
Learning a Self-Expressive Network for Subspace Clustering

Shangzhi Zhang†, Chong You‡, René Vidal§ and Chun-Guang Li†

† School of Artificial Intelligence, Beijing University of Posts and Telecommunications
‡ Department of EECS, University of California, Berkeley, CA

§ Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD

Abstract

State-of-the-art subspace clustering methods are based

on the self-expressive model, which represents each data

point as a linear combination of other data points. How-

ever, such methods are designed for a finite sample dataset

and lack the ability to generalize to out-of-sample data.

Moreover, since the number of self-expressive coefficients

grows quadratically with the number of data points, their

ability to handle large-scale datasets is often limited. In

this paper, we propose a novel framework for subspace clus-

tering, termed Self-Expressive Network (SENet), which em-

ploys a properly designed neural network to learn a self-

expressive representation of the data. We show that our

SENet can not only learn the self-expressive coefficients

with desired properties on the training data, but also han-

dle out-of-sample data. Besides, we show that SENet can

also be leveraged to perform subspace clustering on large-

scale datasets. Extensive experiments conducted on syn-

thetic data and real world benchmark data validate the ef-

fectiveness of the proposed method. In particular, SENet

yields highly competitive performance on MNIST, Fashion

MNIST and Extended MNIST and state-of-the-art perfor-

mance on CIFAR-10.

1. Introduction

With technological advances in data acquisition, storage

and processing, there is a surge in the availability of large-

scale databases in computer vision. While the development

of modern machine learning techniques, such as deep learn-

ing, has led to great success in analyzing big data, such

methods require a large amount of annotated data which is

often costly to obtain. Extracting patterns and clusters from

unlabeled big data has become an important open problem.

We consider the problem of clustering large-scale un-

labeled data under the assumption that each cluster is ap-

proximated by a low-dimensional subspace of the high-

dimensional ambient space, a.k.a. subspace clustering [62,

63]. This problem has wide applications in image clustering

[23, 17], motion segmentation [12, 9], hybrid system iden-

tification [61, 5], cancer subtype clustering [44, 32], hyper-

spectral image segmentation [86] and so on.

Self-expressive model [16] is one of the most popular

and successful methods for subspace clustering. Given a

data matrix X = [x1, · · · ,xN] ∈ IRD×N whose columns

are drawn from a union of n subspaces, the self-expressive

model expresses each data point xj ∈ IRD as a linear com-

bination of other data points, i.e.,

xj =
∑

i 6=j

cijxi, (1)

where {cij}i 6=j are self-expressive coefficients. A remark-

able property of the self-expressive model is that solu-

tions to (1) that minimize certain regularization function on

the coefficients have the subspace-preserving property, i.e.,

nonzero coefficients cij occur only between xi and xj lying

in the same subspace [16, 17, 37, 41, 56, 68, 83, 79, 76, 40].

Consequently, correct clustering can be obtained by defin-

ing an affinity between any pair of data points xi and xj

as, e.g., |cij |+ |cji|, and applying spectral clustering to the

affinity. Recent developments further extend the applicabil-

ity of self-expressive models to the case where the data are

corrupted by noise [66, 57, 67] and outliers [56, 82], are im-

balanced over classes [77], or possess missing entries [59].

Despite its great empirical performance and broad theo-

retical guarantees for correctness, the self-expressive model

suffers from the limitation that it requires solving for a self-

expressive matrix of size N ×N , which is computationally

prohibitive for large-scale data. Although scalable subspace

clustering methods based on subsampling [51], sketching

[58] or learning a compact dictionary [3, 54] already exist,

they do not have broad theoretical guarantees for correct-

ness and sacrifice accuracy for scalability. In addition, the

self-expressive coefficients computed for a set of data can-

not be used to produce self-expressive coefficients for pre-

viously unseen data, posing challenges for learning in an

online setting and for out-of-sample data.

