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Abstract

Many recent 6D pose estimation methods exploited ob-

ject 3D models to generate synthetic images for training

because labels come for free. However, due to the domain

shift of data distributions between real images and synthetic

images, the network trained only on synthetic images fails

to capture robust features in real images for 6D pose es-

timation. We propose to solve this problem by making the

network insensitive to different domains, rather than tak-

ing the more difficult route of forcing synthetic images to

be similar to real images. Inspired by domain adaption

methods, a Domain Adaptive Keypoints Detection Network

(DAKDN) including a domain adaption layer is used to

minimize the discrepancy of deep features between synthetic

and real images. A unique challenge here is the lack of

ground truth labels (i.e., keypoints) for real images. Fortu-

nately, the geometry relations between keypoints are invari-

ant under real/synthetic domains. Hence, we propose to use

the domain-invariant geometry structure among keypoints

as a “bridge” constraint to optimize DAKDN for 6D pose

estimation across domains. Specifically, DAKDN employs a

Graph Convolutional Network (GCN) block to learn the ge-

ometry structure from synthetic images and uses the GCN to

guide the training for real images. The 6D poses of objects

are calculated using Perspective-n-Point (PnP) algorithm

based on the predicted keypoints. Experiments show that

our method outperforms state-of-the-art approaches with-

out manual poses labels and competes with approaches us-

ing manual poses labels.

1. Introduction

Detecting 3D objects and estimating their 6D poses is an

important task in many computer vision applications e.g.,

augmented reality, robotics, machine vision. Recently, deep

learning approaches [13, 39, 4, 29, 34, 10, 26, 24, 25, 18, 3]

have shown impressive results of pose estimation in RGB
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images. However, they require a large amount of manual

labels including the 2D keypoints, masks, 6D poses of ob-

jects, and other extra labels, which are usually very costly.

Therefore, some works [33, 12, 41, 36] have tried to

train on synthetic images rendered from the 3D models of

objects, yielding a great data source with pose labels free

of charge. However, there is significant discrepancy (e.g.,

appearance, illumination conditions) between 3D models

and real objects. This discrepancy between synthetic and

real images is called domain shift. Directly training a net-

work using only the source domain data (i.e., synthetic im-

ages) fails to capture robust features in the target domain

data (i.e., real images), causing reduced performance for

6D pose estimation. To improve the performance on real

images, AAE [33] and DPOD [41] apply additional aug-

mentations including rendering images in various lighting

conditions and backgrounds with image noise to simulate

real environments. Unfortunately, data augmentation is usu-

ally unable to reproduce the statistics produced by real-

world counterparts. Self6D [36] utilizes predicted masks

on real images to get domain-independent properties as con-

straints to refine the pose estimated by the network trained

on physically-based renderings. Although the physically-

based rendering can generate high-quality synthetic images

to simulate real environments, the domain gap in mask pre-

diction still exists and may limit the performance of pose

refinement.

To overcome the domain shift, some transfer learning

methods [35, 19, 17] add unlabeled target data into the train-

ing process. Besides training the model on source domain

data, these methods minimize the distance of features dis-

tribution between the source and target domain data by di-

rectly optimizing a representation generated by an adaption

layer to accomplish domain transfer. However, due to the

high complexity of the predicted information of 6D pose

estimation task, the performance of directly using unlabeled

target data for learning 6D pose estimation cross domains is

still far from satisfactory.

In this paper, we aim to address this cross-domain ob-

ject 6D pose estimation problem. Inspired by the above

11065



domain transfer works, we also aim to learn domain invari-

ant features. Nevertheless, the key novelty of our work lies

in trying to address the lack-of-label problem for the 6D

pose estimation task on the target domain. To this end, we

propose a keypoint-graph-driven learning framework that

combines domain transfer and task optimation for object

6D pose estimation across domains. Specifically, a Domain

Adaptive Keypoints Detection Network (DAKDN) is used

to predict 2D keypoints of the object across domains. The

6D pose of the object can be computed using the predicted

2D keypoints by Perspective-n-Point(PnP) algorithm [16].

To make DAKDN learn the robust features that are domain

invariant and suitable for keypoint detection, we use both

synthetic images and unlabeled real images for training and

embed an adaptation layer into the network along with a

domain alignment loss based on maximum mean discrep-

ancy (MMD) [35]. To improve the correctness of keypoint

detection on real images, we explicitly transfer a domain-

invariant structure amongst keypoints from synthetic im-

ages to real images as a “bridge” constraint to optimize

DAKDN for 6D pose estimation across domains. Geome-

try relations between keypoints are irrelevant to real images

or synthetic images which is a domain-invariant structure.

