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Abstract

Non-parametric face modeling aims to reconstruct 3D

face only from images without shape assumptions. While

plausible facial details are predicted, the models tend to

over-depend on local color appearance and suffer from

ambiguous noise. To address such problem, this paper

presents a novel Learning to Aggregate and Personalize

(LAP) framework for unsupervised robust 3D face model-

ing. Instead of using controlled environment, the proposed

method implicitly disentangles ID-consistent and scene-

specific face from unconstrained photo set. Specifically, to

learn ID-consistent face, LAP adaptively aggregates intrin-

sic face factors of an identity based on a novel curricu-

lum learning approach with relaxed consistency loss. To

adapt the face for a personalized scene, we propose a novel

attribute-refining network to modify ID-consistent face with

target attribute and details. Based on the proposed method,

we make unsupervised 3D face modeling benefit from mean-

ingful image facial structure and possibly higher resolu-

tions. Extensive experiments on benchmarks show LAP re-

covers superior or competitive face shape and texture, com-

pared with state-of-the-art (SOTA) methods with or without

prior and supervision.

1. Introduction

Monocular 3D reconstruction of human face is a long-

standing problem with potential applications including ani-

mation, biometrics and human digitalization. It is an essen-

tially ill-posed problem requiring strong assumption, e.g.,

shape-from-shading approaches [67]. With 3D Morphable

Model (3DMM) [4] proposed, the reconstruction can be

achieved through optimization on low-dimensional param-

eters [38, 37, 73]. Recently, deep neural networks are intro-

duced to regress 3DMM parameters from 2D images with

Target Image Unsup3D
64 x 64
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DF2Net
512 x 512

Ours
256 x 256

(a) Qualitative Comparison (b) Histogram of Parameter Difference

Figure 1. (a) Qualitative comparison between our method and Un-

sup3D [59] and DF2Net [65]. Our results show better shape of

organs with finer details and less noise. (b) Distribution of pa-

rameter difference in expression basis [5] between all single-ID

image pairs on face dataset [30, 61]. With the manually computed

threshold of 0.04, it reveals that quite amounts (about 70%) of im-

age pairs have similar expressions and non-rigid difference. Such

conclusion inspires us to approximate expressions by mean condi-

tions with reasonable relaxations, and learn a multi-image consis-

tent face without 3DMM prior. Better showed by zooming in.

supervision [71, 35, 9, 12, 28] or improve 3DMM with

non-linearity [49, 36, 51, 14, 48, 70]. Meanwhile, as these

single-view guided methods may suffer from 2D ambiguity,

other 3DMM-based works are proposed to leverage multi-

view consistency [53, 47, 62, 57, 2]. While 3DMM provides

reliable priors for 3D face modeling, it also brings potential

drawbacks: as built from a small amount of subjects (e.g.,

BFM [33] with 200 subjects) and rigidly controlled con-

ditions, models may be fragile to large variations of iden-

tity [72], and have limitations on building teeth, skin details

or anatomic grounded muscles [10].

Due to the aforementioned limitations, an alternative ap-

proach is learning to model 3D face without 3DMM as-

sumption, e.g., regressing face normal or depth directly

from an input image [18, 52, 42, 65, 1] with ground truth

scans and pseudo labels. Despite the efficiency of these

approaches, they cannot model facial texture or a canon-
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ical view without occlusion. Recent work Unsup3D [59]

uses a weakly symmetric constraint to disentangle a face

into intrinsic factors and accomplishes the canonical recon-

struction in unsupervised manner. In summary, these non-

parametric methods predict plausible facial structure via re-

construction or rendering loss [22]. However, without re-

liable 3DMM prior, they tend to suffer from ambiguity of

image appearance. As illustrated in Fig. 1(a), results of Un-

sup3D [59] and DF2Net [65] have coarse or inconsistent

shape of organs. Further, Unsup3D suffers from noise and

discontinuity when reproduced for higher-scale reconstruc-

tion (Unsup3D-re), which makes the resolution less valu-

able. Such phenomenon is due to improper disentangling

of albedo, illumination and geometry due to ambiguity of

image details and noises as discussed in [50, 24, 10]. On

top of these, we argue that predicting meaningful and con-

sistent facial structure is a key point of unsupervised non-

parametric 3D face modeling.

To achieve such goal, a better disentangling approach

could be: first modeling basic facial geometry and texture

of an identity, then adding specific attributes and details

for a target scene. Actually, basic facial structure is mainly

based on bones and anatomic grounded muscles of an iden-

tity, which can be enhanced by using 3DMM across un-

constrained image set against ambiguous noise [40, 8, 13].

However, multi-image clues are difficult to introduce for

non-parametric methods due to lack of shape topology. To

tackle this problem, we make two assumptions for image

collections: i) Besides the shape, the appearance of an iden-

tity due to basic facial structure, like winkles and occlusion

of illumination, are similar enough; ii) Non-rigid shape de-

formation (mainly about expression) among faces are with

limited extent. The first assumption has been demonstrated

by works of [40, 8, 13]. For the second one, we compare

the expression difference of all image pairs of photo sets in

datasets. By using released SOTA 3DMM based model [8],

we analyse the distribution of mean parameter difference

of image pairs on expression basis [5] in Fig. 1(b). With

the computed similarity threshold 0.04 from manually se-

lected 1k separate image pairs with similar/dissimilar ex-

pression, we observe that about 70% pairs are below the

threshold with mild non-rigid difference. Such conclusion

makes it possible to approximate expressions by mean con-

ditions with reasonable relaxations, and learn a multi-image

consistent face without 3DMM prior.

