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Abstract

The facial expression analysis requires a compact and

identity-ignored expression representation. In this paper,

we model the expression as the deviation from the iden-

tity by a subtraction operation, extracting a continuous and

identity-invariant expression embedding. We propose a De-

viation Learning Network (DLN) with a pseudo-siamese

structure to extract the deviation feature vector. To reduce

the optimization difficulty caused by additional fully con-

nection layers, DLN directly provides high-order polyno-

mial to nonlinearly project the high-dimensional feature to

a low-dimensional manifold. Taking label noise into ac-

count, we add a crowd layer to DLN for robust embedding

extraction. Also, to achieve a more compact representa-

tion, we use hierarchical annotation for data augmenta-

tion. We evaluate our facial expression embedding on the

FEC validation set. The quantitative results prove that we

achieve the state-of-the-art, both in terms of fine-grained

and identity-invariant property. We further conduct exten-

sive experiments to show that our expression embedding is

of high quality for expression recognition, image retrieval,

and face manipulation.

1. Introduction

Facial expression plays a vital role in human social com-

munication. Humans are very skilled at perceiving expres-

sions, which is non-trivial for computers. The develop-

ment of human-computer interaction requires reasonable

facial expression representation. Studies on resolving this

problem have been conducted for decades in the expression

analysis area. The previous methods, such as Facial Ac-

tion Coding System (FACS) [11] and categorical expression

model [7] [28], try to build discrete expression represen-

tation with semantic definitions. However, these methods

ignore the big variance within the emotional classes and
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Figure 1: Description of expression manifold and our Deviation

model.

few of them can handle well the identity-entangled prob-

lem. Therefore, most of the existing expression represen-

tations are still lack of enough capacity for extracting fine-

grained and identity-invariant expression information from

given faces and somehow block the downstream tasks such

as expression recognition [28], image retrieval [36] and face

manipulation [39].

In this paper, we develop a novel expression embed-

ding framework being capable of learning a continuous and

smooth space for expressions from face images. To repre-

sent the complicated and subtle expression, we follow the

idea [36] of using contrastive comparison to learn the ex-

pression distribution. The optimization goal is to map two

similar expressions within a triplet close to each other while

away from the third one. Besides, based on the perspective

that expressions should be lying on a manifold closing to

the identity [15] (See Fig. 1a), we model the facial expres-

sion as a deviation from the facial identity representation

like Fig. 1b. In this way, we disentangle the facial iden-

tity attribute from the source face in an explicit manner. To

the best of our knowledge, this is the first work that tries to

resolve the expression embedding problem by intentionally

disentangling the face identity attribute.

Our expression embedding learning framework called

Deviation Learning Network (DLN) is composed of three

modules (See Fig. 2): a deviation module for extract-
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ing identity-invariant deviation features, a high-order mod-

ule for mapping the high-dimensional features to a low-

dimensional manifold, and a crowd layer for eliminating the

label noise. Specifically, the deviation model has a pseudo-

siamese structure, one branch for the original face represen-

tation and the other for the identity. The expression devia-

tion feature is calculated by subtracting the identity attribute

from face representation. Moreover, instead of using addi-

tional neural network layers that cause optimization diffi-

culty due to the gradient shatter [1], we use the high-order

polynomial of the deviation for nonlinear mapping in the

high-order module. The high-order idea proposed in [3]

aims to model inter-layer interactions while ours is for en-

hancing the fitting performance. Then the crowd layer is

used to alleviate different annotators’ label bias, ensuring a

more robust expression embedding.

The main contribution of this paper lies in three as-

pects. First, we tackle the challenge of learning an identity-

invariant facial expression embedding through an innova-

tive deviation learning network. Secondly, we propose

the high-order module to improve the fitting performance

from the high-dimensional expression space to a low-

dimensional manifold. Third, we enhance the expression

embedding, in terms of robustness with the crowd layer and

also in terms of fine-grained property with the hierarchical-

annotated triplets. Extensive experiments demonstrate the

great potential of our method in emotion recognition, im-

age retrieval, and face manipulation tasks.