In this work, we introduce the self-expressive network

(SENet) to learn a self-expressive model for subspace clus-

12393

tering, which can be leveraged to handle out-of-sample data

and large-scale data. Our method is based on learning a

function f(xi,xj ; Θ) : RD × R
D → R, implemented as a

neural network with parameters Θ, that is designed to sat-

isfy the self-expressive model

xj =
∑

i 6=j

f(xi,xj ; Θ) · xi. (2)

In principle, the number of network parameters does not

need to scale with the number of points in the dataset, hence

SENet can effectively handle large scale data. Moreover, an

SENet trained on a certain dataset can be used to produce

self-expressive coefficients for another dataset drawn from

the same data distribution, therefore the method can handle

out-of-sample data effectively. We present a network archi-

tecture for f(xi,xj ; Θ) as well as a training algorithm that

allow us to learn self-expressive coefficients with desired

subspace-preserving properties. Our experiments showcase

the effectiveness of our method as summarized below:

1. We show that the self-expressive coefficients computed

by a trained SENet closely approximate those computed

by solving for them directly without the network. This il-

lustrates the ability of SENet to approximate the desired

self-expressive coefficients.

2. We show that a SENet trained on (part of) the training

set of MNIST and Fashion MNIST can be used to pro-

duce self-expressive coefficients on the test set that give

a good clustering performance. This illustrates the abil-

ity of SENet to handle out-of-sample data.

3. We show that SENet can be used to cluster datasets con-

taining 70,000+ data poins, such as MNIST, Fashion

MNIST and Extended MNIST, very efficiently, achiev-

ing a performance that closely matches (for MNIST,

Fashion MNIST and Extended MNIST) or surpasses (for

CIFAR-10) the state of the art.

2. Related Work

Deep Clustering. Our work is fundamentally different

from many existing studies on jointly training a deep neural

network and learning self-expressive coefficients [50, 24,

49, 90, 74, 89, 88] for subspace clustering. In such meth-

ods, deep networks are used to extract features (so that they

lie in linear subspaces) from input data (which may not lie

in linear subspaces), and self-expressive model is applied in

the feature space [21, 1]. In contrast, our work assumes that

the input data already lie in linear subspaces, and focuses

on computing the self-expressive coefficients. Our work

also shares similarities with SpectralNet [53], which learns

a neural network to produce a latent embedding by opti-

mizing a spectral clustering objective on an affinity graph.

Such a method does not have a low-dimensional modeling

for data therefore is different from ours.1

Self-expressive Models. Many works have explored dif-

ferent choices of regularization on the self-expressive co-

efficients for subspace clustering. For instance, ℓ1 regu-

larization is used in sparse subspace clustering [16, 17],

for which the optimal solution is subspace-preserving when

the subspaces are independent, disjoint, intersecting or even

affine [17, 56, 66, 67, 83, 33, 80, 52]; nuclear norm and ℓ2
norm regularization are used in low-rank [37, 18] and least

squares subspace clustering [41], respectively, for which the

optimal solution is subspace-preserving when the subspaces

are independent; mixing ℓ1 norm with either ℓ2 or nuclear

norm regularization are used in [79] and [68], respectively,

to improve connectivity of affinity graph while maintain

broad theoretical guarantees for subspace-preserving prop-

erty. In addition, there are works on noise modeling [30,

36, 22] and feature learning [38, 47, 48, 24, 90, 88, 84] for

self-expressive models.

Scalable Subspace Clustering. Due to its importance in

practical applications, large scale subspace clustering has

drawn a lot of research attentions. An early work [51] pre-

sented a subsampling based approach in which a random

subset of data is sampled and clustered, then the rest of the

data are classified with sparse representation based classi-

fication [69]. Following this work, several methods adopt

a two-step approach for computing self-expressive coeffi-

cients: 1) construct a dictionary, either generated in ran-

dom [58] or learned/selected from data [54, 3, 77, 4, 2, 43],

and 2) express each data point as a linear combinations

of the atoms in the dictionary. In particular, motivated by

the development of learned optimization solvers such as

LISTA [20] and ISTA-Net [87] for solving sparse optimiza-

tion problems, [34, 35] presented a framework where one

jointly solves for the self-expressive coefficients and trains

a neural network to approximate self-expressive coefficients

with a dictionary in the first step, so that the computation of

self-expressive coefficients in the second step can be car-

ried out efficiently. In principle, the clustering performance

of such a two-step approach increases with the size of the

dictionary. However, the output dimension hence the scale

of the optimization problem in [34, 35] increases at least

quadratically with the size of the dictionary, therefore using

a sufficiently large dictionary may be impossible.

