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Abstract

Most of the existing deep learning-based dehazing meth-

ods are trained and evaluated on the image dehazing

datasets, where the dehazed images are generated by only

exploiting the information from the corresponding hazy ones.

On the other hand, video dehazing algorithms, which can

acquire more satisfying dehazing results by exploiting the

temporal redundancy from neighborhood hazy frames, re-

ceive less attention due to the absence of the video dehazing

datasets. Therefore, we propose the first REal-world VIdeo

DEhazing (REVIDE) dataset which can be used for the su-

pervised learning of the video dehazing algorithms. By

utilizing a well-designed video acquisition system, we can

capture paired real-world hazy and haze-free videos that

are perfectly aligned by recording the same scene (with or

without haze) twice. Considering the challenge of exploit-

ing temporal redundancy among the hazy frames, we also

develop a Confidence Guided and Improved Deformable

Network (CG-IDN) for video dehazing. The experiments

demonstrate that the hazy scenes in the REVIDE dataset are

more realistic than the synthetic datasets and the proposed

algorithm also performs favorably against state-of-the-art

dehazing methods.

1. Introduction

Images and videos captured from the hazy scenes in-

evitably suffer from limited visibility and low color satu-

ration due to the particles in the haze that will scatter and

absorption the light and decrease the albedo of the viewed

scene. The goal of the dehazing algorithms is to remove the

haze and restore a haze-free scene by given a hazy image or

video. This problem has received significant attention since

the dehazing algorithm is a necessary pre-processing step for

many high-level vision tasks (e.g., scene understanding [31]

and detection [18]) applied on the outdoor haze, indoor fire,

*These authors contributed equally to this work.
†Corresponding author.

and smoking scenes.

Recently, the introduction of new techniques from ma-

chine learning and deep learning provides a broader perspec-

tive for dehazing problem and achieves impressive results.

Existing deep learning-based methods [9, 27, 40, 17, 38] are

usually trained on the synthetic datasets [19], in which the

hazy scene I is formulated by:

I(x) = T (x)J(x) + (1− T (x))A, (1)

where J denotes the haze-free scene, A describes the global

atmospheric light indicating the intensity of ambient light, T

is the transmission map, and x represents the pixel position.

However, the scattering atmosphere model in Equ. (1) has

shown several limitations: it cannot formulate realistic hazy

scenes with active light sources [20], with non-homogeneous

haze [5], with dense haze layer [4], and under complex

illumination conditions. Therefore, the networks trained

on these synthetic datasets often generate unsatisfied results

when handling real-world inputs due to the domain shift [34].

Recently, Some realistic image dehazing datasets [6, 3, 4,

5] are introduced to provide benchmarks for training and

evaluating real-world dehazing algorithms. Since then, great

progress has been made in the study of the real-world image

dehazing task [2, 7, 8].

Although significant achievements have been made in sin-

gle image dehazing task, we believe that video dehazing al-

gorithms can achieve better results by utilizing the temporal

redundancy from neighboring frames. However, due to the

difficulty of collecting real-world video dehazing datasets,

the video dehazing task receives less attention than image

dehazing [32]. Although plenty of synthetic hazy videos

can be obtained by using Equ. (1) [19], the domain gap

between synthetic and real-world hazy videos makes these

synthetic datasets low practical value. Therefore, collecting

a real-world video dehazing dataset for deep learning-based

algorithms is a challenging but valuable work.

In this paper, we build a Consecutive Frames Acquisition

System (CFAS), which can be used for collecting paired

videos via a controllable robot arm. By utilizing the accurate
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relocation ability of the robot arm, the system can record

the acquisition points of the last collected video and collect

another but exactly the same video if the scene does not

change. With the newly-designed video acquisition system

and professional haze machines, we can collect the pairs

of real hazy and corresponding haze-free videos by gener-

ating high fidelity haze between the acquisition of the two

videos. By collecting real hazy and corresponding haze-free

videos on various indoor scenes, we contribute the REal-

world VIdeo DEhazing (REVIDE) Dataset, the first video

dehazing dataset for supervised learning. Both subjective

and objective experiments indicate that the REVIDE dataset

contains more realistic hazy frames than the synthetic one,

which can help the training and evaluating processes of real-

world video dehazing algorithms.