In this paper, we propose a novel Learning to Aggregate

and Personalize (LAP) framework for unsupervised non-

parametric 3D face modeling. LAP first aggregates consis-

tent face factors of an identity from in-the-wild photo col-

lection, and then personalizes such factors to reconstruct a

scene-specific face for a target image of the same ID. Con-

cretely, LAP decodes a pair of ID-consistent albedo and

depth by adaptively aggregating a global ID code from an

MI-Consistency Shape Assumption Supervision

[71, 35, 9, 12, 72] × 3DMM 3DMM paramter

[49, 36, 14, 51, 50, 48, 27] × 3DMM I

[47, 57, 2, 43] Constrained 3DMM I

[40, 8, 13] In-the-Wild 3DMM I

[18, 52, 1, 65] × No 3DMM parameter, 3D scan, I

[42, 39, 59] × No I

Ours In-the-Wild No I

Table 1. Comparison with selected existing method on different

settings. Constrained/In-the-wild means the condition of image

set, and I means image.

image set, and reconstructs a 3D face aligned to each input

image based on an estimated specific light and pose. Such

aggregation model is optimized by a curriculum learning

method with relaxed consistency loss, which helps to over-

come large facial variations and lack of pre-defined topol-

ogy. Moreover, to personalize a specific face, LAP modifies

ID-consistent face through an attribute-refining network for

modeling specific attributes and details. In this way, LAP

achieves disentangling of ID-consistent facial structure and

scene-specific local details in an unsupervised manner with-

out 3DMM shape assumption. With LAP framework, we

manage to model 3D face from arbitrary number of images,

or even single image in superior quality and higher resolu-

tion than State-of-the-Art (SOTA) methods.

In summary, this paper has contributions in followings:

i) We propose a novel Learning to Aggregate and Per-

sonalize (LAP) framework to disentangle ID-consistent and

scene-specific 3D face from multi or single image, without

3DMM assumptions in fully unsupervised manner.

ii) With a novel relaxed curriculum aggregation method,

LAP is able to predict ID-consistent face factors against

large facial variations of in-the-wild photo set.

iii) Based on the ID-consistent factors, LAP uses an

attribute-refining network to model scene-specific 3D face

with less noise and finer details of higher resolutions.

2. Related Works

In order to assess our contribution and illustrate contrast

between LAP and existing methods, we make a comparison

in Table 1. As illustrated, our method faces a more chal-

lenging setting, leveraging multi-image consistency from

in-the-wild photo set without shape assumption or GT.

Parametric Method: With 3DMM [4] proposed, 3D

face modeling can be formulated in a procedure of para-

metric optimization [38, 37, 73]. Recently, deep neural

networks are introduced to regress 3DMM parameter from

input image [71, 35, 9, 12, 72] by learning from gener-

ated ground truth. With neural rendering approach such

as [22], methods are proposed to leverage image reconstruc-

tion loss to train the model in weakly or un-supervised man-

ner [49, 36, 14], or improve 3DMM with more nonlinear

feasibility [51, 50, 48, 27, 6]. Besides single-view method,

multi-view based approaches [47, 62, 57, 2, 43] are pro-

posed to model 3D face more robustly. While these meth-
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ods are based on constrained conditions or video sequence,

they may suffer from limitations for applications. To tackle

this problem, methods [40, 8, 13] are proposed to use in-the-

wild photo collection to improve the robustness of predicted

facial shape. Although these approaches have similar moti-

vation to LAP, they are developed based on 3DMM assump-

tion. In contrast, LAP is proposed without such pre-defined

topology, thus faces a more challenging problem.

Non-Parametric Method: As an alternative direction,

3D face can also be modeled without 3DMM, e.g., using

Shape-from-Shading (SFS) method [67]. Recently, Sen-

gupta et al. propose SFS-Net [42] to predict intrinsic factors

from input images for modeling 3D faces. With the success

of deep neural networks, data-driven methods [52, 1, 18, 65]

are proposed to directly predict face geometry supervised

by real and synthetic ground truth. Despite the efficiency of

these approaches, they cannot model 3D geometry of full

head or facial textures. A more recent work Unsup3d [59]

uses weakly symmetric facial constrains to predict light,

pose and albedo/depth of canonical view from facial im-

age. Without 3DMM topology, these above non-parametric

methods may suffer from ambiguity of image appearance,

and predict facial geometry with incorrect details and noise.

In contrast, by disentangling a face into ID-consistent and

scene-specific factors, LAP models 3D face against such

ambiguity and with finer details and structure.

Feature Disentangling in Face Reconstruction: With

3DMM assumptions, methods [20, 58] can disentangle

faces into shapes, expressions and textures. For non-

parametric methods, SFS-Net [42] and Unsup3d [59] de-

compose a face into albedo, light, pose and normal. Be-

sides intrinsic decomposition, Deformation AutoEncoder

(DAE) [46, 39] disentangles a face into appearance and

deformation. Based on such framework, Xing et al. [60]

propose a probabilistic method to improve the deformable

geometry generation, and Li et al. [26] leverage videos to

urge a better facial action unit. Different from these meth-

ods, LAP disentangles a face into global facial structure and

scene-specific facial attribute without 3DMM prior from

unconstrained photo collection.