2. Related work

Expression Embedding FACS [11] proposes to describe

an expression as the combination of a set of distinct local

Action Units (AUs). However, human perception of fa-

cial expression often relies on a full face instead of a lo-

cal face region. On the other hand, the detection of multi-

ple AUs is still challenging due to positive occurrence and

negative competition between AUs [29][42]. Differently,

another method represents an expression by learning a low-

dimension nonlinear manifold embedded in a face image

space [5] [35]. Most of the reported works based on dis-

crete tasks such as expression recognition [7] [37] [28] [16]

and ignore the large variance within class. Some of them

even can be only used on the aligned faces in the labora-

tory environment [5] [35]. As a result, the extracted embed-

ding can not reasonably figure out continuous and smooth

expression space and reflect a subtle change of expression.

FECNet [36] uses a simple feed-forward neural network to

extract a continuous expression embedding with the help of

annotated triplets. In addition to directly learn an expres-

sion manifold, a number of works focuses on expression-

related tasks, including expression recognition [28], expres-

sion image retrieval [36], and expression manipulation [8].

A well-defined and powerful expression embedding would

be helpful to improve the performances in these tasks.

Disentangled Representation Due to the disentangling

nature of Generative Adversarial Network (GAN), some

works use GANs to extract expression representa-

tion [23] [9] [22]. TDGAN [40] proposes a two-branch

GAN to learn to disentangle the expression information

from other facial attributes. Info-GAN [6] can learn disen-

tangled expression representations by maximizing the mu-

tual information but struggle to train stably. Also, some

works [27] [22] [21] use the identity-invariant contrastive

losses to minimize the differences between the samples with

the same discrete expression category. Koujan et al. [17]

proposes a continuous expression regression approach but

limited by the 3D morphable model. Most of them are based

on a discrete expression task and/or can’t be directly em-

ployed in the complex in-the-wild environment. Our efforts

are made on developing ease of training disentangled ex-

pression representation with in-the-wild data.

3. Methodology

This section will present the carefully-designed Devi-

ation Learning Network (DLN). First, we propose a de-

viation module that enforces a deviation from the iden-

tity representation to describe identify-invariant expression

(Sec. 3.1). In Sec. 3.2, we introduce the high-order mod-

ule that learns the complicated nonlinear mapping from

the high-dimensional deviation space to a low-dimensional

manifold. Furthermore, we improve the robustness of

the DLN with a crowd layer design (Sec. 3.3). Finally,

we employ a hierarchical annotation strategy to make the

learned expression embedding more compact and fine-

grained. (Sec. 3.4).

3.1. Deviation Module

Regarding an arbitrary human face as the combination of

its identity and expression components, the expression de-

viation feature is expected to encode the identity-invariant

information from the original face. We formulate such an

expression deviation learning in a disentangled manner. Let

Vface be the feature vector of an input face; Vid the iden-

tity attribute, the expression attribute Vexp is given by:

Vexp = Vface −Vid. (1)

This formulation is supported by early analysis of facial ex-

pression manifold [5][11][35]. Given groups of expressions

belonging to different individuals, those expressions from

the same identity always gather around in a sub-manifold

and close to the neutral face (i.e., identity). Besides, the

semantic-similar expressions from different identities are

analogous on the expression manifold. Based on the obser-

vation, we propose to subtract the identity attribute from the

Vface to learn the expression from deviation (See Fig. 1b).
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Figure 2: Proposed Deviation Learning Network (DLN) for creating facial expression embedding. We use a pre-trained FaceNet as the

Identity Model and fix its parameters. The face model has the same structure as the Identity Model but with trainable parameters. To build

a low-dimension manifold of expression embedding, we propose a high-order module for better optimization, instead of additional neural

network layers. Then a crowd layer is taken to alleviate label noise. In the test, we use expression embedding Eexp only, ignoring the

crowd layer.

To this end, we design a deviation module with two

pseudo-siamese branches referring to an identity model and

a face model, respectively. As shown in Fig. 2, the identity

model is responsible for extracting Vid from an input face.

Meanwhile, we train the face model to learn the feature vec-

tor of an input face Vface. Note that the identity model and

the face model share the same network structure but with

different parameters.

For the identity model, we use the pre-trained Inception-

Resnet faceNet [34] with the fixed parameters to produce

a 512 dimensional vector Vid referring to reliable identity

attribute of an input face image. Then we copy the network

structure and retrain the face model with the initialized pa-

rameters same as the pre-trained identity model. In this way,

the face model that benefits from a good initialization will

seek for an optimal point around Vid and output another

512 dimensional vector Vface. After that, we send the ex-

pression deviation vector Vexp to the high-order module.

