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Abstract

We present a new pipeline for holistic 3D scene under-

standing from a single image, which could predict object

shapes, object poses, and scene layout. As it is a highly

ill-posed problem, existing methods usually suffer from in-

accurate estimation of both shapes and layout especially

for the cluttered scene due to the heavy occlusion between

objects. We propose to utilize the latest deep implicit rep-

resentation to solve this challenge. We not only propose an

image-based local structured implicit network to improve

the object shape estimation, but also refine the 3D object

pose and scene layout via a novel implicit scene graph neu-

ral network that exploits the implicit local object features.

A novel physical violation loss is also proposed to avoid

incorrect context between objects. Extensive experiments

demonstrate that our method outperforms the state-of-the-

art methods in terms of object shape, scene layout estima-

tion, and 3D object detection.

1. Introduction

3D indoor scene understanding is a long-lasting com-

puter vision problem and has tremendous impact on sev-

eral applications, e.g., robotics, virtual reality. Given a sin-

gle color image, the goal is to reconstruct the room layout

as well as each individual object and estimate its seman-

tic type in the 3D space. Over decades, there are plenty

of works consistently improving the performance of such a

task over two focal points of the competition. One is the

3D shape representation preserving fine-grained geome-

try details, evolving from the 3D bounding box, 3D vol-

ume, point cloud, to the recent triangulation mesh. The

other is the joint inference of multiple objects and layout in

the scene leveraging contextual information, such as co-

occurring or relative locations among objects of multiple
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Figure 1: Our proposed pipeline takes a single image as in-

put, estimates layout and object poses, then reconstructs the

scene with Signed Distance Function (SDF) representation.

categories. However, the cluttered scene is a double-blade

sword, which unfortunately increases the complexity of 3D

scene understanding by introducing large variations in ob-

ject poses and scales, and heavy occlusion. Therefore, the

overall performance is still far from satisfactory.

In this work, we propose a deep learning system for

holistic 3D scene understanding, which predicts and refines

object shapes, object poses, and scene layout jointly with

deep implicit representation. At first, similar to previous

methods, we exploit standard Convolutional Neural Net-

works (CNN) to learn an initial estimation of 3D object

poses, scene layout as well as 3D shapes. Different from

previous methods using explicit 3D representation like vol-

ume or mesh, we utilize the local structured implicit rep-

resentation of shapes motivated by [12]. Instead of taking

depth images as input like [12], we design a new local im-

plicit shape embedding network to learn the latent shape

code directly from images, which can be further decoded

to generate the implicit function for 3D shapes. Due to the

power of implicit representation, the 3D shape of each ob-

ject can be reconstructed with higher accuracy and finer sur-

face details compared to other representations.

Then, we propose a novel graph-based scene context net-

work to gather information from local objects, i.e., bottom-

up features extracted from the initial predictions, and learn

to refine the initial 3D pose and scene layout via scene con-

text information with the implicit representation. Being one

of the core topics studied in scene understanding, the con-

text has been achieved in the era of deep learning mainly
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from two aspects - the model architecture and the loss func-

tion. From the perspective of model design, we exploit the

graph-based convolutional neural network (GCN) to learn

context since it has shown competitive performance to learn

context [58]. With the deep implicit representation, the

learned local shape latent vectors are naturally a compact

and informative feature measuring of the object geometries,

which results in more effective context models compared to

features extracted from other representations such as mesh.

Not only the architecture, but the deep implicit represen-

tation also benefits the context learning on the loss func-

tion. One of the most basic contextual information yet still

missing in many previous works - objects should not inter-

sect with each other, could be easily applied as supervision

by penalizing the existence of 3D locations with negative

predicted SDF in more than one objects1. We define this

constraint as a novel physical violation loss and find it par-

ticularly helpful in preventing intersecting objects and pro-

ducing reasonable object layouts.

Overall, our contributions are mainly in four aspects.

First, we design a two-stage single image-based holistic

3D scene understanding system that could predict object

shapes, object poses, and scene layout with deep implicit

representation, then optimize the later two. Second, a new

image-based local implicit shape embedding network is

proposed to extract latent shape information which leads

to superior geometry accuracy. Third, we propose a novel

GCN-based scene context network to refine the object ar-

rangement which well exploits the latent and implicit fea-

tures from the initial estimation. Last but not least, we de-

sign a physical violation loss, thanks to the implicit repre-

sentation, to effectively prevent the object intersection. Ex-

tensive experiments show that our model achieves the state-

of-the-art performance on the standard benchmark.