3. Preliminary

To predict 3D faces without 3DMM assumption, we

build our framework based on Unsup3D [59]. Given a

face image I, the framework disentangles it into four fac-

tors (d, a, ω, l) comprising a canonical depth map d ∈ R+,

a canonical albedo image a ∈ R
3, a global light direction

l ∈ S
2 and a viewpoint ω ∈ R

6. Each factor is predicted

by a separate network which we denote as Φd,Φa,Φω,Φl.

With these factors, the image I is reconstructed by lighting

Λ and reprojection Π as follows:

Î = Π(Λ(a, d, l), d, ω). (1)

Learning uses a reconstruction loss which encourages I ≈ Î

with a differentiable renderer [22]. To constrain a canonical

view of d and a to represent a full frontal face, the frame-

work uses a weakly symmetric assumption by horizontally

flipping:

Î
′ = Π(Λ(a′, d′, l), d′, ω), (2)

where a′ and d′ are the flipped version of a, d, and encour-

ages I ≈ Î
′. To allow probably asymmetric facial region,

the framework predicts confidence maps σ, σ′ ∈ R+ by Φσ

and calibrates the loss as follows:

L(Î, I, σ) = − 1

|Ω|
∑

ln
1√
2σ

exp−
√
2|Î− I|
σ

, (3)

where Ω is normalization factor. The flipped version

L(Î′, I, σ′) is also calculated. In this way, 3D faces are mod-

eled from images in unsupervised manner without 3DMM

assumption. Note that, as Unsup3D extremely depends on

single-image appearance, it cannot handle 2D ambiguity

such as salient local color difference and noise. In contrast,

LAP tackles this problem by further disentangling the face,

which will be discussed in the following.

4. Methodology

In this section, we mainly describe the proposed Learn-

ing to Aggregate and Personalize (LAP) 3D face method.

With a photo collection of a same identity, our aim is to ac-

complish a further disentangling: first modeling basic facial

geometry/texture based on consistent facial structure, and

then modifying it to personalized attributes and details. As

illustrated in Fig. 2, such disentangling is achieved by two

steps: Learning to Aggregate (in Sec. 4.1) and Learning to

Personalize (in Sec. 4.2), without 3DMM priors.

4.1. Learning to Aggregate

As discussed in Sec. 1, appearance of an identity due

to basic facial structure should be consistent across differ-

ent images, and image collections contain limited non-rigid

variation. Inspired by these facts, we propose depth/albedo

aggregation network to adaptively aggregate facial factors

from a photo collection and learn ID-consistent geome-

try/texture, and use such consistent factors to reconstruct

each input image. We also propose a curriculum learning

approach with relaxed consistency loss to suppress large fa-

cial variations for stable learning.

Aggregation Network: As illustrated in Fig. 2, the ag-

gregation network has a shared encoder δ across multiple

images and a global decoder φ for predicting consistent

face. For modeling albedo and depth, we use two sepa-

rate aggregation networks denoted as Φa = (δa, φa) and

Φd = (δd, φd). Given a photo collection of N images

{Ik
i
}N
i=1 where k is the index of identity (omitted in the

following for simplification), we feed each Ii into δa, δd
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...

Aggregation	Net	(Sec.	4.1)

Relaxed	Consistency
Loss	(Eqn.	5)

ac

nc	←	dc

Attribute
Injection

Attribute	Refining	Net	(Sec.	4.2)

at

nt	←	dt

Learning	to	Aggregate Learning	to	Personalize

Photo	Collection
of	a	Same	ID

Adaptive
Aggregation

Filtered		Connection

Rendered	Images

Reconstruction	using
Eqn.	1,	2

Reconstruction
Loss	(Eqn.	3)

...

...

ID-consistent
Prediction

Scene-sepcific
Prediction

Figure 2. Overview of the proposed framework. Training is first conducted on Learning to Aggregate (Sec. 4.1) for modeling ID-consistent

face, and then on Learning to Personalize (Sec. 4.2) for predicting scene-specific face aligned to the target image. δa, δd and φa, φd

are the encoder and decoder of albedo/depth aggregation network. δta, δtd and ϕa, ϕd are the encoder of attribute injection module and

attribute-refining network. The flipped operation and networks Φω,Φl,Φσ for predicting pose, lighting and confidence are omitted.

to get texture and geometry latent code x
a
i
,xd

i
. Different

from the encoder in [59], to get multi-level information, we

downsample the feature of each scale through a convolu-

tional layer with average pooling to a vector, and fuse the

vectors through concatenation and a convolutional layer to

get xa
i
,xd

i
∈ [1, 1, c]. To learn a global representation of

the identity based on {xa
i
,xd

i
}N
i=1, inspired by [29, 45], we

propose an adaptive aggregation method. Due to the qual-

ity of {Ii}Ni=1, the importance of each dimension in x
a
i
,xd

i

which reveals how correlated it is to the identity, is supposed

to be different. Hence, we first learn channel-wise weights

w
a
i
,wd

i
∈ [1, 1, c] to represent the importance, and use soft-

max function to normalize them into {w̄a
i
}N
i=1, {w̄d

i
}N
i=1.