Another group of methods achieve efficient computation

by decomposing a large-scale optimization problem into a

sequence of small scale problems, by either a greedy ap-

proach [81, 13], active support method [79], or dropout

strategy [10]. These methods enjoy broad theoretical guar-

1When finalizing the submission, we became aware of a work-in-

progress report [7] that presents a similar idea as ours. While [7] uses ℓ2
regularization and imposes symmetry on self-expressive coefficients, our

model uses a general elastic net regularization and does not impose sym-

metry constraint, therefore has a better capability of obtaining subspace-

preserving properties.

12394

antees for correctness and have superior empirical perfor-

mance. Nonetheless, they have quadratic time and memory

requirement, therefore cannot handle very large scale data.

Self-attention Models. The self-attention mechanism used

in Graph Attention Networks (GAT) [60], Transformer [27],

Non-local Neural Networks [65], etc., shares similar idea

with the self-expressive models. In these works, the (out-

put) features of one data point are computed as a linear

combination of (input) features of all data points. Simi-

lar to SENet, the coefficients in the linear combination are

computed with a neural network. However, unlike the self-

expressive models, which use the distance between the in-

put features and output features to define a training loss in

an unsupervised manner, the self-attention methods impose

a supervised learning loss on the output features. This leads

to a difference in the design of the network architecture, as

we explain in the next section.

3. Self-Expressive Network

3.1. Model

Let X = [x1, · · · ,xN] ∈ IRD×N be a data matrix

whose columns lie in a union of low-dimensional linear sub-

spaces of IRD. Self-expressive methods for subspace clus-

tering are based on solving for every j ∈ {1, · · · , N} an

optimization problem of the form

min
{cij}i 6=j

γ

2
‖xj −

∑

i 6=j

cijxi‖
2
2 +

∑

i 6=j

r(cij), (3)

where r(·) : IR 7→ IR+ is a regularization function and

γ > 0 is a balancing parameter. The idea is that any col-

umn xj can be expressed as a linear combination of other

columns of X that are from the same subspace as xj . Such

a linear combination is known as subspace-preserving, and

it can be recovered by solving (3) with certain choices of

regularization r(·). Aggregating the solutions to (3) for all

columns of X yields a self-expressive coefficient matrix

C ∈ IRN×N with the i, j-th entry given by cij . When C

is subspace-preserving, spectral clustering [64] on an affin-

ity given by, e.g., |C|+ |C⊤|, produces correct clustering of

the data matrix X .

We present a method that is based on solving the follow-

ing optimization problem in lieu of (3):

min
Θ

γ

2
‖xj −

∑

i 6=j

f(xi,xj ; Θ)xi‖
2
2 +

∑

i 6=j

r
(

f(xi,xj ; Θ)
)

,

(4)

where f(xi,xj ; Θ) : RD × R
D → R is a function param-

eterized by Θ. There are two benefits of using the model in

(4) over the model in (3).

First, the number of parameters in (3) (collectively for all

j ∈ {1, . . . , N}) is quadratic with the number of data points

N , which limits its applicability to large scale datasets since

an N -by-N matrix may not fit into memory. In contrast,

the number of parameters in (4) needs not be related to the

number of data points, and can be determined flexibly based

on the availability of the memory. In principle, the model in

(4) may be used to compute self-expressive coefficients for

datasets of arbitrary size.

Second, self-expressive coefficients computed from (3)

for a particular dataset cannot be used for another dataset

that is drawn from the same distribution. This implies that

the model in (3) cannot be used to handle out-of-sample

data, for which self-expressive coefficients need to be com-

puted from scratch. In contrast, a self-expressive function in

(4) once learned on a particular dataset can be used to gener-

ate self-expressive coefficients for out-of-sample data. By

our design of the network architecture for f(·, ·; Θ) as we

discuss in Subsection 3.2, the calculation on out-of-sample

data can be carried out very efficiently.