Therefore, we represent the geometry relations as graphs

and train a graph convolutional network (GCN) [14] block

to model the structure of object keypoints from synthetic

images. Then the structure is transferred to the real images

as a constraint to guide DAKDN to correctly detect key-

points in real images. By jointly optimizing for domain in-

variance and structure prediction, the domain invariant fea-

tures can improve the accuracy of the GCN structure pre-

diction, and the GCN in turn guides the network to extract

suitable keypoint feature on the real image for pose estima-

tion. Experiments show that our method can achieve bet-

ter results than state-of-the-art approaches without manual

poses labels and competes with approaches that require real

manual poses labels images.

2. Related Work

In recent years CNN-based approaches are used to solve

6D pose estimation and have shown impressive results.

They use CNN to establish correspondences between the

poses of objects and images in different aspects. Some

methods [13, 39, 3, 4] directly predict the object pose to

establish the correspondence. Some keypoint-based ap-

proaches [27, 25, 34, 10, 26, 31, 42] build the correspon-

dence using sparse 2D keypoints on objects as an inter-

mediate representation for pose estimation. Some dense-

based methods [18, 24, 41] ascertain dense 2D-3D corre-

spondences rather than sparse ones. Though these methods

show great results in accuracy and run-time, they require a

large amount of manually labeled training data such as the

2D keypoints, masks, 6D poses of objects, and other ex-

tra labels, which are usually time-consuming and expensive

to create. Therefore, some works [33, 32, 12, 20, 41, 36]

have proposed to train on synthetic images rendered from

the 3D models of objects, yielding a great data source with

pose labels free of charge. Due to the statistical discrep-

ancy between synthetic and real images which is called do-

main shift. Directly training a model using only the source

domain data (i.e., synthetic images) often leads to over-

fitting, causing reduced performance when recognizing in

the target domain data (i.e., real images). Self6D [36] uti-

lizes synthetic images and real RGB-D images as training

data. Synthetic images are used to train the network for

6D pose estimation and mask prediction. RGB-D images

offer domain-independent properties that are used as con-

straints for self-supervised learning to enhance the perfor-

mance of 6D pose estimation on real images. Self6D [36]

highly depends on the mask prediction to locate the object

on RGB-D images, and the mask prediction is still trained

on the synthetic images. Although the physically-based ren-

dering can generate high-quality synthetic images to simu-

late real environments, the domain gap still exists and may

limit the performance of the mask prediction. Bridging the

domain gap between synthetic and real data is crucial for

improving the accuracy of the 6D pose estimation. Many

works tackle this problem by learning a transformation to

align the synthetic and real domains via Generative Adver-

sarial Networks (GANs) [1, 15, 40] or by means of fea-

ture mapping [28]. For example, [15] uses a cross-cycle

consistency loss based on disentangled representations to

embed images onto a domain-invariant content space and a

domain-specific attribute space. [28] maps the features of a

color-based pose estimator to a depth-based pose estimator.

Hinterstoisser [8] freezes the first layers of the network pre-

trained on a large dataset of real images, and proposes a data

generation pipeline to make rendered objects look realistic.

These methods align the data distributions of the different

domains from a certain metric without the optimization for

the pose estimation task on real images.

Different from these methods, we design a keypoint-

graph-driven learning framework for object pose estima-

tion. Our framework not only aligns the keypoint feature

on different domain images but also uses domain-invariant

keypoints structure to optimize the keypoint detection in

real images, which can enhance the performance of 6D pose

estimation across domains.

3. Method

Our objective is to solve the problem of deteriorated

performance in cross-domain 6D pose estimation. We in-

troduce a Domain Adaptive Keypoints Detection Network

(DAKDN) to predict the keypoints on objects and calcu-

late the 6D pose using Perspective-n-Point (PnP) algorithm.

