14.2 14.4 20.7 16.9 15.8 23.3 18.3

FsDetView [44] 2.4 7.0 1.0 4.4 11.9 2.2 4.9 13.6 2.2

Table 3. Detection performance on COCO base classes, after fine-tuning with a balanced dataset (1, 2, and 3-shots) containing base

and novel class instances. Hallucination slightly degrades base class performance compared with CoRPNs and TFA, but it substantially

outperforms state-of-the-art MPSR and FsDetView. **Model evaluated using the public code and the pre-trained detector on base classes.

amples. The ablation study in Section 4.3 investigates this

issue in more depth and supports our observation.

(4) The performance gain of hallucination diminishes as

the number of training examples increases. In higher-shot

scenarios, our current hallucination does not bring in addi-

tional within-class variation beyond the given training ex-

amples, and is thus no longer beneficial. Note that, how-

ever, hallucination does not hurt the performance in 5/10-

shot scenarios – performance variation is within 95% con-

fidence interval over multiple random samples according

to [38]. Given that a single hallucinator is trained in our

case, we might need different hallucinators or hallucination

strategies in different sample size regimes.

Comparison with Other State-of-the-Art Methods:

Tables 1 and 2 show that our approach is superior or compa-

rable to other few-shot detection methods. In particular, we

achieve very competitive results in the extremely-few-shot

regime. We believe that our effort is orthogonal to concur-

rent work; our hallucination strategy can be combined with

other methods to further improve their performance.

Base Class Performance: Table 3 presents the detec-

tion results on base classes, evaluated after fine-tuning with

novel class instances. We observe that hallucination im-

proves novel class performance at the expense of slight

degradation of performance on base classes. This issue

could be potentially addressed by using a smaller fine-

tuning learning rate for the classifier components of base

classes (which have been already well-trained). More no-

tably, compared with other state-of-the-art methods such as

MPSR [43] and FsDetView [44], we achieve a significantly

better trade-off between novel and base class performance.

Method Novel Set 1 Novel Set 2 Novel Set 3

Joint training 38.5 22.2 33.6

EM w/ 1 iter 46.7 24.5 38.5

EM w/ 2 iter 47.0 26.3 40.4

Table 4. Comparison (1-shot AP50) of different training proce-

dures for CoRPNs with hallucination on PASCAL VOC. All pro-

cedures use the same hallucinator architecture. EM-style training

significantly outperforms joint training under all base/novel splits.

The second EM iteration also consistently improves performance.

4.3. Ablation Studies

EM vs. Joint Training Procedures: Table 4 shows that,

with the same hallucinator architecture, our EM-style train-

ing procedure significantly outperforms joint training, indi-

cating that joint training might be greedy in this case. In ad-

dition, 2 EM-iterations outperform 1 iteration, and we found

that more iterations do not improve the performance.

Conservative vs. Aggressive Hallucinators: In the

main experiments, we show that a conservative hallucina-

tor is not always helpful and in some cases, we need a

more aggressive hallucinator. Here we build such an ag-

gressive hallucinator by changing the hallucination space.

As shown in Figure 4, the original hallucinator generates

examples directly in the operational space of the classifier

(i.e., in the feature space after the box head and right be-

fore the classifier); this makes it conservative and reluctant

to produce the kinds of examples that drastically change the

classifier decision boundaries. By contrast, our new hallu-

cinator generates examples in the feature space before the

box head and accordingly, it becomes a three-layer convo-
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Method Novel Set 1 Novel Set 2 Novel Set 3

TFA [38] 39.8 23.5 30.8

TFA + Halluc, Conservative 45.1 23.2 30.5

TFA + Halluc, Aggressive 40.8 29.3 33.7

Table 5. Analysis of conservative and aggressive hallucinators: 1-

shot AP50 on PASCAL VOC under three base/novel splits. The

aggressive hallucinator brings substantial improvements over TFA

on novel sets 2 and 3 without hurting the performance on novel set

1. The conservative hallucinator significantly outperforms TFA on

novel set 1, and performs comparably on the other two novel sets.

Method #Halluc AP50

CoRPNs [48] 0 44.4

CoRPNs + Halluc

1 47.1

2 47.0

3 48.0

5 47.9

10 47.8

20 47.0

Table 6. Impact of the number of hallucinated examples on 1-shot

detection (AP50) under PASCAL VOC novel set 1.

lutional network. Now, the box head makes allowances for

errors in the hallucination, and the hallucinator becomes

more aggressive and allows radical change of classifiers.