Choice of Regularization r(·). It is known that sparsity

regularization in self-expressive models enforces subspace-

preserving properties under broadest conditions [16, 17, 56,

83, 67, 59, 33, 80]. For example, the work [56, 67] showed

that with ℓ1 regularization on the coefficients, the model in

(3) produces subspace-preserving solutions even when the

subspaces intersect, provided that the subspaces are suf-

ficiently separated and points in each subspace are well-

distributed. On the other hand, sparsity regularization pro-

duces solutions that have too many false negatives, i.e., the

self-expressive coefficient cij can often be zero even when

xi and xj are from the same subspace. This may lead

to a poorly connected affinity graph that results in over-

segmentation. Hence, the work [79] advocated using elastic

net regularization, which is given by a weighted sum of ℓ1
and ℓ22 regularization with a balancing parameter λ ∈ [0, 1]:

r(·) = λ| · |+
1− λ

2
(·)2. (5)

This regularizer provably produces subspace-preserving so-

lutions under similar conditions as for the ℓ1 regularizer,

and at the same time produces a denser coefficient matrix,

hence an improved clustering performance. Therefore, we

adopt elastic net regularization for our model in (4).

3.2. Network Instantiation

Inspired by recent advances in deep learning, we imple-

ment the self-expressive function f(·, ·; Θ) in our model (4)

via a deep neural network with training parameters Θ. We

refer to the network as Self-Expressive Network (SENet).

Specifically, we propose the following network formula-

tion for SENet:

f(xi,xj ; Θ) = αTb(u
⊤
j vi), (6)

12395

 !

 "

#!

$%

#!
&$%

Figure 1. Architecture of Our SENet

where

uj := u(xj ; Θu) ∈ IRp, (7)

vi := v(xi; Θv) ∈ IRp. (8)

In above, u(·; Θu) and v(·; Θv), referred to as query and

key networks, are two multilayer preceptrons (MLPs) that

perform mappings IRD 7→ IRp with learnable parameters

Θu and Θv , respectively, where p is a model parameter.

Tb(·) is a learnable soft thresholding operator defined as

Tb(t) := sgn(t)max(0, |t| − b), (9)

where b is a learnable parameter and α > 0 is a fixed nu-

merical constant. For clarity, we use Θ := {Θu,Θv, b} to

denote all the trainable parameters in SENet, and illustrate

the architecture of the neural network f(xi,xj ; Θ) in Fig. 1.

By the design of network architecture in (6), the self-

expressive coefficient for a pair of data points (xj ,xi)
is computed by learning a pair of representations uj and

vi, respectively, and taking the inner product of uj and

vi before applying a soft-thresholding. We empirically

find (see Sec. 4.1) that such a network can produce self-

expressive coefficients that well approximate the solution

to (3), which justifies its ability in obtaining the desired

subspace-preserving and denser connection properties.2

An important benefit of the design in (6) is that the

computation of the self-expressive coefficient matrix for a

given data matrix X can be made very efficient. In par-

ticular, instead of evaluating f(xi,xj ; Θ) for all possible

(i.e., N2 number of) pairs of (xj ,xi), one may evalu-

ate u(·,Θu) and v(·,Θv) separately for all columns of X ,

which can be parallelized. After that, the coefficient matrix

can be obtained by computing inner product between pairs

of (uj ,vi), which again can be parallelized and computed

very efficiently. Such a property also allows us to train the

network efficiently as we explain in the next subsection.

Comparison to Self-attention Models. The network ar-

chitecture in (6) bears a close resemblance to the self-

attention model in Transformer [27], Non-Local Neural

2An analysis of its approximation power is left as future work.

Networks [65], and Graph Attention Networks [60], etc.,

which also aim to compute self-expressive coefficients for a

set of signal (e.g., sequence, image, video, nodes on graph)

representations. However, we note that our choice of ar-

chitecture in (6) has several favorable properties over the

self-attention models.

• The functions u(·) and v(·) in self-attention models are

linear maps, while we use MLPs for our SENet. This

design is to increase the expressive power of SENet to

gain universal approximation ability so that it can easily

approach the optimal solution for the convex formulation

in (3) and hence enjoy subspace-preserving property.

• The self-attention model usually adopts a normalization

factor such that each self-expression is given by a convex

combination. Such a requirement is, however, too restric-

tive for our purpose: for sample points that lie in a vertex

of the convex hull of sample points in one of the sub-

spaces, they cannot be expressed as a convex combina-

tion of other points. In such cases, self-attention models

cannot produce subspace-preserving solutions.