Because the keypoints of objects have structures such as
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Figure 1. The overview of our proposed keypoint-graph-driven learning framework. Labeled synthetic and unlabeled real images are

used to train a Domain Adaptive Keypoints Detection Network (DAKDN) and a Graph Convolutional Network (GCN) block. We use the

different loss functions for synthetic images and real images separately. For synthetic images, we train DAKDN using a keypoints loss to

predict keypoints and train the GCN block using a classification loss to learn keypoint structure. For real images, we train DAKDN using

a structure loss computed by the GCN prediction structure score. In this way, the structure of keypoints is utilized to optimize keypoint

detection on real images. A domain alignment loss is used to minimize the domain feature distributions discrepancy between synthetic and

real images making DAKDN learn domain invariant features.

geometry relations that are domain-invariant, we transfer

the structure from the source domain to the target domain

as a constrain to train the network on the target domain.

Specifically, in the training stage, labeled synthetic images

and unlabeled real images are input to DAKDN as train-

ing data. The labeled synthetic images are used to train

DAKDN for keypoint detection by a keypoints loss. We

also train DAKDN using all images to minimize the domain

feature distributions discrepancy through a domain align-

ment loss. For improving the accuracy of the keypoint pre-

diction on real images, we employ a GCN block to learn a

domain-invariant keypoints structure classifier from labeled

synthetic images. The GCN block can predict a keypoints

structure score for the keypoints detected on real images to

further optimize the DAKDN. Figure 1 shows the overview

of our method.

3.1. Domain Adaptive Keypoints Detection Net­
work (DAKDN)

The main structure of DAKDN is showed in Figure 1.

DAKDN takes 256 × 256 RGB images as inputs and out-

puts a set of heatmaps, one per keypoint, with the intensity

of the heatmap indicating the confidence of the respective

keypoint to be located at this position. We use the HR-

Net [37] to extract keypoints features that can be replaced

with other popular keypoints detection networks. HRNet

contains parallel high-to-low resolution branches with re-

peated feature fusion to generates reliable high-resolution

features. The mainframe consists of four stages, and the

branches of each stage increase. In the fourth stage, it con-

tains 4 branches, and each branch fuses the multi-resolution

features produced by others. We use the output by the first

branch where the resolution is the highest of the last stages

for later operations. After the output of the HRNet, we add

a 1 × 1 convolution layer as the adaption layer to learn a

representation that minimizes the distance between the syn-

thetic images feature and real images feature distributions.

At last, two consecutive 1×1 convolution layers are applied

to produce the heatmaps and use a softmax function to con-

vert the heatmaps to probability distribution maps P (u, v),
where (u, v) is the 2D location in heatmaps. The expected

location of the i-th keypoint xi, yi can be computed by the

following equation

xi =
∑

u,v

⌊u · Pi(u, v)⌋, yi =
∑

u,v

⌊v · Pi(u, v)⌋ (1)

where P (u, v) is the probability distribution map for the

keypoint i and ⌊·⌋ is the floor operator.

To train DAKDN across domains, we input synthetic and

real images to DAKDN and employ different loss functions
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according to the inputs. For synthetic images, since they are

labeled with the keypoints of objects, DAKDN is trained in

a supervised way. We compare the predicted keypoints to

ground truth keypoints as keypoints loss Lkeypoints defined

as following.

Lkeypoints =
1

N

N∑

i=1

SmoothL1(x
p
i − x

gt
i ) (2)

in which N is the number of keypoints, x
p
i is the coordinates

of the ith predicted keypoint, x
gt
i is the coordinates of the

ith ground truth keypoint and SmoothL1 is defined as

SmoothL1 =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3)

A domain alignment loss Ldomain is used to minimize the

distance between the synthetic image feature and real image

feature distributions. Furthermore, for real images, a GCN

block is used as a classifier to output a keypoint structure

score and we compute a structure loss Lstructure using the

keypoint structure score to encourage predicted keypoints

from real images to satisfy the structure of certain object

keypoints. The total loss is defined as followed:

L = Lkeypoints + µLdomain + νLstructure (4)

Not only do we want to minimize the keypoints loss in the

source domain, but we want features that are domain in-

variant. Such features would enable us to learn a robust

keypoints detector that readily detects keypoints across do-

mains. The structure loss Lstructure can make DAKDN

reduce the geometry error of predicted keypoints on real

images. In the training phase, only the labeled synthetic

images are used to compute Lkeypoints and only unlabeled

real images are used to compute Lstructure while those im-

ages from both domains are used to compute Ldomain. In

the rest of this section, we will provide further details about

our domain alignment loss and structure loss.