Since the haze spreads over the whole scenes and the den-

sity of the haze may change across the neighboring frames

of a video, temporal alignment and exploiting temporal re-

dundancy are challenging in real-world video dehazing algo-

rithms. In this paper, we present a Confidence Guided and

Improved Deformable Network (CG-IDN) for video dehaz-

ing. We show that a confidence guided pre-dehazing module

and the cost volume [36] can benefit the deformable align-

ment module by improving the accuracy of the estimated

offsets. Moreover, the confidence map can also be used

as guidance for multi-feature fusion. Extensive evaluations

demonstrate that the proposed algorithm performs favorably

against state-of-the-art video and image dehazing methods.

The contributions of this work are summarized as follows:

• In this paper, we collect a real-world video dehazing

dataset containing pairs of real hazy and corresponding

haze-free videos. To the best of our knowledge, the

proposed dataset is the first real-world video dehazing

dataset for supervised learning.

• We conduct extensive subjective and objective experi-

ments to demonstrate that the collected hazy scenes in

the proposed dataset are more realistic than those of syn-

thetic datasets, which provides a valuable benchmark

for training and evaluating real-world video dehazing

algorithms.

• We propose a Confidence Guided and Improved De-

formable Network (CG-IDN) for video dehazing and

validate its effectiveness in real-world video dehazing

tasks.

2. Related Work

Dehazing datasets. Recently, deep learning-based ap-

proaches have been applied to solve the dehazing problems,

which require large-scale dehazing datasets for training and

evaluating. However, collecting pairs of the real hazy and

corresponding haze-free images is a burdensome work due

to the strict constraints on the static state of the illumination

condition and viewed scene. To provide enough training data

for deep dehazing networks, several large-scale synthetic im-

age dehazing datasets are proposed [19, 1, 27, 17, 32] by uti-

lizing the images and the depth maps of the Middleburry [33],

NYU-Depth V2 [35], and Cityscapes [10] datasets. All of

these datasets are using Koschmieder’s light propagation

model [30] to generate synthetic hazy images from haze-

free images and the corresponding depth maps. Due to the

large domain gap between the synthetic haze and real-world

haze, the models trained on these synthetic image dehazing

datasets often generate unsatisfied results when handling the

real-world hazy scenes.

To reduce the domain gap, several real-world image de-

hazing datasets [3, 6, 4, 5] are proposed. All of these real-

world image datasets use a professional haze machine to

imitate with high fidelity real hazy conditions and collect

pairs of real-world hazy and corresponding haze-free im-

ages (ground truth). However, the acquisition systems ap-

plied in these datasets are designed for collecting paired

images in a fixed location, which is not suitable for collect-

ing real-world video dehazing dataset.

Compared with image dehazing datasets, the video dehaz-

ing dataset is rare. Ren et al. [28] generate a synthetic video

dehazing dataset by using the video clips and corresponding

depth maps from NYU Depth. Unfortunately, there is still no

real-world video dehazing dataset due to the lack of suitable

acquisition systems. Since the absence of real-world training

data becomes a major obstacle for video dehazing task [32],

it is valuable work to collect a large-scale real-world video

dehazing dataset.

Video dehazing algorithms. Compared with single image

dehazing algorithms, video dehazing algorithms [15, 41, 22]

try to generate more accurate dehazed results by taking

advantage of the temporal redundancy from neighboring

frames. Zhang et al. [41] first propose an algorithm to de-

haze the videos frame by frame, and then use the optical

flow to improve the temporal coherence of the neighboring

frames based on Markov Random Field (MRF). In [22], Li et

al. propose an algorithm to jointly estimate scene depth and

recover the clear latent image from a foggy video sequence.

Recently, deep learning-based methods achieve promising re-

sults on many restoration tasks where the large-scale training

datasets are available. Based on this, Ren et al. [28] propose

a synthetic video dehazing dataset and develop a deep learn-

ing solution to accumulate information across frames for

transmission estimation. However, their network performs

not well in the real-world hazy scenes where the transmis-

sion maps are more complex due to the non-homogeneous

haze. Wang et al. [37] propose a video restoration network

enhanced by the deformable convolutional networks, which

achieves superior performance against state-of-the-art meth-

ods on several video restoration tasks. However, we found

their deformable alignment module suffers from unstable

training and fails to estimate large offset when handling

frames with large resolution.
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Figure 1. Consecutive Frames Acquisition System (CFAS). The system consists of a controllable robot arm (AUBO I5), a Sony ICLE

6000 camera, and two haze machines. By utilizing the accurate relocation ability of the robot arm, we can capture the pairs of hazy and

corresponding haze-free videos in the same scene.