• We adopt a soft-thresholding operator at the output of

SENet, borrowed from learned sparse optimization net-

works such as LISTA [20] and ISTA-Net [87], to enforce

sparsity of the output. This is to account for the fact that

the solution to the model in (4) with the elastic net reg-

ularization in (5) is expected to be sparse (due to the ℓ1
norm inside).

3.3. Training

We train SENet in (6) via solving the following optimiza-

tion problem:

min
Θ
L(X; Θ) :=

N
∑

j=1

ℓ(xj , X; Θ), (10)

where ℓ(xj , X; Θ) is the objective function in (4), i.e.,

ℓ(xj , X; Θ) : =
γ

2
‖xj −

∑

i 6=j

f(xi,xj ; Θ)xi‖
2
2

+
∑

i 6=j

r
(

f(xi,xj ; Θ)
)

.
(11)

Then, the network parameters Θ can be learned by Stochas-

tic Gradient Descent (SGD). We summarize the algorithm

(assuming that batch size is 1 for simplicity) in Algorithm 1.

Since the loss ℓ(xj , X; Θ) depends on the entire data X

(for any fixed xj), the memory requirement for Algorithm 1

scales linearly with the number of data points. This restricts

the ability of the algorithm to handle very large scale data.

Next, we present a two-pass algorithm that is equivalent to

Algorithm 1 but with constant memory complexity.
Two-pass SGD Algorithm. To derive our algorithm, we

12396

Algorithm 1 A Naive SGD Algorithm for Training SENet

1: Input: Dataset X ∈ R
D×N , model parameters γ > 0

and λ ∈ [0, 1], number of iterations T , learning rate η

2: Initialization: Random initialize SENet parameters Θ
3: for each t ∈ {1, · · · , T} do

4: Sample a data point xj from X

5: # Forward propagation to compute loss

6: Compute uj
.
= u(xj ,Θu)

7: Load data X and compute V
.
= [v1, . . . ,vN], where

vi
.
= v(xi,Θv)

8: Compute f(X,xj ; Θ)
.
= αTb(V

⊤
uj)

9: Compute ℓ(xj , X; Θ) from f(X,xj ; Θ) by (11)

10: # Backward propagation to compute gradient

11: Compute dΘ
.
=

∂ℓ(xj ,X;Θ)
∂Θ

12: # Gradient descent to update Θ
13: Set Θ← Θ− η · dΘ
14: end for

15: Output: SENet with trained weights.

compute the gradient in step 11 of Algorithm 1 as

∂ℓ(xj , X; Θ)

∂Θ
=

∑

i 6=j

(

r′
(

f(xi,xj ; Θ)
)

− 〈xi, qj〉
)∂f(xi,xj ; Θ)

∂Θ
, (12)

where

qj := γ
(

xj −
∑

i 6=j

f(xi,xj ; Θ)xi

)

, (13)

and r′(·) denotes the derivative3 of r(·). Observe that if the

vector qj in (12) is given, then the right hand side of (12) is

a weighted sum of gradient computed at each data point xi

for i = 1, · · · , N . Therefore, it can be accumulated in an

online fashion with constant space requirement (see step 14

- 20, Algorithm 2). Moreover, although qj is unknown, it

can be computed by performing a separate forward prop-

agation (and no backward propagation is needed). In par-

ticular, qj can be computed by subtracting the summation
∑

i 6=j f(xi,xj ; Θ)xi from xj , where the summation term

can be accumulated in an online fashion with constant space

requirement as well (see step 6 - 13, Algorithm 2). Over-

all, this leads to a two-pass algorithm for training SENet as

described in Algorithm 2.

Since the memory requirement for Algorithm 2 does not

scale with the number of data points, in principle it can han-

dle arbitrarily large datasets.

4. Experiments

We conduct extensive experiments on both synthetic data

and real world benchmark datasets to evaluate the perfor-

3As r(t) is not differentiable at t = 0, we set r′(0) = 0 which is in

the sub-differential of r(t) at t = 0.