Then the aggregation can be formulated as:

x
a

c =
N∑

i=1

w̄
a

i · xa

i , x
d

c =
N∑

i=1

w̄
d

i · xd

i , (4)

where x
a
c ,x

d
c are the combined global ID-code for tex-

ture and depth. Compared with naive average fusion, such

adaptive aggregation method encourages the ID-correlated

features to get larger weights in w̄
a
i
, w̄d

i
, thus the fused

code x
a
c ,x

d
c can better represent the consistent features of

the identity (see Fig. 5). Next, we feed x
a
c ,x

d
c to the

decoder φa, φd to get ID-consistent albedo ac and depth

dc. With ωi, li predicted by Φω(Ii),Φ
l(Ii) from each in-

put image, we can reconstruct rendered image Îi, Î
′
i

using

Eqns. 1, 2. Then multi-image consistency is achieved by

calculating Eqn. 3 between rendered and original images,

which enhances ID-consistent facial structure in ac, dc and

suppresses possibly ambiguous noise in each input image.

Curriculum Learning: As illustrated in Fig. 2, in-the-

wild photo collection has different conditions on expres-

sion, make-ups, skins and noise, thus directly using such

Figure 3. Easier samples generated by Interface-GAN [44] pre-

trained on FFHQ dataset [21].

photo collection for training urges corrupt ac, dc or even

totally fails to find correspondence (see Fig. 5) without

3DMM pre-defined topology. This motivates us to perform

a curriculum learning procedure [3, 17], i.e., training from

easier samples to in-the-wild collections. A simple way is

to use facial videos such as voxceleb [32] in constrained

condition, but it may also have drawbacks: the quality of

videos and various pose variations cannot be guaranteed.

In contrast, we use a controllable GAN [44] to generate

photo collections. As illustrated in Fig. 3, the generated

samples have different poses and consistent facial structure

with high quality and mild variation. To keep the ID con-

sistency of generated images, we use Arcface [7] to filter

out samples with cosine-similarity lower than 0.6 compared

with the frontal face image. Note that, we do not expect

the samples to have exactly same identity, but only simi-

lar facial structure which is sufficient enough for model to

learn 3D correspondence. We generate images of 15 differ-

ent poses from 30k different identities, with resolution of

1024× 1024 to benefit a better learning.

Relaxed Consistency Loss: To further urge a stable

training procedure, we propose a Relaxed Consistency Loss

(RCL) to relax the most uncertain facial region in different

conditions. We first train a BiSeNet [63] on CelebAMask-

HQ dataset [25] for face parsing, and then define the visible

facial region and background with constant 1 and 0 to get
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an attention mask M. As mouth, eyes and brow are more

probably inconsistent compared to other regions across dif-

ferent conditions, we set these parts in M with lower value

(e.g., 0.3) to get a new attention mask Mre. Then the RCL

can be formulated as:

LRCL(Îi, Ii, σi) = − 1
|Mre|

∑
ln 1√

2σ
exp−

√
2|Mre·(Îi−Ii)|

σi

.

(5)

Note that, although the confidence σ, σ′ model the un-

certainty to some extent, our RCL provides a certain and

stronger constraint. Furthermore, for the extremely hard

sample such as image with low quality, large occlusion and

extreme lighting, the parsing model tends to predict a cor-

rupt facial region which is much smaller than background,

which helps us to naturally filter out such samples for sta-

ble learning. In this way, the aggregation network can learn

valuable consistent feature against inconsistency.

4.2. Learning to Personalize

As illustrated in Fig. 2, while the learned ID-consistent

albedo and depth have basic facial structure, they lack

details and attribute (e.g., teeth and expression) aligned

to a target image It ∈ {Ii}Ni=1. Hence, we propose

attribute-refining network to modify (ac, dc) to scene-

specific (at, dt), which is achieved via attribute injection

and filtered connection.

Attribute Injection: Attribute injection module has en-

coder δta, δtd to extract albedo/depth attribute information

from target image It, and uses such information to guide

the modifying. Denote the encoder of attribute refining

network as ϕa, ϕd for encoding ac, dc respectively, a di-

rect embedding approach is to fuse features of δta, ϕa and

δtd, ϕd. However, such method brings two problems: Em-

bedding too many low-level features of δta, δtd which are

spatially aligned to It and rendered output Ît, urges ϕa, ϕd

to ignore meaningful canonical texture/geometry informa-

tion and degrades to trivial pure texture auto-encoder; Em-

bedding too less feature (e.g., only the highest-level fea-

ture vector) loses necessary details of predictions. On top

of these, we propose a balancing approach with selecting

mechanism. Firstly, we only inject features of last three

levels (i.e., features with height/width of 8 × 8, 4 × 4 and

1× 1) of δta, δtd; then, we learn a channel-wise weight for

each level of feature to select valuable information, and fuse

the re-weighted feature with corresponding one in ϕa, ϕd.

In this way, we inject moderate attribute information from

It to guide a finer prediction (see Fig. 6).