3. Real-World Video Dehazing Dataset

To collect a real-world video dehazing dataset for super-

vised learning, we propose an acquisition system to capture

the pairs of hazy and corresponding haze-free videos in the

same scene. The detailed system compositions and dataset

collection process are presented in the following sections.

3.1. Acquisition system

In order to capture the real-world hazy videos and their

corresponding haze-free (ground truth) videos, we design a

Consecutive Frames Acquisition System (CFAS). As shown

in Fig. 1, the proposed system consists of a controllable robot

arm (AUBO I5), a Sony ICLE 6000 camera, and two haze

machines. The camera is mounted at the end of the robot

arm by a customized mounting rack and remote-controlled

by a laptop. Since the AUBO robot arm can repeatedly reach

the same location with an accuracy of 2mm, we can repeat

the trajectory of the last collected video to collect the same

video 1. Besides, two kinds of haze machines (DJPOWER

E-1500 and DJS-900W) are used to produce high fidelity

real hazy conditions.

3.2. Data Collection

Scene layout and system settings. To guarantee the gener-

ality of our dataset, all scenes in our dataset are carefully

selected. To be specific, scenes with rich and colorful tex-

tures are preferred since the primary purpose of dehazing

method is to recover high-frequency details from the hazy in-

puts. As shown in Fig. 2, the selected scenes can be grouped

into four styles: the Eastern style, the Western style, the

Laboratory style, and the Corridor style. The whole dataset

contains 47 different scenes, which contain different layouts,

illumination conditions, and density of the haze.

1According to the relocation accuracy of the AUBO robot and the pa-
rameters of the camera, we can conclude that the shift on the pixel whose
depth is larger than 2.8m will be less than 1 pixel even when the relocation
error occurs.

Figure 2. Examples of different styles of scenes in the REVIDE

Dataset.

Table 1. Number of pairs for training and testing sets in the

REVIDE dataset.

Scenes Style Esatern style Western style Laboratory style Corridor style

Tran Set 382 575 498 243

Test Set 57 137 54 36

Since capturing a video dehazing dataset needs more

strict constraints on the static state of the viewed scenes,

each scene should be carefully set. The windows and doors

must be closed to let the scene keep isolated, and some

lightweight objects are removed as they might be moved

by the airflow of the haze machines. Once the scene layout

is done, the objects and the illumination conditions of the

viewed scene should be static during the acquisition process.

Since the static state of outdoor scenes cannot be guaranteed,

we only collect indoor scenes for the proposed dataset at this

time. More details about the optical parameter of the camera

can be found in the supplementary material.

Acquisition process. After finishing all the preparatory

works, we run a multi-threading program to move the robot

arm and take remote control of the camera to capture the

sharp frames at the acquisition points of a planned trajectory.

The timeline of the acquisition process can be summarized

as Fig. 3. The program will take 0.55 seconds to initial the

robot arm and the video collection process is activated 1

second after the arm starts to move. The number of the ac-

quisition points ranges from 50 to 100, depending on the tra-

jectories, which means one captured video contains 50-100

consecutive frames. The whole haze-free video acquisition
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Figure 3. Timeline of the acquisition process. To capture the

pairs of hazy and corresponding haze-free videos, the camera will

move along the same trajectory twice and collect the hazy and

haze-free frames.

process usually takes 3-5 minutes, and then the robot arm is

re-initialized to the starting point for the next acquisition.

Before the second acquisition, the haze machines are

activated for 1-2 minutes, and we shall wait approximately 3

minutes to let the haze fully spread around the room. Then,

the corresponding hazy frames are collected by running the

multi-process program for the second time. Relying on the

relocation ability of the robot arm, every acquisition point

of the first acquisition process is recorded and it can be

precisely relocated when collecting the corresponding hazy

video frames. Thus, the alignment between the hazy video

and corresponding haze-free video can be guaranteed. It

takes us one month to collect 48 video pairs from scenes

with four different styles2.