2. Related works

Single Image Scene Reconstruction. As a highly ill-

posed problem, single image scene reconstruction sets a

high bar for learning-based algorithms, especially in a clut-

tered scene with heavy occlusion. The problem can be di-

vided into layout estimation, object detection and pose esti-

mation, and 3D object reconstruction. A simple version of

the first problem is to simplify the room layout as a bound-

ing box [19, 27, 30, 8, 38]. To detect objects and estimate

poses in 3D space, Recent works [10, 21, 5] try to infer 3D

bounding boxes from 2D detection by exploiting relation-

ships among objects with a graph or physical simulation.

At the same time, other works [24, 23, 22] further extend

the idea to align a CAD model with similar style to each

detected object. Still, the results are limited by the size of

1The object interior is with negative SDF, and thus no location should

be inside of two objects.

the CAD model database which results in an inaccurate rep-

resentation of the scene. To tackle the above limitations of

previous works, Total3D [33] is proposed as an end-to-end

solution to jointly estimate the layout box and object poses

while reconstructing each object from the detection and uti-

lizing the reconstruction to supervise the pose estimation

learning. However, they only exploit relationships among

objects with features based on appearance and 2D geome-

try.

Shape Representation. In the field of computer graph-

ics, traditional shape representation methods include mesh,

voxel, and point cloud. Some of the learning-based works

try to encode the shape prior into a feature vector but stick

to the traditional representations by decoding the vector

into mesh [17, 50, 34, 42, 14], voxel [54, 7, 3, 52, 44]

or point cloud [29, 1, 57]. Others try to learn structured

representations which decompose the shape into simple

shapes [28, 11, 36]. Recently, implicit surface function

[31, 35, 56, 39, 37, 40] has been widely used as a new

representation method to overcome the disadvantages of

traditional methods (i.e. unfriendly data structure to neu-

ral network of mesh and point cloud, low resolution and

large memory consumption of voxel). Most recent works

[13, 12, 53] try to combine the structured and implicit rep-

resentation which provides a physically meaningful feature

vector while introducing significant improvement on the de-

tails of the decoded shape.

Graph Convolutional Networks. Proposed by [15], graph

neural networks or GCNs have been widely used to learn

from graph-structured data. Inspired by convolutional neu-

ral networks, convolutional operation has been introduced

to graph either on spectral domain [4, 9, 25] or non-spectral

domain [18] which performs convolution with a message

passing neural network to gather information from the

neighboring nodes. Attention mechanism has also been in-

troduced to GCN and has been proved to be efficient on

tasks like node classification [48], scene graph generation

[58] and feature matching [41]. Recently, GCN has been

even used on super-resolution [59] which is usually the ter-

ritory of CNN. In the 3D world which interests us most,

GCN has been used on classification [51] and segmentation

[46, 49, 51] on point cloud, which is usually an enemy rep-

resentation to traditional neural networks. The most related

application scenario of GCN with us is 3D object detection

on points cloud. Recent work shows the ability of GCN to

predict relationship [2] or 3D object detections [32] from

point cloud data.

3. Our method

As shown in Fig. 2, the proposed system consists of two

stages, i.e., the initial estimation stage, and the refinement

stage. In the initial estimation stage, similar to [21, 33],

a 2D detector is first adopted to extract the 2D bounding
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Figure 2: Our proposed pipeline. We initialize the layout estimation and 3D object poses with LEN and ODN from prior work

[33], then refine them with Scene Graph Convolutional Network (SGCN). We utilize a Local Implicit Embedding Network

(LIEN) to encode latent code for LDIF decoder [12] and to extract implicit features for SGCN. With the help of LDIF and

marching cube algorithm, object meshes are extracted then rotated, scaled, and put into places to construct the scene.

box from the input image, followed by an Object Detection

Network (ODN) to recover the object poses as 3D bound-

ing boxes and a new Local Implicit Embedding Network

(LIEN) to extract the implicit local shape information from

the image directly, which can further be decoded to infer

3D geometry. The input image is also fed into a Layout

Estimation Network (LEN) to produce a 3D layout bound-

ing box and relative camera pose. In the refinement stage, a

novel Scene Graph Convolutional Network (SGCN) is de-

signed to refine the initial predictions via the scene context

information. As 2D detector, LEN, ODN has the standard

architecture similar to prior works [21, 33], in this section,

we will describe the details of the novel SGCN and LIEN in

detail. Please refer to our supplementary materials for the

details of our 2D detector, LEN, ODN.