3.2. Aligning domain shift

In this section, we describe the objective of our domain

alignment loss in detail. Because the domain shift be-

tween synthetic and real image features will cause deteri-

orated performance when detecting across domains, learn-

ing domain invariant features can improve the performance

in target domains. To learn domain invariant features on

synthetic and real images, we apply an adaption layer in

DAKDN and a domain alignment loss to minimize the dis-

tance between the synthetic image features and real image

feature distributions. We use the standard distribution dis-

tance metric, Maximum Mean (MMD) [35]. This distance

is computed with respect to a particular representation, φ(·).
In this case, we define the φ(·) a Gaussian kernel , which

operates on the features of synthetic images and real im-

ages. Because the Gaussian kernel can reflect data to infi-

nite dimensions to measure the distribution distance. Then

the MMD is computed as followed:

MMD(XS , XR)=

∥

∥

∥

∥

∥

∥

1

|XS |

∑

xs∈XS

φ(f(xs))−
1

|XR|

∑

xr∈XR

φ(f(xr))

∥

∥

∥

∥

∥

∥

(5)

where XS and XR are two batches of synthetic images

and real images. f(xs) and f(xr) are the output features of

adaption layer. Finally, we measure the domain alignment

loss by the MMD, i.e., Ldomain = MMD2(XS , XR). The

domain alignment loss reduces the discrepancy between the

feature distributions of the source and target domain to align

the domain shift, and encourages DAKDN to learn domain

invariant features.

3.3. Transferring structure

Besides aligning the domain shift to reduce the discrep-

ancy, we also want the learned features of real images are

suitable for the keypoint detection task. Therefore we fur-

ther excavate the domain-invariant structure amongst key-

points and use this as a constraint to optimize DAKDN on

real images. A GCN block is used to learn the domain-

invariant keypoints structure which is the geometry rela-

tions between keypoints for the following reasons. First, the

domain shift between synthetic and real images are aligned

through the adaption layer and domain alignment loss, but it

doesn’t guarantee the DAKDN is suitable for keypoints de-

tection on real images. Second, the geometry relations be-

tween keypoints are only related to the keypoint locations

which have the same structure in different domains. So

the geometry relations are domain-invariant, therefore the

geometry relations can be utilized as supervision informa-

tion to constrain the keypoint predictions across domains.

Last but not the least, the domain-invariant keypoints struc-

ture can be represented by graphs and GCNs can naturally

model the skeletal constraints between keypoints through

graphs. The structure can be learned from synthetic images

and transferred to the real images by a GCN block as a con-

straint to further optimize the network to detect keypoints

across domains. Based on these, we define a symmetric

adjacency matrix A ∈ R
N×N to represent the geometry re-

lations. N is the number of keypoints, Aij is the geometry

relationships of the corresponding keypoint i and keypoint

j. We also define X ∈ R
N×M to represent the keypoint

features. M is the dimension of keypoint features. A key

to our method is to build proper X and A so that the key-

point structure learned on synthetic images can refine the

DAKDN for the real images. We regard the keypoints per

image as a graph where each node represents a keypoint and

edges are the geometry relationships between the keypoints.
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Figure 2. Demon-

stration of the an-

gle and distance be-

tween node1 and

node2.

In this case, we define the geom-

etry relationships as Figure 2 shows.

The relationship between node 1

and node 2 is the angle α divided

by the distance between the cen-

ter points (black spot) and the line

(green line) connecting node 1 and

node 2. The angle divided by the

distance can be considered as a ge-

ometric representation which is in-

variant to the scale, rotation and ma-

terials of objects. In our experiment, we simply use the cen-

ter of the object bounding box as the center point of the

object. Following the definition, Aij is calculated by the

locations of keypoints xi and xj . The features of the node

are the value of corresponding node locations on the final

feature map output by the adaption layer.

We use a two-layer GCN for keypoints structure clas-

sification. We first calculate Â = D̃− 1

2 ÃD̃− 1

2 where

Ã = A+ IN , D̃ii =
∑

j Ãij . IN is a identity matrix. This

is for normalizing A to avoid numerical instabilities and ex-

ploding/vanishing gradients. Our forward model then takes

the simple form:

Z = f(X,A) = ÂReLU(ÂXW (0))W (1) (6)

where W (0) ∈ R
M×H is an input-to-hidden weight ma-

trix for a hidden layer with H units. W (1) ∈ R
H×F is a

hidden-to-output weight matrix. F is the output dimension

of node features. In our case, we set H = 128 and F = 64.