3.2. High­order Module

To make an expression embedding more compact and

effective, we need to fit the deviation Vexp from a high-

dimensional (512-dimensional) feature space to a low-

dimensional (16-dimensional) manifold. A straightforward

method is to utilize several neural layers. Considering many

neural layers existing in the face model, additional neural

layers for reducing the dimension of Vexp may lead to op-

timization difficulty (e.g. gradient shattering) [1]. From

the aspect of universal approximation theorem, the neural

layers is actually to fit the features in a high-order space.

For the sake of better optimization, we directly provide

the high-order polynomial to facilitate the learning of non-

linear mapping in the high-order module. The high-order

terms can be formulated as:

……

𝑭𝑲 = [𝒇𝟏; 𝒇𝟐; … ; 𝒇𝑲]

𝒇𝟏
𝒇𝟐 𝒇𝑲−𝟏 𝒇𝑲𝒇𝟏

Linear layer 𝒍𝑲
𝑬𝑒𝑥𝑝 = 𝒍𝑲(𝑭𝑲)

:concat

:element-wise product

Figure 3: Process of obtaining high-order polynomial feature FK

and achieving the final expression embedding Eexp.

f
k = f

k−1 ⊗ f
1;

F
K =

[

f
1; f2; f3; ...fK

] (2)

where k∈{1, 2, · · ·K}. f1 is 16-dimensional vector from

Vexp through a linear layer. fk is k-order term of f1. ⊗
refers to element-wise product. FK is a K-order polyno-

mial feature vector concatenating all the high-order terms

from 1 to K. So, FK is a 16×K dimensional feature vec-

tor. Then, FK is fed into a linear layer lk to obtain the

final 16 dimensional expression embedding. Fig. 3 describe

the detailed process of the high-order module. To allevi-

ate the gradient vanishing and exploding problem caused

by high-order polynomial, we perform mean variance nor-

malization for each order [12]. The experiments (described

below) show the optimal performance with K=3.

3.3. Crowd Layer

In FEC [36] dataset, there are 43 annotators participating

in labelling about 500k triplets and each triplet is distributed

to six annotators for anchor/positive/negative judgement. In

this circumstance, the personal subjectivity needs to be se-
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riously considered since it may bring underlying bias to the

final expression embedding. To stabilize our model train-

ing process against potential noise data, i.e., inconsistent

or wrong labelled triplets, we propose a crowd layer [32]

to eliminate the annotator’s bias. We use a fully connec-

tion layer for each annotator to learn an individual embed-

ding from the common expression embedding, capturing

the annotator-specific label bias (See Fig. 2).

To obtain a compact and continuous expression embed-

ding, we follow the idea from FECNet [36] to learn the ex-

pression manifold by the triplet loss. Given an image triplet

T annotated by K annotators, we denote the annotated re-

sults as T(k)
= {Iak

, Ipk
, Ink

} , Iak
(anchor) shares more

similar expression with Ipk
(positive) than with Ink

(nega-

tive), judged by the k-th annotator. The expression embed-

dings of three face images are denoted as {Eak
, Epk

, Enk
}.

The DLN is constrained to map Eak
close to Epk

while

away from Enk
. Therefore, the entire training loss of the

DLN is defined by the weighted sum of multiple triplet loss:

L(T) = 1

K

K
∑

k=1

WkLtri(T
(k)); (3)

Here, Wk represents the accuracy of the k-th annotator’s la-

beling, reflecting the trustworthiness of the personal judge-

ment. It is calculated by Nagr
k /Nk. Nagr

k is the number

of triplets labelled by k-th annotator that achieve agreement

with others, while Nk is the annotation amount of the k-

th annotator. During the training stage, we use the output

embedding of different annotator-specific layers to compute

the triplet loss Ltri, as formulated by

Ltri(T
(k)) = max(0, ‖Eak

− Epk‖22 − ‖Eak
− Enk

‖22 +m)

+ max(0, ‖Eak
− Epk‖22 − ‖Epk − Enk

‖22 +m).
(4)

The gradients of the annotator-specific layers will be back-

propagated to refine the expression embedding to be more

robust. In the inference stage, we drop the annotator-

specific layers and directly use the expression embedding

before the crowd layer. Since it can be robust on noise data,

our model can be extensively trained on the less-confident

annotated data, like the weak pairs in the FEC dataset.