We also make some additional modifications as follows: (1)

we jointly train the aggressive hallucinator with other model

components, and (2) we use a cosine prototypical network

loss [34] computed on held-out validation examples with

hallucinated prototypes as additional guidance to train the

hallucinator. Table 5 shows that the aggressive hallucinator

significantly helps the cases where the performance of the

conservative hallucinator is lagging. Importantly, neither of

the two hallucinator variants hurts the performance.

Number of Hallucinated Examples: Our hallucinator

generates a fixed number of examples per class in each

training batch (20 examples in the main results). Table 6

investigates the impact of the number of hallucinated exam-

ples. As it increases from 0 to 20, the performance grad-

ually improves and then saturates and drops slightly. Note

that the drop is still within 95% confidence interval over

multiple random samples according to [38]. This is because

even if we produce a small number of hallucinated examples

per training batch (e.g., 3), after many iterations, the cumu-

lative number of hallucinated examples is large enough.

Results with Fully-Connected Classifiers: We use co-

sine classifiers in the main results. Table 7 shows detection

results using fully-connected classifiers. Hallucination im-

proves CoRPNs in all 1-shot cases, suggesting the effective-

ness of hallucination irrespective of the classifier choice.

Performance Gain Analysis: We investigate where our

performance gain comes from. The detection AP can be

improved in two ways: (1) more boxes are correctly iden-

tified, i.e., true positive rate goes up; (2) fewer boxes are

misclassified, i.e., false positive rate goes down. As shown

Method Novel Set 1 Novel Set 2 Novel Set 3

CoRPNs w/ fc [48] 40.8 20.4 29.4

CoRPNs w/ fc + Halluc 44.2 23.0 31.5

Table 7. 1-shot detection performance (AP50) on PACAL VOC

novel classes with fully-connected classifiers (‘w/ fc’). CoRPNs

and ‘CoRPNs + Halluc’ use the same set of hyper-parameters and

share the same RPN outputs. ‘CoRPNs + Halluc’ outperforms

CoRPNs under all three base/novel splits.

Novel Set 1
Avg. True Positive Avg. False Positive

Boxes (↑) Boxes (↓)

TFA [38] 118.9 4096.6

TFA + Halluc 132.0 3309.3

CoRPNs [48] 133.9 3440.6

CoRPNs + Halluc 137.0 3041.1

Novel Set 2

TFA [38] 76.8 897.1

TFA + Halluc 69.5 844.9

CoRPNs [48] 78.7 920.1

CoRPNs + Halluc 77.1 826.6

Novel Set 3

TFA [38] 109.3 2043.2

TFA + Halluc 113.6 1461.4

CoRPNs [48] 110.3 1704.7

CoRPNs + Halluc 117.6 1345.0

Table 8. Average total number of true positive boxes and false posi-

tive boxes in novel classes for different 1-shot models on PASCAL

VOC. Hallucination increases the number of true positive boxes in

most cases and decreases the number of false positive boxes, with

a larger improvement in the false positive rate.

in Table 8, hallucination both increases the number of true

positives in most cases and always decreases the number of

false positives. We find that the scale of improvements on

false positives is larger than the scale of improvements on

true positives. A possible explanation is that hallucination

generates close-to-boundary examples, and improves deci-

sion boundaries. Many misclassified boxes are eliminated,

since we have a better estimation of decision boundaries.

5. Conclusion and Future Work

This paper tackles the lack of sample variation prob-

lem in few-shot detection. We introduce a hallucinator net-

work to generate additional feature-level training examples.

Experimental evaluation demonstrates that data hallucina-

tion, as a general strategy, can be incorporated into differ-

ent types of detectors and substantially improves few-shot

detection. Our analysis further shows that different design

choices will change the behavior of the hallucinator.

Our method is one possible instantiation of the data hal-

lucination strategy. We believe that further refinements of

the proposed hallucinator architectures and exploration of a

more dedicated control of training procedure could lead to

a more effective hallucinator with better performance. Fi-

nally, it is a promising avenue to continue this line of work

for other visual recognition tasks beyond object detection.
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