3.1. Scene Graph Convolutional Network

As shown in Fig. 2, motivated by Graph R-CNN [58],

we model the whole 3D scene as a graph G, in which the

nodes represent the objects, the scene layout, and their rela-

tionships. The graph is constructed starting from a complete

graph with undirected edges between all objects and layout

nodes, which allows information to flow among objects and

the scene layout. Then, we add relation nodes to each pair

of neighboring object/layout nodes. Considering the nature

of directional relation [26], we add two relation nodes be-

tween each pair of neighbors in different directions.

It is well known that the input features are the key to

an effective GCN [50]. For different types of nodes, we

design features carefully from different sources as follows.

For each node, features from different sources are flattened

and concatenated into a vector, then embedded into a node

representation vector with the same length using MLP.

Layout Node. We use the feature from the image encoder

of LEN, which encodes the appearance of layout, and the

parameterized output of layout bounding box and camera

pose from LEN, as layout node features. We also concate-

nate the camera intrinsic parameters normalized by the im-

age height into the feature to add camera priors.

Object Node. We collect the appearance-relationship fea-

ture [33] from ODN, and the parameterized output of object

bounding box from ODN, along with the element centers in

the world coordinate and analytic code from LIEN (which

we will further describe in the next section). We also use the

one-hot category label from the 2D detector to introduce se-

mantic information to SGCN.

Relationship Node. For nodes connecting two different ob-

jects, the geometry feature [20, 47] of 2D object bounding

boxes and the box corner coordinates of both connected ob-

jects normalized by the image height and width are used as

features. The coordinates are flattened and concatenated in

the order of source-destination, which differentiate the re-

lationships of different directions. For nodes connecting

objects and layouts, since the relationship is presumably

different from object-object relationship, we initialize the

representations with constant values, leaving the job of in-

ferring reasonable relationship representation to SGCN.

For a graph with N objects and 1 layout, object-layout

nodes and relationship nodes can then be put into two ma-

trixes Zo ∈ R
d×(N+1) and Zr ∈ R

d×(N+1)2 .

Since the graph is modeled with different types of nodes,

which makes a difference in the information needed from

different sources to destinations, we define independent

message passing weights for each of the source-destination

types. We denote the linear transformation from source

node to destination node with type a and b as W ab, in which
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node types can be source object (or layout) s, destination

object (or layout) d, and relationships r. With adjacent ma-

trix αsr = αdr = 1 − IN+1, the representation of object

and layout nodes can be updated as

zoi = σ(zoi−1 +

Message from
Layout or Objects
︷ ︸︸ ︷

W sdZo +

Messages from
Neighboring Relationships

︷ ︸︸ ︷

W srZrαsr +W drZrαdr),
(1)

and the relationship node representations can be updated as

zri = σ(zri−1 + W rsZoαrs +W rdZoαrd

︸ ︷︷ ︸

Messages from Layout or Neighboring Objects

), (2)

After four steps of message passing, independent MLPs are

used to decode object node representations into residuals for

corresponding object bounding box parameters (δ, d, s, θ),
and layout node representation into residuals for initial lay-

out box
(
C, sl, θl

)
and camera pose R (β, γ). Please refer

to our supplementary or [33] for the details of the defini-

tion. The shape codes can be also refined in the scene graph,

while we find that it doesn’t improve empirically as much

as for the layout and object poses in our pipeline because

our local implicit embedding network, which will be intro-

duced in the following, is powerful enough to learn accurate

shapes.