3.4. Hierarchical Annotation

Even though we have used all the available manual la-

belled data including strong and weak pairs (described be-

low) in FEC [36] dataset to train the expression embedding,

there are still left information worthy of exploration. Since

there are many cases that one anchor image appears in sev-

eral pairs, we can group the annotated triplets by the anchor

images (see Fig. 4a). We have known the similarity rela-

tion in a single pair, but the multiple positive expressions

also have different levels of similarity with the same an-

chor. The comparisons between these positives are even

(a) Group case (b) Hierarchical annotation

Figure 4: Illustration of hierarchical annotation. Fig. 4a shows an

example of group case which consists of several triplet pairs with

the same anchor. Fig. 4b describes the strategy of Hierarchical An-

notation. In each level, we provide one anchor and two positives

from different pairs to the annotators. The annotators determine

which one is more similar to the anchor expression. The last level

will determine which positive is the most like anchor.

more valuable to the final embedding sub-space, since they

provide more fine-grained information to differ images with

high similarity.

Accordingly, we use a simple but effective method called

hierarchical annotation to annotate these challenging cases.

In order to alleviate the cost of manual labor, we adopt the

tournament-based design from [41] to arrange the annota-

tion process. As described in Fig. 4b, we first pick k posi-

tive expression images from the same group w.r.t. all close

to the same anchor expression. Then we randomly orga-

nize these expressions in pairs and ask different annotators

to choose one from two positives which is more similar to

the anchor. The chosen ones will be re-organized again and

compared with each other in pairs, until there is only one

expression winning. During this process, we actually an-

notated more ”difficult” triplet data. Besides, because of

the pyramid structure of the hierarchical annotation design,

we can automatically generate more triplet results by chain

comparisons. For example, supposed that P1 wins P2, P3

wins P4 and P1 wins P3 (see Fig. 4b), it is reasonable to

infer that P1 also wins P4.

In practice, we set k=16 and our human annotators only

need to compare 8+4+2+1=15 pairs while another four

times results would be directly inferred by the hierarchi-

cal annotation strategy. We maintain the robustness of the

human annotation process by joint participation of multi-

ple persons. For hard case, the annotator may choose “un-

certain” option and thus the case will be assigned to an-

other one. Furthermore we ensure each group of anno-

tation will be repeated at least three times. With all the

new-labelled triplets, we continue to train our DLN to learn

the local-scale relationships between similar expressions.

Since those positive expressions are already mapped closed
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to each other, fine-tuning on such sensitive data will sig-

nificantly refine our expression embedding to be more and

more compact.

4. Experiments

In this section, we will first introduce our experiment set-

tings including datasets and implementation details. Then

we evaluate our method on various metrics. We also per-

form several ablation studies to prove the effectiveness of

each module in our framework. Finally, we conduct multi-

ple applications by using the learned expression embedding

to explore its potential ability.

4.1. Datesets

FEC dataset [36] FEC dataset is a large-scale and multi-

identity dataset consists of 155,943 faces images, along

with 500,203 triplets including anchor/positive/negative an-

notations made by human perception. Among all the

triplets, strong pairs refer to those which receive at least

two-thirds of raters agreement with each other, and weak

pairs receive only half of the raters agreement with each

other. There are 357,749 strong pairs and 49,986 weak pairs

in the training set. We test our model on the held-out FEC

validation set with 41,594 strong pairs. The triplet predic-

tion accuracy is used as a metric for evaluation.

Expression datasets We perform in-the-wild expression

recognition on two often-used datasets, AffectNet [28] and

RAF-DB [19]. AffectNet is a large in-the-wild expression

dataset with 450,000 images categorized into eight basic

expressions (neutral, happiness, surprise, sadness, anger,

disgust, fear, contempt). To avoid the data imbalance is-

sue, seven basic expressions except for contempt are usu-

ally evaluated. RAF-DB consists of face images of seven

single expression categories and compound categories. We

only choose images with single expression labels for train-

ing and testing. RaFD [18] contains images of 67 subjects

displaying 8 emotional expressions (Anger, disgust, fear,

happiness, sadness, surprise, contempt, and neutral). There

are three different gaze directions and five camera angles

for each category. CK+ [25] dataset contains 593 video

sequences from a total of 123 different subjects. Out of

these videos, 327 are labelled with one of seven expres-

sion classes. The MMI [30] dataset contains over 2900

videos and images from 75 subjects with annotations of ac-

tion units and emotions. We use RaFD, CK+, and MMI to

measure the identity disentanglement and RaFD is also used

to conduct the face manipulation application.