Z ∈ R
N×F is the high-order features of graphs extracted by

GCN block. Followed the GCN network, a fully connected

layer, and a softmax function is used to output p ∈ R
1×C ,

where C is the number of object classes. pc is the proba-

bility of the class c for the input graph. The GCN block is

trained by a classification loss to learn the structure of key-

points using labeled synthetic images. The classification

loss is a cross-entropy loss defined as

Lclass = −
1

[XS ]

∑

xs∈XS

C∑

c=1

ycxs
log(pcxs

) (7)

ycxs
is indicator variables (0 or 1). ycxs

= 1 indicates that

xs belongs to class c. pcxs
is the probability prediction of xs

for class c. Then we use the domain-invariant structure of

keypoints learned on synthetic images as supervision infor-

mation to constrain the keypoint predictions on real images.

Specifically, for real images, the GCN block is used as a

classifier to output a keypoint structure score that measures

whether the predicted keypoints satisfy the structure of the

input object class. Based on this, we design a structure loss

as followed:

Lstructure = −
1

|XR|

∑

xr∈XR

C∑

c=1

ycxr
log(pcxr

) (8)

ycxr
is indicator variables (0 or 1). ycxr

= 1 indicates that

xr belongs to class c. pcxs
is the probability prediction of

xr for class c. The form of Lclass and Lstructure are same.

But different from Lclass, Lstructure is used for synthetic

images to train the DAKDN to predict keypoints that satisfy

the structure of certain object class. For real images the

parameters of the GCN block is fixed and the gradients of

Lstructure are back propagated through Aij only updating

the DAKDN. This loss applies the structure as supervision

information to refine the DAKDN on real images.

3.4. Pose estimation

This section describes the process that computes a pose

using the output of the DAKDN. The DAKDN predicts the

2D keypoints that are the projections of the pre-defined ob-

ject’s 3D keypoints. We estimate the 6D pose from the cor-

respondences between the 2D and 3D points using the PnP

method. In our case, PnP uses only 8 keypoints correspon-

dences and provides an estimate of the 3D rotation R and

3D translation t of the object in camera coordinates.

4. Experiments

In this section, we first introduce the implementation de-

tails and data preparation. Afterward, we analyze the ef-

fectiveness of the domain shift aligning and GCN block

by different ablations. At last we evaluate our algorithm

in LINEMOD [7], OCCLUSION [2], HomebrewedDB [11]

and Crop LINEMOD [38] datasets and compare the results

with the state-of-the-art 6D pose estimation methods. Be-

fore the pose estimation, the center, width, and height of

each bounding box are predicted by an off-the-shelf object

detection network i.e., Faster R-CNN [30]. Then the re-

gion of the object are cropped and resized to the input size,

256× 256 px. We give the details and the evaluation of the

object detection network in the supplementary material.

4.1. Implementation details

We implement our method using the Pytorch deep learn-

ing framework. The training and evaluations are performed

with 8 Nvidia GTX 2080Ti GPUs and i7-6700K CPU. To

train our networks, for the DAKDN, we use the ADAM

solver with a learning rate of 2.5 × 10−4 and weight de-

cay of 5× 10−4 for 250k iterations with a batch size of 32.

For the GCN block, the learning rate is 0.001 and weight

decay is 5×10−4. For the multi-task loss function weights,

we empirically set µ to 0.5, and ν to 0.3.

Synthetic data generation Given 3D models of the objects,

first, we define the keypoints on the surface of them as pro-

posed in PVnet [26] where K keypoints are selected using

the farthest point sampling (FPS) algorithm. We use blender

[26] to render these 3D models from different camera view-

points to sufficiently cover the objects and project the key-

points to images under the viewpoints. We equidistantly
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sampled 40000 camera viewpoints around the half-sphere

above the objects with various distances. The object is ren-

dered at a random location in a randomly selected back-

ground image. To make the keypoints detection network

generalizes to different backgrounds and prevents it from

over-fitting to backgrounds during training, we choose im-

ages from PCASOL VOC dataset [5] as backgrounds. To

further augment the synthetic images, we use randomly per-

turbed light color and add image noise to the rendering. Be-

sides, we blur the object with a Gaussian filter to better inte-

grate the rendering with the background. We also compute

a tightly fitting bounding box using the object’s CAD model

and the corresponding pose. Other than blender-based syn-

thetic images, we also employ the photorealistic and physi-

cally plausible rendering procedure proposed in [9] to ren-

der images for training. The training data in experiments is

a mixture of both kinds of synthetic images.