3.2. Local Implicit Embedding Network

With a graph constructed for each scene, we naturally

ask what features help SGCN effectively capture contextual

information among objects. Intuitively, we expect features

that well describe 3D object geometry and their relationship

in 3D space. Motivated by Genova et al. [12], we propose to

utilize the local deep implicit representation as the features

embedding object shapes due to its superior performance

for single object reconstruction. In their model, the func-

tion is a combination of 32 3D elements (16 with symmetry

constraints), with each element described with 10 Gaussian

function parameters analytic code and 32-dim latent vari-

ables (latent code). The Gaussian parameters describe the

scale constant, center point, radii, and Euler angle of ev-

ery Gaussian function, which contains structured informa-

tion of the 3D geometry. We use analytic code as a feature

for object nodes in SGCN, which should provide informa-

tion on the local object structure. Furthermore, since the

centers of the Gaussian functions presumably correspond

to centers of different parts of an object, we also transform

them from the object coordinate system to the world coor-

dinate system as a feature for every object node in SGCN.

The transformation provides global information about the

scene, which makes SGCN easier to infer relationships be-

tween objects. The above two features make up the implicit

features of LIEN.

As LDIF [12] is designed for 3D object reconstruction

from one or multiple depth images, we design a new image-

based Local Implicit Embedding Network (LIEN) to learn

the 3D latent shape representation from the image which is

obviously a more challenging problem. Our LIEN consists

of a Resnet-18 as image encoder, along with a three-layer

MLP to get the analytic and latent code. Additionally, in

order to learn the latent features effectively, we concatenate

the category code with the image feature from the encoder

to introduce shape priors to the LIEN, which improves the

performance greatly. Please refer to our supplementary ma-

terial for the detailed architecture of the proposed LIEN.

3.3. Loss Function

Losses for Initialization Modules. When training LIEN

along with LDIF decoder individually, we follow [12] to

use the shape element center loss Lc with weight λc and

point sample loss,

Lp = λnsLns + λusLus, (3)

where Lns and Lus evaluates L2 losses for near-surface

samples and uniformly sampled points. When training LEN

and ODN, we follow [21, 33] to use classification and re-

gression loss for every output parameter of LEN and ODN,

LLEN =
∑

y∈{β,γ,C,sl,θl}

λyLy, (4)

LODN =
∑

x∈{δ,d,s,θ}

λxLx. (5)

Joint Refinement with Object Physical Violation Loss.

For the refinement stage, we aim to optimize the scene lay-

out and object poses using the scene context information by

minimizing the following loss function,

Lj = LLEN + LODN + λcoLco + λphyLphy. (6)

Besides LLEN , LODN and cooperative loss Lco [33], we

propose a novel physical violation loss as a part of joint loss

for the scene graph convolutional network to make sure that

objects will not intersect with each other. The neural SDF

representation used by local implicit representation gives us

a convenient way to propagate gradient from undesired ge-

ometry intersection back to the object pose estimation. To

achieve this, we first sample points inside objects. For each

object i, we randomly sample points inside the bounding

box of each object, along with the center points of Gaussian

elements as point candidates. We then queue these candi-

dates into LDIF decoder of the object and filter out points

outside object surfaces to get inside point samples Si. Fi-

nally, we queue Si into the LDIF decoder of the k-nearest

objects Ni to verify if they have intersection with other ob-

jects (if the predicted label is ”inside”). We follow [12] to

compute a L2 loss between the predicted labels of inter-

sected points with the ground truth surface label (where we
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Figure 3: Object physical violation loss. Based on the in-

sight that objects should not intersect, we punish points in-

side neighboring objects (demonstrated as p, which has neg-

ative LDIF values in both object A and object B). With er-

ror back-propagated through the LDIF decoder, intersected

objects should be pushed back from each other, reducing

intersection resulting from bad object pose estimation.

use 1, 0, 0.5 for ”outside”, ”inside”, ”surface” labels). The

object physical violation loss can be defined as:

Lphy =
1

N

N∑

i=1

1

|Si|

∑

x∈Si

‖relu(0.5− sig(αLDIFi(x)))‖,

(7)

where LDIFi(x) is the LDIF for object i to decode a world

coordinate point x into LDIF value. A sigmoid is applied

on the LDIF value (scaled by α) to get the predicted la-

bels, and a ReLU is applied to consider only the intersected

points. As shown in Fig. 3, the loss punishes intersected

sample points thus push both objects away from each other

to prevent intersections.