4.2. Implementation details

In experiments, we adopt FaceNet [34] pre-trained on

VggFace2 [4] dataset as the identity model of DLN and

fix its parameters all the time. The face model shares the

same network structure and parameter initialization with the

identity model. The entire DLN model is trained on the

Table 1: Prediction accuracy (in %) of DLN and previous works

on FEC validation set. The best is indicated bold.

Method
Validation set

C1 C2 C3 M

AFFNet-CL-P 49.2 59.8 50.4 53.3

FECNet 77.1 85.1 82.6 81.8

DLN(Ours) 81.8 88.3 85.6 85.4

C1: One-class; C2: Two-class; C3: Three-class; M: Mean.

FEC [36] dataset with a batch size of 30. The input images

are resized to 224 × 224. We use the SGD optimizer with

a momentum of 0.9 and the learning rate at 2 × 10
−4. The

training process is applied on an NVIDIA TitanXP Graph-

ics Card with PyTorch [31]. For more network structure and

training details, please refer to the supplementary material.

4.3. Evaluation

We evaluate the learned expression embedding by two

experiments. First, we apply triplet prediction experiment

on the FEC [36] validation set and compare our prediction

accuracy with other approaches. Then we quantitatively and

qualitatively evaluate the identity-disentanglement property

of our embedding and the other competitive expression rep-

resentation methods.

Triplet prediction We conduct triplet prediction compar-

isons with FECNet [36] and AffectNet [28]. In the held-

out validation set of FEC [36] dataset, there are three kinds

of triplet data (one-class, two-class and three-class), each

triplet is specified with ground-truth annotation. After go-

ing through the expression embedding module, we compute

the distances between every two faces within a triplet and

determines the anchor/positive/negative object, i.e., pre-

dicted annotation. By calculating the matching percentage

of the predicted and the ground-truth annotation, we can

give the triplet prediction accuracy as shown in Tab. 1.

In comparison, FECNet [36] employs a network that

connects fixed FaceNet and Densenet directly and AFFNet-

CL-P [36] represents the penultimate layer of FECNet con-

tinuously trained on AffectNet [28]. From the quantitative

results, we find that our method achieves better prediction

accuracy, either in each class or in total. Particularly, in the

one-class triplet prediction test, which is the most challeng-

ing case because the input expressions are very similar to

each other, we reach 81.8% of accuracy, 4.7% higher than

the FECNet. This proves our model better represent fine-

grained expressions.

Identity disentanglement A good expression embedding

is supposed to be identity-ignored, which means that

semantic-similar expressions of different individuals should

be closely-embedded on the expression manifold. So, we

compare the identity disentanglement property of differ-

ent expression representations including DLN (ours), FEC-
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(a) DLN (Ave-Var=0.0089) (b) FECNet [36] (Ave-Var=0.011) (c) AFF [36] (Ave-Var=0.039) (d) 3DMM [2] (Ave-Var=0.0097)

Figure 5: 2D t-SNE visualization of expression embedding with different methods, based on the RaFD [18] dataset. It is observed that

embeddings from our DLN are more compact in each expression class. Ave-Var is the average of embedding variances of all the expression

classes.

(a) Ca: DLN1

(Acc=0.837)

(b) Cb: DLN1+CL

(Acc=0.841)

(c) Cc: DLN1+HA

(Acc=0.842)

(d) Cd: DLN3

(Acc=0.846)

Figure 6: 2D t-SNE visualization of expression embedding from four conditions (C) including DLN1 without Crowd Layer (CL) and

Hierarchical Annotation (HA) (Fig. 6a), DLN1 with CL but without HA (Fig. 6b), DLN1 without CL but with HA (Fig. 6c), and DLN3

without CL and HA (Fig. 6d). The displayed points refers to 5,000 images randomly sampled from the FEC training set. Acc represents

the prediction accuracy on the FEC validation set.

Table 2: The average variance of each emotion class on RaFD,

CK+, and MMI datasets. The best is indicated bold.