After checking the collected videos throughout, the bad

frames which contain geometric misalignment, aberration,

undesired blur, and over-exposure are discarded. For stan-

dardization, all the collected video frames are cropped to

2708× 1800. The numbers of pairs for training and testing

sets are listed in Tab. 1.

4. Confidence Guided and Improved De-
formable Network

In this section, we describe the architecture design, train-

ing loss functions, and implementation details of the pro-

posed CG-CDN for video dehazing.

4.1. Network Architecture

Given 2N + 1 hazy frames I[t−N :t+N ] as the input, our

goal is to recover a haze-free result Ĵt of the reference frame

(i.e., middle frame). As illustrated in Fig. 4, the proposed

model consists of four modules:

2To enrich our dataset, we will add 6 outdoor scenes (4 for training and
2 for evaluation) in the released version of the REVIDE dataset.

• A Confidence Guided Pre-Dehazing (CGPD) module

for pre-processing the hazy frames and estimating the

confidence maps of the reference frame Ct.

• A Improved Deformable Alignment (IDA) module to

align the enhanced features F[t−N :t+N ] from the CGPD

module by taking the partial cost volumes as guidances.

• A Multi-Feature Fuison (MFF) module to fuse the

aligned features F
Align

[t−N :t+N ] from the IDA module by

leveraging the confidence map Ct.

• A restoration module to reconstruct haze-free result of

the reference frame Ĵt from the fused features FFused
t .

Confidence guided pre-dehazing module. Since the den-

sity of the haze may change across the neighboring frames, it

is necessary to pre-process the hazy inputs to improve the per-

formance of the following alignment module [37]. As shown

in Fig. 4, the Confidence Guided Pre-Dehazing (CGPD)

module is built with three Confidence Blocks (CBs). For

each confidence block i, the enhanced features from the last

confidence block F i−1
[t−N :t+N ] are enhanced under the guid-

ance of the confidence maps from the last confidence block

Ci−1
[t−N :t+N ]. Then, the pre-dehazing results Ĵ i

[t−N :t+N ] and

confidence maps Ci
[t−N :t+N ] of block i are separately gen-

erated by two output head, the reconstruction head, and

confidence head. The enhnaced features F i
[t−N :t+N ] and

confidence maps Ci
[t−N :t+N ] are fed into the next confidence

block for further enhancement. The parameters are shared

when handling different frames and the input confidence

maps of the first confidence block are set as 0.

For simplicity, we define the output enhanced features and

confidence maps of the last confidence block as F[t−N :t+N ]

and C[t−N :t+N ]. The enhanced features F[t−N :t+N ] are

send to the improved deformable alignment module for

feature-level alignment. The confidence map of the refer-

ence frame Ct, which is used to describe the fidelity of each

pixel of the pre-dehazing result, is sent to the multi-feature

fusion module.

Improved deformable alignment module. To address the

unstable training issue of the PCD deformable alignment

module [37], we proposed an Improved Deformable Align-

ment (IDA) module by introducing the partial cost vol-

ume [36] to each level of the PCD. As shown in Fig. 5,

the IDA module introduces a correlation layer and three

scale-sampling layers (in the dashed box) to each level of the

PCD module. More specifically, the partial cost volume be-

tween the enhanced features of the neighboring frame Ft+n

and the reference frame Ft is calculated by the correlation

layer [36] and then it is concatenated with the Ft to estimate

the offsets for the deformable convolution (DConv). It is

also noted that the offsets between two adjacent frames in

our video dehazing dataset may be larger than 100 pixels,

and it is computationally expensive to compute the partial

cost volume with a range larger than 100 pixels. To maintain

accuracy while reducing the computational cost, we first
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Figure 4. Architecture of the proposed Confidence Guided and Improved Deformable Network (CG-IDN) for video dehazing.
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Figure 5. Details of the Improved Deformable Alignment (IDA)

module.

downsample the Ft+n and Ft to 1/16 of the original resolu-

tion with bilinear upsampling layer and calculate the partial

cost volume with a range of 9 pixels. Then, the partial cost is

upsampled to the resolution of Ft via the nearest upsampling

layer.