4. Experiments

In this section, we compare our method with state-of-

the-art 3D scene understanding methods in various aspects

and provide an ablation study to highlight the effectiveness

of major components.

4.1. Experiment Setup

Datasets. We follow [33] to use two datasets to train each

module individually and jointly. We use two datasets for

training and evaluation. 1) Pix3D dataset [45] is presented

as a benchmark for shape-related tasks including recon-

struction, providing 9 categories of 395 furniture models

and 10,069 images with precise alignment. We use the mesh

fusion pipeline from Occupancy Network [31] to get water-

tight meshes for LIEN training and evaluate LIEN on orig-

inal meshes. 2) SUN RGB-D dataset [43] contains 10K

RGB-D indoor images captured by four different sensors

and is densely annotated with 2D segmentation, semantic

labels, 3D room layout, and 3D bounding boxes with object

orientations. Follow Total3D [33], we use the train/test split

from [14] on the Pix3D dataset and the official train/test

split on the SUN RGB-D dataset. The object labels are

mapped from NYU-37 to Pix3D as presented by [33].

Metrics. We adopt the same evaluation metrics with

[21, 33], including average 3D Intersection over Union

(a) Input (b) AtlasNet (c) MGN (d) Ours

Figure 4: Object reconstruction qualitative comparison. We

use the implementation from [33] for AtlasNet [16]. Our

results contain finer details and have more smooth surfaces.

(IoU) for layout estimation; mean absolute error for cam-

era pose; average precision (AP) for object detection; and

chamfer distance for single-object mesh generation from

single image.

Implementation. We use the outputs of the 2D detector

from Total3D as the input of our model. We also adopted

the same structure of ODN and LEN from Total3D. LIEN is

trained with LDIF decoder on Pix3D with watertight mesh,

using Adam optimizer with a batch size of 24 and learning

rate decaying from 2e-4 (scaled by 0.5 if the test loss stops

decreasing for 50 epochs, 400 epochs in total) and evaluated

on the original non-watertight mesh. SGCN is trained on

SUN RGB-D, using Adam optimizer with a batch size of 2

and learning rate decaying from 1e-4 (scaled by 0.5 every

5 epochs after epoch 18, 30 epochs in total). We follow

[33] to train each module individually then jointly. When

training SGCN individually, we use Lj without Lphy , and

put it into the full model with pre-trained weights of other

modules. In joint training, we adopt the observation from

8837



Category bed bookcase chair desk sofa table tool wardrobe misc mean

AtlasNet [16] 9.03 6.91 8.37 8.59 6.24 19.46 6.95 4.78 40.05 12.26

TMN [34] 7.78 5.93 6.86 7.08 4.25 17.42 4.13 4.09 23.68 9.03

MGN [33] 5.99 6.56 5.32 5.93 3.36 14.19 3.12 3.83 26.93 8.36

Ours 4.11 3.96 5.45 7.85 5.61 11.73 2.39 4.31 24.65 6.72

Table 1: Object reconstruction comparison. We report the Chamfer distance scaled with the factor of 103. We follow [33] to

align the reconstructed mesh to ground-truth with ICP then sample 10K points from the output and the ground-truth meshes.

Although trained on watertight meshes with more noise, our results still shows better results.

Method bed chair sofa table desk dresser nightstand sink cabinet lamp mAP

3DGP [6] 5.62 2.31 3.24 1.23 - - - - - - -

HoPR [22] 58.29 13.56 28.37 12.12 4.79 13.71 8.80 2.18 0.48 2.41 14.47

CooP [21] 57.71 15.21 36.67 31.16 19.90 15.98 11.36 15.95 10.47 3.28 21.77

Total3D [33] 60.65 17.55 44.90 36.48 27.93 21.19 17.01 18.50 14.51 5.04 26.38

Ours 89.32 35.14 69.10 57.37 49.03 29.27 41.34 33.81 33.93 11.90 45.21

Table 2: 3D object detection comparison. For CooP, we report the better results from [33] trained on NYU-37 object labels.

Our method outperforms SOTA, benefiting from a better understanding of the object relationships and the scene context.