Filtered Connection: To modify ac, dc to at, dt, the net-

work needs to manipulate facial regions (e.g., mouth, eyes

and cheek) which are different to target image, meanwhile

suitably keep the structure of unchanged parts. Inspired

by works of face editing [34, 66], we propose a Filtered

Connection module to achieve such goal. As illustrated in

Fig. 4, we firstly combine the features of encoder (yellow

.Conv Attention
Map

Spatial
Concat

Spatial
Concat Conv

Feature	of	Encoder

Feature	of	Decoder

Figure 4. Illustration of the proposed Filtered Connection in at-

tribute refining network.

block) and decoder (green block) to learn a spatial attention

mask A ∈ [h,w, 1] through convolution and sigmoid func-

tion, and then filter the feature by multiplying A and con-

catenate it to decoder. In this way, the changed regions of

ac, dc are suppressed by lower weight in A, while informa-

tion of unchanged parts is propagated to the decoder. After

getting at, dt, we use ωt, lt predicted from It to reconstruct

the output Ît. The learning to personalize framework is then

optimized by using Eqn. 3 and its flipped version.

4.3. Training and Inference

Training mainly contains three steps: firstly train

Φω,Φl,Φσ and the aggregation network (δa, φa), (δd, φd)
using Eqn. 5; then freeze them and train attribute-refining

network using Eqn. 3; finally jointly fine-tune all the net-

works for finer predictions. During each training stage, we

select image set of a same identity with random size (from 1

to 6) as the input of aggregation network. Besides loss func-

tions in Eqns. 3, 5, we also use the same perceptual loss as

[59]. For back-propagation, we use the differentiable ren-

derer [22]. For inference, using random size of image set

or single image (i.e., only the target image) as input, the

framework models 3D face for a target image.

5. Experiment

5.1. Setup

Dataset: We train our method mainly on the generated

synthetic dataset (in Sec. 4.1), CelebA [30] and CASIA-

WebFace [61]. To get photo collection of a same identity,

we organize CelebA and CASIA-WebFace using ID-labels

and keep identities with at least 6 photos. In this way, we get

16k different identities with 600k real face images, and se-

lect images of 12k/2k/2k identities as train/val/test set. For

evaluation on facial geometry, following [59, 1], we per-

form testing on 3DFAW [15, 19, 68, 69], BFM [33] and

Photoface [64] dataset. 3DFAW contains 23k images with

66 3D keypoint annotations, and we use the same protocol

as [59] to perform testing. For BFM dataset, we use the

same generated data released by [59] to evaluate predicted

depth maps. Photoface dataset contains 12k images of 453

people with face/normal image pairs, and we follow the pro-

tocol of [42, 1] for testing. For evaluation on modeled tex-

ture, we perform fine-tuning and testing on CelebAMask-

HQ [25] dataset which contains 30k real human facial im-
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ages with high resolution (1024×1024). We organize it into

24k different identities using groundtruth ID-labels, and

randomly select 20k/1k/3k identities as train/val/test set.

Implementation Details: We use the same architecture

of Φω,Φl,Φσ as [59] to predict pose, light and confidence.

Aggregation and attribute-refining network has the same

encoder-decoder backbone as [59] to predict albedo and

depth, respectively. As described in Sec. 4.3, we first train

aggregation network and Φω,Φl,Φσ for 50 epochs on the

proposed synthetic dataset, and then continue training on

real photo sets for 50 epochs. Then we freeze them and train

attribute-refining network for 100 epochs. Finally we fine-

tune all the networks for 50 epochs. Training procedure has

a batch size of 64 identities and learning rate of 1e− 4 with

Adam solver [23] on one NVIDIA Tesla V100 GPU. We use

image set of 128× 128 as input of aggregation network and

get the prediction ac, dc of the same size. For scene-specific

face, we train different attribute-refining networks accord-

ing to the size of target image (64×64, 128×128, 256×256)

and get the prediction at, dt of that size. More details can

be found in supp-material.

Evaluation Protocol: As our method can model 3D

face for target image using photo set or single image, with-

out special statement, we use single-image results to fairly

compare with other methods. For predicted facial geome-

try, following [1, 59], we use Scale-Invariant Depth Error

(SIDE) [11] and Mean Angle Deviation (MAD) for evalu-

ating depth and normal. For evaluation on modeled texture,

we calculate Structural Similarity Index (SSIM) [56] and

cosine-similarity of encoded representation of Arcface [7]

between original high-quality images and rendered ones.

5.2. Ablation Study

In this section, we perform experiments to analyse the ef-

fect of our method. To fairly compare with [59], we use the

exact same network architecture as our method to build the

model and train it using the same dataset but without multi-

image consistency. We denote such reproduced model as

Unsup3D-re. As original model of [59] has outputs of low

resolution (64×64), Unsup3D-re can make valuable com-

parison on modeling ability of higher resolution.

Comparison with Baselines on Geometry: In Table

2 we make comparisons on different baselines and setups.

Each model is trained on CelebA and CASIA-WebFace and

then fine-tuned on BFM dataset. ‘No-ft’ means the model

without fine-tuning. ‘W/o adaptive aggregation’ means us-

ing average fusion to fuse latent codes. ‘W/o attribute in-

jection’ means only using feature vector of the highest level

to inject target attribute without selecting. Methods with

flag ‘-128’ or ‘-256’ mean the output size is 128× 128 and

256× 256, while other methods have an output of 64× 64.