Since the cost volume is a more discriminative represen-

tation of the dense correspondences, we believe that the IDA

module can obtain a more robust aligned feature F
Align
t+n .

Multi-feature fuison module. To fully exploit the temporal

redundancy, a Multi-Feature Fusion (MFF) module is pro-

posed to fuse the aligned neighboring features F
Align
t−N,t+N

from IDA module. As shown in Fig. 6, the fusion process

can be formulated as:

FFused
t = F

Align
t ×Ct+φθ(F

Align

[t−N,t+N ])× (1−Ct), (2)

where the FFused
t is the fused output of the MFF mod-

ule, F
Align
t and Ct is the aligned feature and confidence

map of the reference frame, and φθ denotes the opera-

tions (Conv−Reshape−Conv) to extract useful temporal

redundancy. By introducing the confidence map as guidance,

the MFF module can reserve the high fidelity features of the

Figure 6. Details of the Multi-Feature Fuison (MFF) module.

reference frame and enhance the uncertain features by fusing

the temporal redundancy from neighboring features.

Restoration module. In the final stage of the proposed CG-

IDN, the fused features FFused
t are used to reconstruct the

haze-free result Ĵt via a restoration module. Since the resolu-

tion of videos in the proposed REVIDE dataset is relatively

large (2708×1800), the restoration module with large recep-

tive field and computational efficiency is preferred. There-

fore, we choose the MSBDN [11], a state-of-the-art image

dehazing method based on the U-Net [29] architecture, as

our restoration module. To reduce the parameters, the DFF

modules in MSBDN are removed. Since most operations

of MSBDN are performed at 1/16 resolution, the haze-free

results Ĵt can be reconstructed with a large receptive field

and low computational cost in both training and inference

phases.

4.2. Loss Function

The proposed network generates three kinds of outputs:

the pre-dehazing results and confidence maps of three con-
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fidence blocks (Ĵ i
[t−N :t+N ] and Ci

[t−N :t+N ], i ∈ {1, 2, 3})

and the final haze-free result Ĵt. Since the REVIDE dataset

provides haze-free ground truth for each hazy frame, we can

train the network in a supervised manner. Thus, the overall

objective of the CG-IDN can be denoted as:

L = Ld + λpLp + λcLc, (3)

where Ld and Lp denote the L1 loss and perceptual loss

between the haze-free results Ĵt and ground truth Jt, Lc is

loss function for confidence blocks, and λp and λc is the

weight to balance these three loss terms.

According to [39], the Lc for three confidence blocks

can be defined as:

Lc =
1

3(2N + 1)

3∑

i=1

N∑

n=−N

Ci
t+n(Ĵ

i
t+n−Jt+n)

2−λr log C
i
t+n,

(4)

where i is the ordering of the confidence block, Jt+n is the

haze-free ground truths of all the input frames, and λr is a

weight factor. By minimizing Lc, the confidence blocks are

encouraged to produce pre-dehazing results Ĵ i
[t−N :t+N ] that

are close to the haze-free ground-truth J i
[t−N :t+N ] and give

high confidence scores to the high-fidelity dehazing results.

During the training process, we empirically set λp to 0.5, λc

to 0.5, and λr to 0.01.

4.3. Implementation

The enhanced branch in confidence block is built with

three residual blocks [37]. Both the confidence and dehazing

heads consist of two convolutional layers, except that the

confidence head ends with a sigmoid activation layer. To

match the channel size configuration of MSBDN, the chan-

nel size (C) of the CGPD, IDA module, and MFF modules

are set to 16. The Leaky Rectified Linear Unit (LReLU) with

a negative slope of 0.1 is used after each convolutional and

deformable convolutional layers. When trained on the RIV-

IDE dataset, the network takes three consecutive frames (i.e.,

N=1) as inputs due to the large displacement between the

adjacent frame.More implementation details can be found in

the supplementary material.

To augment the training data, we resize the hazy inputs

and ground truths with three random scales within a scale

of 0.5 and 1.0. We crop the hazy inputs and ground truths

to patches with a size of 384× 384 and augment them with

random horizontal flips and 90◦ rotations. The entire train-

ing process contains 100 epochs optimized by the ADAM

solver [16] with β1 = 0.9 and β2 = 0.999 with a batch

size of 4. The initial learning rate is set as 10−4 with a

decay rate of 0.1 after every 45 epochs. The proposed net-

work is implemented with our the PyTorch framework [25]

and is trained and evaluated on an NVIDIA TITAN RTX

GPU. The REVIDE dataset and the code are available at

http://xinyizhang.tech/revide.