[33] that object reconstruction depends on clean mesh for

supervision, to fix the weights of LIEN and LDIF decoder.

4.2. Comparison to Stateoftheart

In this section, we compare to the state-of-the-art meth-

ods for holistic scene understand from aspects including ob-

ject reconstruction, 3D object detection, layout estimation,

camera pose prediction, and scene mesh reconstruction.

3D Object Reconstruction. We first compare the perfor-

mance of LIEN with previous methods, including AtlasNet

[16], TMN [34], and Total3D [33], for the accuracy of the

predicted geometry on Pix3D dataset. All the methods take

as input a crop of image of the object and produce 3D ge-

ometry. To make a fair comparison, the one-hot object cate-

gory code is also concatenated with the appearance feature

for AtlasNet [16] and TMN [34]. For our method, we run

a marching cube algorithm on 256 resolution to reconstruct

the mesh. The quantitative comparison is shown in Table 1.

Our method produces the most accurate 3D shape compared

to other methods, yielding the lowest mean Chamfer Dis-

tance across all categories. Qualitative results are shown

in Fig. 4. AtlasNet produces results in limited topology

and thus generates many undesired surfaces. MGN miti-

gates the issue with the capability of topology modification,

which improves the results but still leaves obvious artifacts

and unsmooth surface due to the limited representation ca-

pacity of the triangular mesh. In contrast, our method pro-

duces 3D shape with correct topology, smooth surface, and

fine-grained details, which clearly shows the advantage of

the deep implicit representation.

3D Object Detection. We then evaluate the 3D object de-

tection performance of our model. Follow [33, 21], we

use mean average precision (mAP) with the threshold of

3D bounding box IoU set at 0.15 as the evaluation met-

ric. The quantitative comparison to state-of-the-art methods

[6, 22, 21, 33] is shown in Table 2. Our method performs

Method Layout IoU Cam pitch Cam roll

3DGP [6] 19.2 - -

Hedau [19] - 33.85 3.45

HoPR [22] 54.9 7.60 3.12

CooP [21] 56.9 3.28 2.19

Total3D [33] 59.2 3.15 2.09

Ours 64.4 2.98 2.11

Table 3: 3D layout and camera pose estimation comparison.

Our method outperforms SOTA by 5.2% in layout estima-

tion while on par with SOTA on camera pose estimation.

consistently the best over all semantic categories and sig-

nificantly outperforms the state-of-the-art (i.e. improving

AP by 18.83%). Figure 5 shows some qualitative compari-

son. Note how our method produces object layout not only

more accurate but also in reasonable context compared to

Total3D, e.g. objects are parallel to wall direction.

Layout Estimation. We also compare the 3D room lay-

out estimation with Total3D [33] and other state-of-the-arts

[6, 22, 21]. The quantitative evaluation is shown in Table 3

(Layout IoU). Overall, our method outperforms all the base-

line methods. This indicates that the GCN is effective in

measuring the relation between layout and objects and thus

benefits the layout prediction.

Camera Pose Estimation. Table 3 also shows the compar-

ison over camera pose prediction, following the evaluation

protocol of Total3D. Our method achieves 5% better camera

pitch and slightly worse camera roll.

Holistic Scene Reconstruction. To our best knowledge,

Total3D [33] is the only work achieving holistic scene re-

construction from a single RGB, and thus we compare to it.

Since no ground truth is presented in SUN RGB-D dataset,

we mainly show qualitative comparison in Fig. 5. Com-

pared to Total3D, our model has less intersection and esti-

mates more reasonable object layout and direction. We con-

sider this as a benefit from a better understanding of scene

context by GCN. Our proposed physical violation loss Lphy

also contributes to less intersection.
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Figure 5: Qualitative comparison on object detection and scene reconstruction. We compare object detection results with

Total3D [33] and ground truth in both oblique view and camera view. The results show that our method gives more accurate

bounding box estimation and with less intersection. We compare scene reconstruction results with Total3D in camera view

and observe more reasonable object poses.
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4.3. Ablation Study

In this section, we verify the effectiveness of the pro-

posed components for holistic scene understanding. As

shown in Table 4, we disable certain components and evalu-

ate the model for 3D layout estimation and 3D object detec-

tion, We do not evaluate the 3D object reconstruction since

it is highly related to the usage of deep implicit representa-

tion, which has been already evaluated in Section 4.2.