Algorithm 2 A Two-pass Algorithm for Training SENet

1: Input: Dataset X ∈ R
D×N , model parameters γ > 0

and λ ∈ [0, 1], number of iterations T , learning rate η

2: Initialization: Random initialize SENet parameters Θ
3: for each t ∈ {1, · · · , T} do

4: Sample a data point xj from X

5: Compute uj
.
= u(xj ,Θu)

6: # First pass (forward only): compute qj

7: Initialize x̄ = 0

8: for each i ∈ {1, · · · , j − 1, j + 1, · · · , N} do

9: Load data xi and compute vi
.
= v(xi,Θv)

10: Compute f(xi,xj ; Θ) = αTb(u
⊤
j vi)

11: Set x̄← x̄+ f(xi,xj ; Θ)xi

12: end for

13: Set qj = γ(xj − x̄)
14: # Second pass: compute gradient dΘ
15: Initialize dΘ = 0

16: for each i ∈ {1, · · · , j − 1, j + 1, · · · , N} do

17: Load data xi and compute vi
.
= v(xi,Θv)

18: Compute f(xi,xj ; Θ) = αTb(u
⊤
j vi)

19: Set dΘ ← dΘ +
(

r′(f(xi,xj ; Θ)) −

〈xi, qj〉
)

∂f(xi,xj ;Θ)
∂Θ

20: end for

21: # Gradient descent to update Θ
22: Set Θ← Θ− η · dΘ
23: end for

24: Output: SENet with trained weights.

mance of SENet.

Network Architecture. For both the query and key net-

works in (7) and (8), we use a three-layer MLP with ReLU

and tanh(·) as the activation functions for hidden layers and

the output layer, respectively. The number of hidden units

in each layer of the MLPs are {1024, 1024, 1024}, and the

output dimension p is 1024. By using tanh(·) as the output

layer activation, the inner product of the output vectors uj

and vi is bounded by p, i.e., u⊤
j vi ∈ (−p, p). Therefore,

we use a small scalar multiplier α = 1
1024 as in (6) to scale

down the output of SENet. We use the Adam [25] optimizer

with an initial learning rate of 10−3 and use the cosine an-

nealing learning rate decay [39] with gradient clipping.

Metrics. Given a self-expressive coefficient matrix C, we

use the subspace recovery error (SRE), defined as the pro-

portion of the ℓ1 norm of C that comes from the wrong

subspace, to measure the subspace-preserving property of

C. In addition, we use the algebraic connectivity (CONN)

[45], defined as the second smallest eigenvalue of the nor-

malized graph Laplacian of each ground-truth class mini-

mized over all classes, to measure the connectedness of the

affinity graph. As discussed in Subsection 3.1, we desire

that C has low SRE and high CONN. We refer the reader to

12397

[81] for a detailed explanation of these two quantities.

To evaluate the clustering performance, we report clus-

tering accuracy (ACC), normalized mutual information

(NMI) and adjusted rand index (ARI) which are commonly

used in the literature (see e.g., [84] for a definition).

4.1. Experiments on Synthetic Data

Visualization of Self-expressive Coefficients. We demon-

strate the ability of SENet to produce self-expressive coef-

ficients and generalize to out-of-sample data on synthetic

data. For that purpose, we generate a synthetic dataset as

in [81], where 5 subspaces of dimension 6 are sampled uni-

formly at random in the ambient space IR15 (i.e., n = 5,

d = 6 and D = 15), and 200 points are sampled uni-

formly at random on the unit sphere of each subspace. We

randomly select 500 data points as training data Xtr and

the remaining 500 data points as testing data Xts. We

set the parameters γ = 50.0 and λ = 0.9 and use Al-

gorithm 1 to train our SENet on Xtr with maximum it-

eration Tmax = 500. Then we take the trained SENet at

the t-th iteration to evaluate and infer the matrices of self-

expressive coefficients C
(t)
tr and C

(t)
ts on Xtr and Xts, re-

spectively. A visualization of |C
(t)
tr | and |C

(t)
ts | is given as

colored images in Fig. 2. We observe of that SENet is able

to efficiently learn self-expressive coefficients that are ap-

proximately subspace-preserving after only a few hundred

iterations and that the trained SENet is able to infer self-

expressive coefficients for out-of-sample data with reason-

ably good quality. Note that spectral clustering could yield

perfect result after training with 300 iterations.

(a) C
(100)
tr

(64%) (b) C
(300)
tr

(23%) (c) C
(500)
tr

(10%)

(d) C
(100)
ts

(66%) (e) C
(300)
ts

(37%) (f) C
(500)
ts

(24%)

Figure 2. Visualization of self-expressive coefficients computed by

SENet trained with {100, 300, 500} iterations on synthetic data

where the percentage number in bracket is SRE.