5. Experiments

In this section, we conduct objective and subjective ex-

periments to validate the fidelity of the hazy scenes in the

REVIDE dataset. In addition, for evaluating the proposed

dataset and algorithms, we train the proposed CG-IDN and

other state-of-the-art dehazing approaches on the proposed

REVIDE dataset to present the quantitative and qualitative

comparisons.

5.1. REVIDE vs. Synthetic Video Dehazing Dataset

For fair comparisons, we generate a synthetic video de-

hazing dataset using the same scenes of the REVIDE dataset.

Specifically, we use [21] to estimate the depth maps d(x) of

the haze-free frames in the REVIDE dataset and generate the

transmission maps by sampling β between [1.6, 3.4]. Then,

the corresponding synthetic hazy frames are generated with

the same configurations in the RESIDE dataset [19]. This

synthetic video dehazing dataset is referred to as REVIDE-

SYN.

Objective evaluation. To demonstrate that the collected

hazy scenes in REVIDE dataset are more realistic and can

better represent the real-world hazy scenes than the synthetic

datasets, we train a binary classification network, based on a

pre-trained DenseNet-121 [14], to distinguish the real-world

hazy scenes from synthetic hazy scenes. The training set

consists of 1384 real-world outdoor hazy scenes from the

Unannotated Real-world Hazy Images (URHI) dataset in the

RESIDE dataset [19] and 1950 synthetic indoor scenes from

the OTS set of RESIDE dataset [19] and the Binary Cross

Entropy (BCE) loss is adopted to optimize the network pa-

rameters. During the testing stage, we use the trained model

to classify 1150 real-world outdoor hazy scenes (referred to

as ROS set) from the internet, 1150 collected indoor hazy

scenes (referred to as CIS set) from the REVIDE dataset, and

1150 synthetic indoor hazy scenes (referred to as SIS set)

from the REVIDE-SYN dataset. To avoid the interference

of different scenes, the CIS and SIS contain the same scenes

and similar haze density. The average ratios and probability

that the scenes of each test set are classified as real-world

hazy scenes are presented in Tab. 2. Although the training

dataset does not contain any real-world indoor hazy images,

most collected scenes of the CIS set (80.1%) are classified

as real-world scenes by the trained classification network.

On the other hand, only 24.2% of the synthetic scenes in the

CIS set are classified as real-world scenes. Therefore, the

classification results demonstrate that the proposed REVIDE

dataset is more realistic than the synthetic datasets and can

generalize well to the real-world hazy scenes.

Subjective evaluation. We also performed a user study to

compare the fidelity of the hazy scenes in the ROS, CIS,

and SIS sets with human perception. We sample one hazy

scene from ROS, CIS, and SIS respectively, and combine

them into a triplet with a random order. Finally, 500 triplets

are obtained and evenly divided into 10 groups. For each
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Table 2. Classification results on ROS, CIS, and SIS. According

to the outputs of the trained binary classification network, this table

presents the average ratios and probability that the scenes of each

test set are classified as real-world hazy scenes.

Avg. Ratios Avg. Probability

ROS 96.9% 0.921

CIS 80.1% 0.759

SIS 24.2% 0.297

N
u
m

 o
f 

Im
ag

es

0

100

200

300

400

1 2 3 4 5

Score

SIS avg. :1.57 CIS avg. :3.41 ROS avg. :4.61

Figure 7. Average and distribution of the mean opinion scores

group, five experienced researcher in computer vision, aged

between 22 and 56, are requested to give scores to the hazy

scenes in the triplets according to the fidelity of the haze.

The score is within a range of 1 to 5, from low fidelity to

high fidelity. As shown in the top of Fig. 7, the average

score of CIS is 3.408 and is closer to the score of ROS (4.61)

than the score of SIS (1.57), which demonstrates that the

collected hazy scenes can successfully imitate the real-world

hazy conditions. The bars with different colors in Fig. 7

display the distributions of the scores for each set. As the

chart shows, most CIS scenes obtain positive scores (3-5),

for the reason that the collected hazy scenes are more nat-

ural when the active light source, non-homogeneous haze,

dense haze layer, and complex illumination conditions exist.