Dataset FECNet AFFNet 3DMM Ours

CK+ 0.011 0.021 0.019 0.010

MMI 0.021 0.057 0.019 0.017

RaFD 0.011 0.039 0.0097 0.0089

Net [36], AFFNet-CL-P [28] and 3DMM [2]. We use the

RaFD[18], CK+ [25] and MMI [30] datasets and average

the variance of each emotion class’s embedding. Also, due

to the paper size, we only show the t-SNE [26] visualiza-

tion of embedding distribution of each method on RaFD

dataset(See Fig. 5). The average variance can be seen in

Tab. 2.

From the qualitative and quantitative results, it can be

observed that the embedding with the same expression gath-

ers closer to each other on our expression manifold and the

distribution variance is smaller, in comparison to the other

three methods. It indicates that our DLN performs well on

disentangling expression from identity and generates inde-

pendent expression embedding space.

4.4. Ablation Study

We perform ablation studies to demonstrate the effective-

ness of the high-order module, crowd layer, and hierarchical

annotation in our DLN. By replacing each module with dif-

ferent settings, we compute the triplet prediction accuracy

of each solution. The results are shown in Tab. 3.

High-order module. To investigate the impact of the high-

order module, we change the value of order k increasingly

from 1 to 5. Specifically, k at 1 refers to the common-used

neural network layers with no high-order terms; k at other

values refers to the high-order module with corresponding

terms from 1 to k-order. Accordingly, DLNk refers to DLN

with the high-order terms from 1 to k. Results in Tab. 3 in-

dicate that the high-order module with k from 2 to 4 outper-

forms the neural network layers (k = 1). This confirms the

effectiveness of the high-order module. The order of 3 helps

to get the best triplet prediction accuracy above all. In other

experiments, DLN employs the order of 3. The reason of

performance decreasing at k = 4 and 5 could be the over-

fitting issue since they bring much more parameters than the

low order cases.

Crowd layer. Tab. 3 shows the experimental results with

and without the crowd layer component. As observed, the
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Table 3: Prediction accuracy (in %) of ablation experiments on

the FEC validation set. The best order is indicated by brackets.

The best is indicated in bold.

Method Validation set

Order CL HA C1 C2 C3 M

DLN1 × × 79.3 86.9 84.3 83.7

DLN2 × × 80.4 87.7 84.8 84.4

DLN3 × × [80.8] [87.8] [85.1] [84.6]

DLN4 × × 79.9 87.6 84.5 84.1

DLN5 × × 79.7 87.2 83.5 83.5

DLN3 √ × 81.5 88.0 85.5 85.1

DLN3 × √
81.7 87.9 85.6 85.2

DLN3 √ √
81.8 88.3 85.6 85.4

C1: One-class; C2: Two-class; C3: Three-class; M: Mean;

CL: Crowd Layer; HA: Hierarchical Annotation.

×: no use;
√

: use;

crowd layer increases the accuracy from 84.6% to 85.1%. It

suggests that the crowd layer being capable of eliminating

the annotator’s subjective bias and data noise is indeed ef-

fective in learning a more powerful expression embedding

sub-space.

Hierarchical annotation. In Tab. 3, we also compare the

experimental results generated with and without the hier-

archical annotation module. By adding the hierarchically

annotated triplets to training data, the final prediction ac-

curacy is improved from 84.6% to 85.2%. It demonstrates

the effectiveness of our hierarchical annotation strategy and

confirms that the hierarchical annotation does provide more

fine-grained information and our framework has the capa-

bility to capture the local-scale expression difference.

Additionally, we also plot the 2D t-SNE [26] under sep-

arate condition of crowd layer, hierarchical annotation and

high-order module (See Fig. 6). Comparing Ca to Cb, Cc,

or Cd in Fig. 6, we can observe that the crowd layer (Ca),

the hierarchical annotation (Cb) and the high-order module

Cd make the expression embedding more compact. This

observation is consistent with their effectiveness reported

in the above.

4.5. Applications

The expression embedding from our method can be ap-

plied to other expression-related tasks, such as expression

recognition, expression image retrieval and face manipula-

tion. We will demonstrate the potential application with our

expression embedding.

4.5.1 Expression Recognition

Our extracted embedding can be taken as features directly

to classify expression combined with K-Nearest Neighbor

classifier (KNN). The first two lines in Tab. 4 show the

results with 200 neighbours in KNN. It is observed that

our embedding from DLN outperforms FECNet without

Table 4: Accuracy (in %) of DLN and previous works on fa-

cial expression recognition.The best and second are indicated us-

ing bold and brackets alone, respectively.