Table 1. Ablation results on LINEMOD dataset.

Training data Backbone Modules Accuracy

Syn Real HRNet [37] SH [22] Adaption layer w/ G-info w/F-info Mean

X X 46.5

X X X X 51.8

X X X X X 50.4

X X X X X 53.4

X X X X X 55.3

X X X X X X 68.2

X X 31.3

X X X X X X 46.1

4.2. Datasets and Evaluation Metrics

We conduct our experiments on four public bench-

mark datasets LINEMOD [7], OCCLUSION [2], Home-

brewedDB [11] and Cropped LINEMOD [1]. They are

widely used for evaluating 6D pose estimation methods.

LINEMOD consists of 15 texture-less household objects

with discriminative color, shape, and size. Each object is as-

sociated with a test image set showing one annotated object

instance with significant clutter. Only 13 of the objects have

intact CAD models, so we choose the corresponding image

sequences. OCCLUSION is originated from LINEMOD,

where multiple object instances are annotated in each test

image with various levels of occlusion. Like self-6D [36],

we use the recent HomebrewedDB [11] dataset and employ

the sequence that covers three objects from LINEMOD to

evaluate our method in unseen environments. The training

data for our method contains synthetic images and real im-

ages. In LINEMOD and OCCLUSION dataset, we use the

same training/test splits as in YOLO 6D [34] and render

40000 synthetic images for each object as training data. For

the record, the real images for training are unlabeled. In

order to compare with other domain adaption methods for

6D pose estimation, we refer to the Cropped LINMODE

dataset [1] which consists of real images and synthetic im-

ages cropped from LINEMOD. We use the same train-

ing/test images in [1] where training images contain labeled

synthetic images and unlabeled real images and test images

only contain real images.

To evaluate the accuracy of the estimated pose, we use

two standard metrics for LINEMOD used in other related

paper [36, 41, 26] which are ADD and ADD-S (for sym-

metric objects). The estimated pose is considered correct

when the ADD(−S) is less than the 10% of the object’s

diameter.

4.3. Ablation Study

To analyze the effectiveness of the adaption layer and

the GCN block, in Table 1 we report the mean precision

of our method with different training data and modules on

LINEMOD dataset in terms of ADD metric. As shown in

Table 1, synthetic images are denoted as Syn, and real im-

ages are denoted as Real. Since the keypoints detection net-

work is alternative, we evaluate two widely used networks

i.e., HRNet [37] and Stacked Hourglass (SH) [22]. We also

illustrate the contribution of the GCN block using different

technical choices and compare them to other alternatives.

(a) We only use GCN to learn the geometry information

among keypoints i.e. replacing the feature matrix with an

identity matrix, which denoted as w/G-info. (b) We only

use GCN to learn the deep features information of keypoints

i.e. replacing the adjacency matrix of the GCN by a matrix

full of ones, which denoted as w/F-info. (c) We use GCN

to learn both the geometry information and deep features

information of keypoints.

First, we use HRNet as the backbone of DAKDN and

train the DAKDN without the adaption layer and Ldomain

on synthetic images only. Results show that the accuracy

of pose estimation is 46.5%. Secondly, we train the whole

DAKDN with both kinds of data, and the accuracy increases

from 46.5% to 51.8%. When we remove the adaption layer

and add the whole GCN block, the accuracy increase from

46.5 to 50.4%. Next, we evaluate the contribution of the

GCN block to DAKDN, the result shows that G-info and F-

into make the accuracy DAKDN increase 3.5% and 1.6%.

When employing our training framework, we can report a

significant improvement of almost 21.7% from 46.5% to

68.2%. The results show that both the adaption layer and

the GCN block can improve the accuracy. And compared

with using these two module separately, when we combine

them the improvement is significant. This is because com-

bining both modules has complementary advantages. The

domain adaption layer reduces the discrepancy of keypoints

deep features from two domains and improves the accuracy

of the GCN in structure prediction on real images. The

GCN block can further fine-tune the deep features of key-

points on the real image to improve the performance on pose

estimation. We also replace HRNet [37] with Stacked Hour-
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Table 2. The accuracies of our method and state-of-the-art methods on the LINEMOD dataset in terms of the ADD(-S) metric.