On the other hand, the scores of SIS is concentrated in the

negative scores (1-2), because that the synthetic hazy scenes

always suffer from low color saturation, unnaturally haze dis-

tribution, and inconsistent color temperature between scene

and synthetic haze. Some typical scenes from the REVIDE

and REVIDE-SYN will be presented in the supplementary

material for better illustration. According to the objective

and subjective evaluations, the proposed REVIDE dataset

contains realistic hazy scenes and can be used to evaluate

whether a dehazing algorithm have a generalization ability

to handle the real hazy scenes.

5.2. Performance Evaluation

To demonstrate the advantages of the proposed REV-

IDE dataset and the effectiveness of the proposed method,

we evaluate the proposed CG-IDN on the REVIDE against

several competitive image dehazing methods (DCP [12],

KDDN [13], GDN [23], DuRN [24], FFA [26], and MS-

BDN [11]) and video dehaing methods (VDN [28] and

EDVR [37]). Except for the DCP, we re-train all the deep

learning-based methods on the REVIDE and REVIDE-SYN

dataset separately and then evaluate all the models on the

test set of the REVIDE dataset.

Evaluation on the REVIDE dataset. The first row in Tab. 3

shows the quantitative results of models trained on the syn-

thetic dataset, REVIDE-SYN. Although these models have

achieved favorable results on the test set of the REVIDE-

SYN dataset, they cannot generalize well to the realistic hazy

videos in REVIDE dataset. Most methods only obtain un-

satisfactory results that are even worse than the hazy inputs

and only the VDN [28] acquires valid results by estimating

the transmission map of the reference frame instead of the

dehazed frame directly. These quantitative results indicate

that the real-world hazy scenes are difficult to simulate and

the models train on synthetic dataset does not perform well

on the realistic datasets due to domain gap.

The second row in Tab. 3 shows the quantitative results of

models trained on the REVIDE dataset. The DCP does

not perform well since the dark channel prior does not

hold for most indoor scenes. Since the REVIDE dataset

can provide a high fidelity training set, most deep learning-

based methods trained on it achieve valid results compared

with the hazy inputs. Among these image dehazing meth-

ods [26, 11, 13, 23, 24], the MSBND [11] achieves the most

competitive results due to its U-Net architecture is more suit-

able for handling inputs with large resolution (2708× 1800).

The MSBND even outperforms the video dehazing meth-

ods [28, 37], which indicates the importance of the network

architecture. The VDN does not perform well because the

transmission maps in the real-world hazy videos are more

complex than those in the synthetic videos. The unified

framework for video restoration, EDVR, suffers from unsta-

ble training and fails to estimate large offset when trained on

the REVIDE dataset. Benefitting from the confidence-guided

strategy and the improved deformable alignment module, the

proposed CG-IDN can effectively align the neighboring fea-

tures and fuse the aligned features. Therefore, The CG-IDN

obtains the best performance on the REVIDE dataset.

Fig. 8 shows two visual examples from the test set of the

REVIDE dataset. The DCP algorithm only obtains meaning-

less results with significant color distortions due to the dark

channel prior does not hold for most indoor scenes. The de-

hazed images by most deep learning frameworks [23, 28, 37]

still contain significant remaining haze and artifacts. Al-

though the MSBDN method successfully removes most haze,

its results suffer from inconsistent color temperature with the

haze-free ground truths. In contrast, our algorithm obtains

clean results without color distortions due to successfully ex-

ploiting the temporal redundancy from neighboring frames.

More qualitative results on the REVIDE dataset and real-

world videos can be found in the supplementary material.

Ablation study. We perform ablation studies to analyze the

importance of each key component in CG-IDN. All the meth-

ods mentioned below are trained on the REVIDE dataset

using the same setting.
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Table 3. Quantitative evaluations on the REVIDE dehazing datasets. The first and second rows show the quantitative results of models

trained on the training set of the REVIDE-SYN dataset and REVIDE dataset, respectively. All the models are trained on the test set of the

REVIDE dataset. Red texts and blue texts indicate the best and the second-best performance respectively.