Comparing SENet to EnSC. We demonstrate the ability of

SENet to approximate the solution to (3) with r(·) being the

elastic net regularization function in (5), which is a method

known as EnSC [79]. For that purpose, we use the same

parameters γ = 50.0 and λ = 0.9 for SENet and EnSC

models, so that they solve the same optimization problems

except that EnSC directly optimizes over the self-expressive

coefficients while SENet optimizes over the parameters of

a network that generates the coefficients.

We sample 5 subspaces of dimension 6 in the ambient

space IR9 (i.e., n = 5, d = 6 and D = 9), then sample

Ni data points from the unit sphere of each subspace with

Ni ∈ {20, 100, 200, 1000, 2000}. We measure the differ-

ence between EnSC and SENet solutions by reporting the

total loss (L) in (10), as well as the reconstruction loss and

regularization loss:

Lrec
.
=

N
∑

j=1

‖xj −
∑

i 6=j

f(xi,xj ; Θ)xi‖
2
2, (14)

Lreg
.
=

N
∑

j=1

∑

i 6=j

r(f(xi,xj ; Θ)). (15)

We also report SRE, CONN and ACC. The results are

shown in Table 1. We can see that the difference between

the solution by SENet and EnSC is relatively small, indicat-

ing the strong approximation power of the SENet architec-

ture. On the other hand, such a difference increases with Ni,

showing that a larger (e.g., deeper and wider) network may

be needed. By examining the values of SRE and CONN

we can see that such a difference causes higher subspace-

preserving error, but it helps improve the connectivity of

the affinity graph.

To evaluate the generalization ability of the trained

SENet, we prepare a set of test data that consists of Ni data

points per subspace sampled uniformly at random from the

union of subspaces model that is used to generate the train-

ing data. Then, the trained SENet is used to directly in-

fer the self-expressive coefficients on test data. The results

are reported in the rows “SENet test” of Table 1. We can

see that the trained SENet shows increasingly better abil-

ity to detect subspace structures when the number of data

points per subspace is increased. Moreover, we can see that

while Lreg is similar in scale to that given by SENet on the

train data, the Lrec is significantly higher. This shows that

the generalization ability of SENet is on detecting subspace

structures, not on the reconstruction.

4.2. Experiments on Real World Datasets

We further evaluate the performance of SENet on four

larger benchmark datasets: MNIST [29], Fashion-MNIST

[71], CIFAR-10 [26] and Extended MNIST (EMNIST) [11].

MNIST contains 70,000 grey-scale images of handwrit-

ten digits “0” to “9”, which we denote as MNIST-full.

The MNIST-full is divided into MNIST-train and MNIST-

test, consisting of 60,000 and 10,000 images, respectively.