As illustrated, Rows (1)-(6) reveal that our method has bet-

ter ability on specialization and generalization, and outper-

No. method SIDE (×10−2) ↓ MAD (deg.) ↓

(1) Ours-full 0.721±0.128 15.53±1.42

(2) Unsup3D [59] 0.793±0.140 16.51±1.56

(3) Unsup3D-re 0.785±0.152 16.44±1.63

(4) Ours no-ft 1.102±0.205 20.75±2.06

(5) Unsup3D [59] no-ft 1.295±0.233 21.84±2.56

(6) Unsup3D-re no-ft 1.232±0.218 21.40±2.31

(7) w/o curriculum learning 2.011±0.570 23.07±2.88

(8) w/o RCL 0.738±0.135 15.66±1.50

(9) w/o adaptive aggregation 0.764±0.142 16.21±1.76

(10) w/o filtered connection 0.725±0.139 15.33±1.58

(11) w/o attribute injection 0.750±0.157 16.01±1.20

(12) Ours-full-128 0.708±0.121 15.42±1.38

(13) Ours-full-256 0.703±0.137 15.30±1.26

(14) Unsup3D-re-128 0.828±0.166 18.37±1.82

(15) Unsup3D-re-256 0.930±0.182 19.79±1.95

Table 2. Comparison with Different Baselines and Settings.

Input 
Image Set

w/o 
Curriculum 
Learning

w/o 
Adaptive 

Aggregation

w/o 
RCL Eqn. 5 Ours Full

Figure 5. Predicted ID-consistent Face under Different Settings.

We show canonical albedo and depth to make comparisons.

Target Image Full Injection Feature Vector 
Injection

Selective Injection 
(Sec. 4.2)

Figure 6. Comparison on predicted target facial geometry between

baselines and our selective method in attribute injection module.

forms Unsup3D [59] under the same settings. Rows (7)-

(11) reveal the effect of each component of our methods,

and demonstrate each of them contributes to the final pre-

diction. Rows (1, 3) and (12)-(15) show the ability on mod-

eling faces of higher resolution, which is more challenging

due to more complex information on 3D space. The results

demonstrate our method has more robust predictions when

the resolution increases, while Unsup3D gets obvious per-

formance decline. The above comparisons well support the

effectiveness of our method.

Qualitative Comparison: We first compare the pre-

dicted ID-consistent face under different settings in Fig. 5.

As illustrated, the aggregation network cannot learn reason-

able basic facial geometry without our curriculum learn-

ing method. Meanwhile, without adaptive aggregation or

RCL, the learned ID-consistent depth and albedo are noisy

and suffer from ambiguity. In contrast, our full method

can model consistent geometry/texture with feature of the

identity from the input image set with obvious higher qual-

ity. Secondly, we compare different injection methods de-

scribed in Sec. 4.2 in Fig. 6. As illustrated, injecting full

features of target image produces flat and over-smooth ge-

ometry, and injecting only the feature vector leads to coarse

details. In contrast, our selective injection method models
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(a) Performance with Different
Size of Photo Collection

(b) ID-Consistent Canonical
Albedo and Normal

Figure 7. Quality of prediction with different size of photo col-

lection. (a) The quality of modeled texture on CelebAMask-HQ

dataset. (b) Predicted ID-consistent face, the image with red frame

is the one used for single-input model (Unsup3D-re and Ours-1).

Method Depth Corr. ↑ Time (ms)

Ground Truth 66 -

AIGN [55] (supervised) 50.81 -

DepthNetGAN [31] (supervised) 58.68 -

MOFA [49] (3DMM based) 15.97 -

DepthNet [31] 35.77 -

Unsup3D [59] (CelebA pre-trained) 54.64 0.6

Unsup3D-re 55.83 2.0

Ours 57.92 2.0

Table 3. 3DFAW keypoint depth evaluation of different methods.

target facial geometry with superior details.

Multi vs. Single: We analyse the effect of photo col-

lection size, i.e., the N in {Ii}Ni=1. We fine-tune the model

on CelebAMask-HQ and evaluate the cosine-similarity and

SSIM between It and rendered Ît in Fig. 7(a). The model

predicts target 3D face of 256 × 256, and we calculate

SSIM on the same size in facial region. To compute cosine-

similarity, we halve the rendered and target image and feed

them into the pre-trained Arcface model after alignment for

the requirement. As rendered image of ID-consistent face

may have different expressions, we only compute cosine-

similarity to analyse the predicted ID-feature. As illus-

trated, the quality of ID-consistent face increases with the

size of image set, and this also contributes to better scene

specific prediction. Such phenomenon demonstrates that

the aggregated ID-consistent feature is crucial for high-

quality modeling. Further, the quality of modeled texture is

similar with 1 or 2 input images, but gets obvious increment

with more images. This is due to the sufficiency of comple-

mentary information. The increment becomes lighter from

5 to 6, which reveals an potential upper bound. Qualitative

results are shown in Fig. 7(b). Unsup3D-re fails to model

reasonable face due to large pose and dis-alignment, while

our single-input model (Ours-1) predicts robust results by

learning constraint of multi-image consistency. With more

input photos, the predictions get better performance.