labels w/o manual pose labels w/ manual pose labels

Training data Syn Syn+Real Real

Method AAE [33] 1 MHP [20] 1 DPOD [41] Self6D [36] 1 Ours YOLO6D [34] DPOD PVNet [26] CDPN [18]

Ape 4.2 11.9 55.2 38.9 78.4 21.6 53.3 43.6 64.4

Bvise 20.9 66.2 72.3 75.2 79.7 81.8 95.3 99.9 97.8

Cam 32.9 22.4 34.8 36.9 48.3 36.6 90.0 86.9 91.7

Can 37.0 59.8 83.6 65.6 71.1 68.8 94.1 95.5 95.9

Cat 18.7 26.9 65.1 57.9 58.4 41.8 60.4 79.3 83.8

Drill 24.8 44.6 73.3 67.0 75.5 63.5 97.7 96.4 96.2

Duck 5.9 8.3 50.0 19.6 35.6 27.2 66.0 52.6 66.8

Eggbox 81.0 55.7 89.1 99.0 97.2 69.6 99.7 99.2 99.7

Glue 46.2 54.6 84.4 94.1 96.8 80.0 93.8 95.7 99.6

Holep 18.2 15.5 35.4 16.2 28.5 42.6 65.9 81.9 85.8

Iron 35.1 60.8 98.8 77.9 83.1 75.0 99.8 98.9 97.9

Lamp 64.2 - 74.3 68.2 76.8 71.1 88.1 92.4 97.9

Phone 36.3 34.4 46.9 50.1 57.5 47.7 71.2 86.3 90.8

Mean 32.6 38.8 66.4 58.9 68.2 56.0 83.0 86.3 89.9

glass [22] and test on LINEMOD. Compared with Stacked

Hourglass in synthetic image training, our framework im-

proves the accuracy increase from 31.3% to 46.1%. The

result shows that our framework can be used in other key-

point detection networks to improve the accuracy of estima-

tion across domains.

Table 3. The mean angle error on the Cropped LineMOD dataset.

Method PixelDA [1] Self6D [36] Ours

Mean Angle Error(◦) 23.5 19.8 17.6

Table 4. The Average Recall(%) on the HomebrewedDB dataset.

Method
SSD6D

+Ref [12]
DPOD [41] Self6D [36] Ours

Training data Syn Syn Syn+Real Syn+Real

Mean 32.7 43.37 59.7 63.8

4.4. Analysis on Object Detection and Keypoints
Graph Classification

We use Faster-RCNN [30] with Resnet-101 [6] back-

bone to crop the objects in images for 6D pose estima-

tion. We use generated synthetic images to train the net-

work. The mean average percentage of correct 2D bound-

ing boxes (IoU>0.5) of Faster-RCNN achieves 84.3% on

LINEMOD. We also evaluate the effect of GCN block in-

dependently on LINEMOD. We plot the predicted struc-

ture scores on the keypoints with different keypoints error

to analyze the effect of GCN. The keypoints error is defined

as mean Euclidean distance between predicted keypoints

and ground truth keypoints on real test images. We sort

the predicted keypoints according to the keypoints error and

divide the keypoints into 12 parts equally. Then we cal-

culate the mean of structure score and keypoints error of

keypoints in each part as a point in Figure 3. The result

demonstrates that when keypoints error increases, the pre-

dicted structure score of GCN will drop. This trend ensures

1The numbers of [33], [20] and [36] are average recall cited from their

papers. The numbers of other methods are average precision.

that the structure score can be used as a constraint to opti-

mize the keypoints detection network, i.e., the larger key-

points error will get the greater the loss to train DAKDN.

And compare the results before and after using the GCN

block to optimize the DAKDN in real images, we can see

from Figure 3 that the predicted keypoints keypoints error

reduce after optimization.
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Figure 3. The predicted structure scores on the keypoints with dif-

ferent keypoints error on LINEMOD

4.5. Single Object Pose Estimation

Percentages of correctly estimated poses in terms of

ADD on the LineMOD dataset are reported in Table 2. We

compare our method with state-of-the-art 6D pose estima-

tion methods (AAE [33], MHP [20], DPOD [41] Self6D

[36]) that use the synthetic images generated by 3D CAD

models and the methods (YOLD6D [34], DPOD [41],

PVNet [26], CDPN[18]) using real images with manual

3D annotations for training. The left-hand side of Table

2 reports the accuracy of methods trained on data with-

out manual 3D annotations. Our approach outperforms all

other approaches on most of the objects. Our keypoint-

graph-driven learning framework ensures that the perfor-

mance of our method outperform DPOD by 11.3%, though

DPOD improves its own performance using a post refine
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Table 5. The Average Recall(%) of our method and the baseline methods on the OCCLUSION in terms of the ADD(-S) metric.