Does GCN Matter? To show the effectiveness of GCN, we

first attach the GCN to the original Total3D to improve the

object and scene layout (Table 4, Total3D+GCN). For the

difference between MGN of Total3D and LIEN of ours, we

replace deep implicit features with the feature from image

encoder of MGN and use their proposed partial Chamfer

loss Lg instead of Lphy . Both object bounding box and

scene layout are improved. We also train a version of our

model without the GCN (Ours-GCN), and the performance

drops significantly. Both experiments show that GCN is ef-

fective in capturing scene context.

Does Deep Implicit Feature Matter? As introduced in

Section 3.2, the LDIF representation provides informative

node features for the GCN. Here we demonstrate the con-

tribution from each component of the latent representa-

tion. Particularly, we remove either element centers or ana-

lytic code from the GCN node feature (Ours-element, Ours-

analytic), and find both hurts the performance. This indi-

cates that the complete latent representation is helpful in

pursuing better scene understanding performance.

Does Physical Violation Loss Matter? Additionally,

we evaluate the effectiveness of the physical violation loss.

We train our model without it (Ours-Lphy), and also ob-

serve performance drop for both scene layout and object

3D bounding box in Table 4. We refer to supplementary

material for qualitative comparison.

Evaluating on Other Metrics. We also test our method in

other aspects including supporting relation, geometry accu-

racy, and room layout as shown in Table 5. 1) We calculate

the mean distance between the predicted bottom of on-floor

objects and the ground truth floor to measure the support-

ing relationship. As ground truth, an object is considered to

be on-floor if its bottom surface is within 15cm to the floor.

While GCN significantly improves the metric, Lphy slightly

hurts possibly because it tends to push objects away. Fur-

ther qualitative results are shown in the supplementary ma-

terial. Besides, we also measure the average volume of the

collision per scene between objects (Coll Vol), and our full

model effectively prevent collision. 2) We follow Total3D

[33] to evaluate the alignment between scene reconstruction

and ground truth depth map with global loss Lg , and our full

model performs the best. 3) We also project the predicted

layout onto the image and evaluate with image based met-

rics [8, 38]. Our full model achieves the best on both corner

and pixel errors. Overall, the GCN and Lphy benefit on all

Setting Layout IoU (↑) Detection mAP (↑)

Total3D 59.25 26.38

Total3D+GCN 62.49 37.04

Ours-GCN 60.04 27.47

Ours-element 64.22 42.05

Ours-analytic 63.76 43.10

Ours-Lphy 63.52 43.33

Full 64.41 45.21

Table 4: Ablation study. We evaluate layout estimation with

layout IoU and 3D object detection with mAP.

Setting
Sup Err

(cm)
Lg

Coll Vol

(dm3/scene)
Corner Err

(%)

Pixel Err

(%)

Total3D 26.72 1.43 - 13.29 20.51

Ours-GCN 24.18 1.41 16.64 13.17 20.05

Ours-Lphy 13.35 1.14 13.65 11.60 17.91

Full 14.71 1.11 13.55 11.45 17.60

Table 5: Ablation study on other metrics. We compare on

supporting error, Lg (in units of 10−2), average collision

volume, corner error, and pixel error.

(a) Input (b) 3D Detection (c) Reconstruction

Figure 6: Qualitative results on ObjectNet3D dataset [55]

(row 1) and the layout estimation dataset in [19] (row 2).

these aspects.

4.4. Generalization to other datasets

We also show qualitative results of our method tested on

the 3D detection dataset ObjectNet3D [55] and the layout

estimation dataset in [19] without fine-tuning in Fig. 6. Our

method shows good generalization capability and performs

reasonably well on these unseen datasets.

5. Conclusion

We have presented a deep learning model for holistic

scene understanding by leveraging deep implicit represen-

tation. Our model not only reconstructs accurate 3D object

geometry, but also learns better scene context using GCN

and a novel physical violation loss, which can deliver accu-

rate scene and object layout. Extensive experiments show

that our model improves various tasks in holistic scene un-

derstanding over existing methods. A promising future di-

rection could be exploiting object functionalities for better

3D scene understanding.
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