Method AffectNet RAF-DB

FECNet+KNN[36] 29.4 59.7

DLN+KNN(ours) 34.2 65.0

RAN[38] 59.5 86.9

PAENet[14] 65.3 -

CPG[13] 63.6 -

gACNN[20] 58.8 85.1

FECNet[36] 58.9 73.0

DLN(Ours) [63.7] [86.4]

re-training. The comparison result can be attribute to that

our method extracts more compact and precise expression

embedding. On the other hand, DLN can be applied to

expression recognition when re-training on the expression

dataset. The experiment show that DLN is closed to the

state-of-the-art methods on several datasets [28] [19]. No-

tice that, to achieve the good performance, various com-

plicated tricks are employed in the state-of-the-art methods.

Both RAN [38] and gACNN [20] employed attention mech-

anisms to highlight the importance of facial regions for ex-

pression recognition and alleviate the pose and occlusion

problems; PAENet [14] and CPG [13] based on continuous

learning use several datasets like VGGFace2 [4], IMDb-

Wiki [33], FotW [10] and AffectNet [28], while our DLN

only makes use of FaceNet based on VGGFace2 [28]. Our

expression embedding achieve the comparable results with-

out any additional operations. This confirms the effective-

ness of our model on discriminating expression categories.

4.5.2 Expression Image Retrieval

Another practical application of expression embedding is

expression image retrieval. Like [36], we use the nearest

neighbor search method in expression embedding space to

address this task. We construct a query set with 25 images

and use CelebA [24] as the database. We retrieve nearest N

(N=1,2,...,10) images from the database by computing the

distances within the expression embedding space of ours

and the FECNet [36]. We conduct a user study by asking ten

participants to choose the more similar expression images

retrieved by our model and the FECNet. If the given results

are too similar to be judged, the participant may choose the

option ”Uncertain” as well. In Fig. 8, we show the Top-5

statistical analysis of collected votes. The quantitative re-

sults indicate that our method obtains more preferring votes

than the FECNet, both in each case and in total.

Fig. 7 gives some retrieval samples of FECNet and our

DLN. While the images retrieved with FECNet tend to have

similar identity information, DLN results contain more var-

ious identities. This supports our identity-invariant expres-
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Figure 7: Comparison of image retrieval between DLN (ours) and FECNet-16d. We show the top-5 images retrieved using embeddings.

Our results perform better especially on fine-grained expressions. Please zoom in for more details.

Figure 8: Voting on image retrieval results. Our method gains

more preference from the raters, either in each case or in total.
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S
o

u
rc

e 
Id

en
ti

ty

Target Expression

Figure 9: Face manipulation results of RaFD dataset using ex-

pression embeddings from DLN. The first column is the input

face, the first row is the target expression. The middle part shows

the generated faces manipulated with the expression embeddings.

Please zoom in for more details.

sion embedding. On the other hand, our DLN can perform

better especially on some complex and fine-grained expres-

sions. For example, In the last row of Fig. 7, the query im-

age shows a man is gnashing the teeth and staring in anger

or disgust. The results of DLN mainly are related to nega-

tive expression like disgust, but the results of FECNet seem

like have error expression category.

4.5.3 Face Manipulation

Our DLN expression embedding can be directly used to ma-

nipulate human portraits. First, we produce expression em-

beddings from our DLN and fix them. Then we feed an

arbitrary face image of source identity and target expres-

sion embedding into a Conditional GAN[39] to generate an

expression-manipulated face image. During the training,

we use the same identities’ supervised data of RaFD [18]

that contains corresponding different expressions of each

person. While in testing, we generate faces manipulated

by another person’s expression. Fig. 9 shows the generated

faces. It is observed that our generated faces are consis-

tent with the target expressions and source identities, which

means that our expression embedding is of high quality in

capturing the detailed expression information and disentan-

gling the identity attribute.

5. Conclusion

We have presented a Deviation Learning Network to

learn a compact and identity-invariant facial expression em-

bedding by explicitly disentangling the identity attribute.

We have demonstrated the effectiveness of the proposed

method via an ablation study and extensive quantitative

and qualitative experiments. Applications like expression

recognition, expression image retrieval, and face manipula-

tion have shown powerful capability and great potential of

our learned expression embedding. In the near future, we

will refine expression embedding by moving out head pose

and taking into account more data in the wild.
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