Methods DCP [12] GDN [23] DuRN [24] KDDN [13] MSBDN [11] FFA [26] VDN [28] EDVR [37] CG-IDN (Ours)

Trained on Syn.
PSNR 11.03 14.02 14.54 14.40 13.41 11.17 17.54 14.95 15.02
SSIM 0.7285 0.7437 0.7776 0.7542 0.7211 0.5685 0.8269 0.7908 0.7992

Trained on Real.
PSNR 11.03 19.69 18.51 16.32 22.01 16.65 16.64 21.22 23.21
SSIM 0.7285 0.8545 0.8272 0.7731 0.8759 0.8133 0.8133 0.8707 0.8836

(a) Hazy input (b) DCP [12] (c) GDN [23] (d) MSBDN [11] (e) VDN [28] (f) EDVR [37] (g) Ours (h) Ground-truth

Figure 8. Visual results on the REVIDE dataset. DCP [12] does not perform well since the dark channel prior does not hold for most

indoor scenes. The results in (c)-(g) contain some color distortions and haze residual, while the dehazed image in (h) by our method is much

clearer. Best viewed on a high-resolution display. More video results can be found in the supplementary material.

Table 4. Analysis on each component of the proposed CG-IDN. Red texts indicate the best performance of each part.

Methods Baseline-F1 Baseline-F3 Baseline-PWC Baseline-DA Baseline-IDA Baseline-PD-IDA CG-IDN

Multi-frame input X X X X X X

Optical-fow based X

Deformable alignment X X X X

Cost volume X X X

CGPD X X

MFF X

Paramters 21.6M 21.6M 31M 21.9M 21.9M 22.9M 23M
PSNR 21.81 21.85 22.10 22.42 22.86 23.08 23.21

We first train the restoration module of the CG-IDN as

the baseline model (referred to as Baseline-F1 and Baseline-

F3 according to the number of the input frames). As

shown in the Tab. 4, Baseline-F3 achieves comparable re-

sults with Baseline-F1, which demonstrates that the net-

work cannot exploit the temporal information from neigh-

boring frames without an alignment module. To align the

neighboring frames, the PWC-Net [36] and warping layer

are introduced to the Baseline-F3, which is referred to as

the Baseline-PWC. We also introduce the deformable align-

ment module in EDVR [37] to perform frame alignment at

feature level (Baseline-DA). The Baseline-DA outperforms

Baseline-F3 and Baseline-PWC by a margin of 0.57 dB and

0.32 dB respectively, which demonstrates the effectiveness

of the deformable alignment. However, we find the de-

formable alignment is not optimal and it fails to estimate the

offset when trained on the REVIDE dataset (see Section C in

the supplementary). Therefore, we improve the deformable

alignment by introducing partial cost volume as the guidance

for the offset estimation (Baseline-IDA). Compared with the

Baseline-DA, the Baseline-IDA achieves 0.44 dB gain by

only slightly increasing the computational cost. Finally, the

proposed network is constructed from Baseline-IDA by suc-

cessively introducing the CGPD (Baseline-PD-IDA) and

MMF (CG-IDN) module. Both the Baseline-PD-IDA and

CG-IDN achieve 0.22 dB and 0.35 dB performance gain

over the Baseline-IDA, which demonstrates that the CGPD

and MMF can boost the dehazed results via facilitating the

temporal alignment and feature fusion processes.

6. Conclusions

We have presented the first REal-world VIdeo DEhaz-

ing (REVIDE) dataset collected by a well-designed Con-

secutive Frames Acquisition System (CFAS). The REVIDE

dataset contains pairs of real hazy and corresponding haze-

free videos, which can be used for training and evaluating the

video dehazing algorithms. Based on the REVIDE dataset,

we also develop a Confidence Guided and Improved De-

formable Network (CG-IDN) by utilizing the confidence

maps and cost volume to boost the dehazing performance.

Both subjective and objective evaluations show that the RE-

VIDE dataset contains more realistic hazy scenes than the

synthetic datasets and the models trained on it can general-

ize well to real-world hazy scenes. Extensive experiments

demonstrate that the proposed CG-IDN performs favorably

against state-of-the-art methods on the REVIDE dataset.
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