5.3. Comparison with the StateoftheArt

Analysis on geometry. We first evaluate the geometry

of our predicted 3D face on 3DFAW dataset. To make fair

comparison, following [59], we use the 2D keypoint loca-

tions to sample our predicted depth and calculate the depth

MAD ↓ < 20◦ ↑ < 25◦ ↑ < 30◦ ↑

Pix2V [41] 33.9±5.6 24.8% 36.1% 47.6%

Extreme [54] 27.0±6.4 37.8% 51.9% 47.6%

FNI [52] 26.3±10.2 4.3% 56.1% 89.4%

3DDFA [71] 26.0±7.2 40.6% 54.6% 66.4%

SfSNet [42] 25.5±9.3 43.6% 57.5% 68.7%

PRN [12] 24.8±6.8 43.1% 62.9% 74.1%

DF2Net [65] (GT) 24.3±5.7 42.2% 62.7% 74.5%

D3DFR [8] 23.5±6.1 46.1% 61.8% 73.3%

Cross-Modal [1] (GT) 22.8±6.5 49.0% 62.9% 74.1%

Ours 23.0±5.1 48.2% 63.1% 74.9%

SfSNet-ft [42] 12.8±5.4 83.7% 90.8% 94.5%

Cross-Modal-ft [1] (GT) 12.0±5.3 85.2% 92.0% 95.6%

Ours-ft 12.3±4.5 84.9% 92.4% 96.3%

Table 4. Facial Normal Evaluation on Photoface Dataset.

Method Cosine-similarity ↑ SSIM ↑

Unsup3D [59] (64×64) 0.622 0.514

Unsup3D-re (256×256) 0.651 0.542

D3DFR [8] 0.398 0.335

Ours ID-consistent (128×128) 0.643 -

Ours (64×64) 0.695 0.618

Ours (128×128) 0.697 0.620

Ours (256×256) 0.692 0.623

Table 5. Quality of Rendered Image on CelebAMask-HQ.

correlation score [31] on frontal faces. As illustrated in Ta-

ble 3, our method obviously outperforms AIGN, DepthNet

and MOFA. For Unsup3D, our method also shows superior-

ity. Though Unsup3D-re uses our architecture and dataset

(CelebA and CASIA-Webface) for training and slightly

improves the performance, our method gets further supe-

rior result which are closer to fully supervised approach.

Inference time of our model is slightly slower than Un-

sup3D [59], but our method outperforms Unsup3D-re with

the same time burden which demonstrate our implementa-

tion is efficient enough.

We then evaluate predicted facial geometry on Photoface

dataset. Following [1], we transform our predicted facial

depth to normal map and resize it to 256 × 256 in order to

compute MAD with ground truth. Results are illustrated

in Table 4, where ‘-ft’ means fine-tuning on Photoface.

Our method outperforms most of the approaches and shows

good generalization results. For Cross-Modal approach [1],

our method gets competitive results with or without fine-

tuning. Note that, the training procedure of [1] utilizes

ground truth normal of 3D-scan which is crucial for under-

standing face geometry, while our model is fully unsuper-

vised thus confronts more challenging conditions. These

results demonstrate the effectiveness of our method.

Qualitative results are illustrated in Fig. 8. Note that Un-

sup3D has a limited size of output (64×64) and suffers from

heavy noise when modeling larger output of 256×256 by

our reproduced model (Unsup3D-re), while our method gets

obvious superior results on the same resolution. Compared

with non-parametric approaches [65, 59], our method ob-

tains obviously better shape of organs in rows (1), (2) and

(3). In rows (2) and (4), our method shows robustness on

large pose and artifacts, and suffers from less ambiguity.

Compared with 3DMM based methods [8, 16], our results

have finer details and recovers better geometric correctness.
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Target	Image Ours Unsup3D Unsup3D-re DF2Net D3DFR 3DDFA	v2

(1)

(2)

(3)

(4)

Figure 8. Qualitative results on predicted geometry. We compare our method with Unsup3D [59], DF2Net [65], D3DFR [8] and 3DDFA

v2 [16], and the predictions are reproduced with their released code and pre-trained model. Unsup3D-re means our reproduced model with

higher resolution. We use single input for our method to make fair comparison.

Target	Image Ours Unsup3D-re D3DFRUnsup3D

Figure 9. Qualitative Comparison on Rendered Image.

Analysis on Texture. We then analyse our modeled tex-

ture on high-quality CelebAMask-HQ dataset. We cover

the target image with the modeled texture as the rendered

image and use pre-trained Arcface [7] to compute consine-

similarity. SSIM are only computed in facial region. We

only compare our single-input results for fairness. As illus-

trated in Table 5, the rendered images of our method obtains

the best performance. Note that, our ID-consistent predic-

tions also get good consine-similarity, which reveals they

aggregate reasonable features of target identities. Qualita-

tive results can be viewed in Fig. 9, and our results have

better perceptual quality.

6. Conclusion and Future Work

In this paper we propose a novel Learning to Aggre-

gate and Personalize (LAP) framework for 3D face mod-

eling without 3DMM prior or supervision. Based on sta-

tistical conclusion that non-rigid shape deformation is lim-

ited in face datasets, LAP adaptively aggregates consistent

facial depth and albedo from in-the-wild photo collection,

and learns multi-image consistency through a novel curricu-

lum learning method with relaxation. For a face in spe-

cific scene, LAP personalizes the consistent face factors by

attribute-refining network, improving finer details and at-

tribute. Extensive experiments on benchmarks demonstrate

LAP well leverages multi-image consistency and predict su-

perior facial shape and texture. In the future, we may target

on modeling 3D face on even higher resolution with real-

ity, and leveraging unconstrained multi-image consistency

by explicit algorithm beyond statistical assumption. 1

1Acknowledgement: We thank the support from members of Tencent

Youtu Lab for discussing and improving the ideas.
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Theobalt. Self-supervised multi-level face model learning