labels w/o manual pose labels w/ manual pose labels

Training data Syn Syn+Real Real

Method DPOD [41] CDPN [18] Self6D [36] Ours YOLO6D [34] HMap [23] PVNet [26]

Mean 6.3 20.8 32.1 33.7 6.42 30.4 40.8

network. AAE [33], MHP [20] and Self6D [36] use aver-

age recall(%). To conduct a fair comparison, we calculate

the average recall, which is 60.4% with Faster-RCNN [30]

to detect objects in images. Our average recall is nearly 2

times better than AAE [33], and is better than MHP [20]

with 21.6%. Compared with self6D [36], our method is

slightly better than with 1.5%. It is worth noting that Self-

6D requires depth measurements with the real un-annotated

images while ours can work from RGB. These results show

the superiority of our method. It is attributed to aligning the

domain shift between synthetic and real images and learn-

ing the domain-invariant structure as a constrain to optimize

the network in real images. The right-hand side of Table 2

reports the accuracies of the methods trained on real images

with manual pose annotations. Our method can achieve bet-

ter results than YOLO6D [34] and still achieve close or even

better results in some object sequences.

Since our method aims to bridge the domain shift be-

tween synthetic and real data, we compare our method with

other domain adaptation techniques referring to the com-

monly used Cropped LineMOD scenario [1]. We report the

mean angle error on the test set. As shown in Table 3, our

method can successfully outperform other methods on the

real images and reduces the mean angle error to 17.6◦.

We also use the HomebrewedDB dataset to evaluate our

method in unseen environments and compare with Self6D,

DPOD and SSD6D [12] with refinement using [21]. Table 4

shows that our method outperforms SSD6D and DPOD by a

significant margin (31.1% and 21.5%) and slightly outper-

forms Self6D by 4.1%. Figure 4 provides a visual compar-

ison of ground truth poses versus predicted poses. Besides,

We show more experiments results using different metrics

and T-LESS dataset in supplementary materials.

4.6. Multiple Object Pose Estimation

Performance evaluation of the proposed method in cases

when the number of objects to detect increases and when se-

vere occlusions are conducted on the OCCLUSION dataset.

We use the model trained on the synthetic images for testing

on the Occlusion dataset and compare our method with the

three methods (DPOD [41], CDPN [18] and Self6D [36])

that do not require manual pose labels for training and three

methods (YOLO6D [34], HMap [23] and PVNet [26]) us-

ing manual pose labels for training. The average recall(%)

of pose estimation on the OCCLUSION dataset is reported

in terms of ADD(-S) as Table 5 showed. Our methods out-

performs DPOD by 27.4%, CDPN by 12.9% and Slef6D

by 1.6%. Compared with the methods using manual pose

labels that report average precision, the average precision

of our method is 38.7%, which outperforms YOLO6D by a

significant margin (32%) and outperforms HMap by 8.3%
and is comparable to PVnet. When we omit the GCN block,

the average recall drops to 12.5%. It indicates that our

method can handle occlusion because the structure of ob-

jects contains the geometry relations between keypoints and

is learned by the GCN block. When parts of objects are oc-

cluded, the keypoints on the unseen parts can be still pre-

dicted by other keypoints based on learned relations.

Figure 4. Qualitative results: Poses predicted with the proposed

approach on the LineMOD, the OCCLUSION and the Home-

brewedDB. Green bounding boxes represent ground truth poses

and blue bounding boxes represent predicted poses.

5. Conclusions

In this paper, we propose a keypoint-graph-driven learn-

ing framework for object pose estimation across domains.

We design DAKDN to predict the keyoints on objects and

calculate the 6D pose using PnP algorithm. To make

DAKDN robust to the domain shift, we employ a GCN

block to learn the domain-invariant keypoints structure from

synthetic images and transfer the structure to real images.

Experiments show that our method can achieve better re-

sults than state-of-the-art methods without manual poses la-

bels and competes with methods that require real manual

poses labels images.
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