for monocular reconstruction at over 250 hz. In CVPR, pages

2549–2559, 2018. 1, 2

[49] Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo

Garrido, Florian Bernard, Patrick Perez, and Christian

Theobalt. Mofa: Model-based deep convolutional face au-

toencoder for unsupervised monocular reconstruction. In IC-

CVW, pages 1274–1283, 2017. 1, 2, 7

[50] Luan Tran, Feng Liu, and Xiaoming Liu. Towards high-

fidelity nonlinear 3d face morphable model. In CVPR, pages

1126–1135, 2019. 2

[51] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable

model. In CVPR, pages 7346–7355, 2018. 1, 2

[52] George Trigeorgis, Patrick Snape, Iasonas Kokkinos, and

Stefanos Zafeiriou. Face normals in-the-wild using fully

convolutional networks. In CVPR, pages 38–47, 2017. 1,

2, 3, 7

[53] Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard

Medioni. Regressing robust and discriminative 3d mor-

phable models with a very deep neural network. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 5163–5172, 2017.

1

[54] Anh Tuan Tran, Tal Hassner, Iacopo Masi, Eran Paz, Yuval

Nirkin, and Gérard Medioni. Extreme 3d face reconstruc-

tion: Seeing through occlusions. In CVPR, pages 3935–

3944, 2018. 7

[55] Hsiao-Yu Fish Tung, Adam W Harley, William Seto, and

Katerina Fragkiadaki. Adversarial inverse graphics net-

works: Learning 2d-to-3d lifting and image-to-image trans-

lation from unpaired supervision. In ICCV, pages 4364–

4372, 2017. 7

[56] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibility

to structural similarity. TIP, 13(4):600–612, 2004. 6

[57] Fanzi Wu, Linchao Bao, Yajing Chen, Yonggen Ling, Yibing

Song, Songnan Li, King Ngi Ngan, and Wei Liu. Mvf-net:

Multi-view 3d face morphable model regression. In CVPR,

pages 959–968, 2019. 1, 2

[58] Rongliang Wu and Shijian Lu. Leed: Label-free expression

editing via disentanglement. In ECCV, pages 781–798, 2020.

3

[59] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.

Unsupervised learning of probably symmetric deformable 3d

objects from images in the wild. In CVPR, pages 1–10, 2020.

1, 2, 3, 4, 5, 6, 7, 8

[60] Xianglei Xing, Tian Han, Ruiqi Gao, Song-Chun Zhu, and

Ying Nian Wu. Unsupervised disentangling of appearance

and geometry by deformable generator network. In CVPR,

pages 10354–10363, 2019. 3

[61] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learn-

ing face representation from scratch. arXiv preprint

arXiv:1411.7923, 2014. 1, 5

[62] Jae Shin Yoon, Takaaki Shiratori, Shoou-I Yu, and Hyun Soo

Park. Self-supervised adaptation of high-fidelity face models

for monocular performance tracking. In CVPR, pages 4601–

4609, 2019. 1, 2

1014223



[63] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-

tion network for real-time semantic segmentation. In ECCV,

pages 325–341, 2018. 4

[64] Stefanos Zafeiriou, Mark Hansen, Gary Atkinson, Vasileios

Argyriou, Maria Petrou, Melvyn Smith, and Lyndon Smith.

The photoface database. In CVPRW, pages 132–139, 2011.

5

[65] Xiaoxing Zeng, Xiaojiang Peng, and Yu Qiao. Df2net: A

dense-fine-finer network for detailed 3d face reconstruction.

In ICCV, pages 2315–2324, 2019. 1, 2, 3, 7, 8

[66] Gang Zhang, Meina Kan, Shiguang Shan, and Xilin Chen.

Generative adversarial network with spatial attention for face

attribute editing. In ECCV, pages 417–432, 2018. 5

[67] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and

Mubarak Shah. Shape-from-shading: a survey. IEEE Trans.

Pattern Anal. Mach. Intell., 21(8):690–706, 1999. 1, 3

[68] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Cana-

van, Michael Reale, Andy Horowitz, and Peng Liu. A

high-resolution spontaneous 3d dynamic facial expression

database. In IEEE International Conference and Workshops

on Automatic Face and Gesture Recognition (FG), pages 1–

6, 2013. 5

[69] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan,

Michael Reale, Andy Horowitz, Peng Liu, and Jeffrey M Gi-

rard. Bp4d-spontaneous: a high-resolution spontaneous 3d

dynamic facial expression database. Image and Vision Com-

puting, 32(10):692–706, 2014. 5

[70] Yuxiang Zhou, Jiankang Deng, Irene Kotsia, and Stefanos

Zafeiriou. Dense 3d face decoding over 2500fps: Joint tex-

ture & shape convolutional mesh decoders. In CVPR, pages

1097–1106, 2019. 1

[71] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and

Stan Z Li. Face alignment across large poses: A 3d solu-

tion. In CVPR, pages 146–155, 2016. 1, 2, 7

[72] Xiangyu Zhu, Fan Yang, Chang Yu Di Huang, Hao Wang,

Jianzhu Guo, Zhen Lei, and Stan Z Li. Beyond 3dmm space:

Towards fine-grained 3d face reconstruction. In ECCV, 2020.

1, 2

[73] Xiangyu Zhu, Dong Yi, Zhen Lei, and Stan Z Li. Robust 3d

morphable model fitting by sparse sift flow. In ICCV, pages

4044–4049. IEEE, 2014. 1, 2

1114224