12398

Ni Methods
Metrics

L Lrec Lreg ACC (%) SRE (%) CONN

20

EnSC 135.127 0.107 132.442 72.0 49.611 0.178

SENet 135.132 0.109 132.416 71.0 49.720 0.178

SENet test 1830.107 72.007 29.937 65.0 58.384 0.318

100

EnSC 559.943 0.526 558.009 93.0 27.370 0.163

SENet 559.972 0.531 558.022 92.8 27.501 0.165

SENet test 2935.424 89.325 702.309 79.0 56.897 0.387

200
EnSC 1053.086 0.526 1040.097 96.6 20.067 0.155

SENet 1053.369 0.531 1040.097 96.0 20.195 0.159

SENet test 17826.273 599.099 2848.779 84.1 56.256 0.398

1000
EnSC 4884.876 2.095 4832.508 99.4 6.493 0.126

SENet 4932.907 2.205 4877.781 99.5 9.132 0.155

SENet test 30037.012 887.323 7853.945 92.3 36.054 0.236

2000
EnSC 9576.154 3.958 9477.197 99.7 4.580 0.108

SENet 10025.874 4.592 9911.074 99.4 13.555 0.201

SENet test 44458.734 1453.790 8113.975 97.4 21.863 0.220

Table 1. Comparing SENet to EnSC on synthetic data

Fashion-MNIST contains 70,000 grey-scale images of var-

ious types of fashion products, denoted as Fashion-MNIST-

full. Fashion products (e.g., coat, trouser, shirt, dress,

bag, etc.) with different styles correspond to 10 cate-

gories. Similar to MNIST, Fashion-MNIST-full is divided

into Fashion-MNIST-train and Fashion-MNIST-test, con-

sisting of 60,000 and 10,000 images, respectively. EM-

NIST contains grey-scale images of handwritten digits and

letters where 190,998 images of the 26 lower case letters

are used for the clustering problem with 26 categories. For

these three datasets, we compute a feature vector of di-

mension 3,472 using the scattering convolution network

[6], which extracts translational invariant and deformation

stable features, and then reduce the dimension to 500 us-

ing PCA. CIFAR-10 contains 60,000 color images in 10

classes, where each image is of size 32 × 32. For CIFAR-

10, we use the feature representation extracted by MCR2

[84], which learns a union-of-subspace representation from

data with self-supervised learning. All feature vectors are

normalized to have unit ℓ2 norm.4

To produce a segmentation from the self-expressive co-

efficient matrix, we compute an affinity matrix by either a)

constructing a 3-nearest neighbor graph from the columns

of C as in [77] (for MNIST, Fashion-MNIST and EM-

NIST), or b) using |C|+ |C⊤| (for CIFAR-10). Then, spec-

tral clustering is applied to the affinity matrix.5

Generalization Performance of SENet. We evaluate

the generalization ability of SENet to out-of-sample data

using MNIST and Fashion-MNIST. Specifically, we se-

lect N ∈ {200, 500, 1000, 2000, 5000, 10000, 20000} data

points uniformly at random from MNIST-train and train

SENet for 100,000 iterations with a batch size fixed to

100 (likewise for Fashion-MNIST-train). Then, we take

MNIST-test as test data for which the trained SENet is used

to generate self-expressive coefficients and apply spectral

clustering on the induced affinity for producing a segmen-

tation (likewise for Fashion-MNIST-test). For EnSC, we di-

rectly compute the self-expressive coefficients on MNIST-

test and Fashion-MNIST-test.

4For EMNIST, we also remove the mean after PCA as in [77].
5For MNIST and FashionMNIST, we use the eigenvectors correspond-

ing to the 15 smallest eigenvalues of graph Laplacian to perform k-means.

Experimental results are reported in Table 2. We can

see that with the increasing amount of training data, SENet

is able to approach or surpass the performance of EnSC,

which is directly optimized on the test data. This confirms

that the trained SENet enjoys a promising generalization

ability to out-of-sample data in real world datasets.

Methods Train Data: #
MNIST-test Fashion-MNIST-test

ACC (%) SRE (%) ACC (%) SRE (%)

EnSC NA 97.15 4.455 60.55 21.712

SENet

200 77.22 14.260 55.41 26.299

500 82.60 8.846 63.65 24.430

1000 80.87 7.290 70.46 23.502

2000 95.45 5.131 58.71 22.197

5000 95.80 4.785 60.67 21.109

10000 96.66 4.121 62.92 20.385

20000 96.25 3.978 64.64 20.442

Table 2. Generalization performance of SENet on MNIST-test and

Fashion-MNIST-test.

Subspace Clustering on Large-Scale Datasets. We

demonstrate that SENet can effectively handle large-scale

datasets MNIST-full (70k), Fashion-MNIST-full (70k),

CIFAR-10 (60k) and EMNIST (190k). For each dataset,

we randomly select N points to train SENet, then apply

the trained SENet to generate self-expressive coefficients on

the entire dataset. At the end, spectral clustering is applied

to obtain the segmentation. In EnSC and SENet, we use

γ = 200.0 and λ = 0.9 for MNIST, Fashion-MNIST and

CIFAR-10, and γ = 150.0 and λ = 1.0 for EMNIST.

In Fig. 3, we report the training time and clustering ac-

curacy with varying N . The experiments are conducted

on a single NVIDIA GeForce 2080Ti GPU (for EMNIST)

or 1080Ti GPU (for all other datasets). We also compare

with EnSC, for which the active support solver in [79] is

used to compute the self-expressive coefficients on the en-

tire datasets. Since there is no available GPU acceleration

packages for this solver, we run EnSC using an Intel(R)

Xeon E5-2630 CPU. The results confirm that our SENet

is able to achieve reasonably good performance while using

only a small amount of data. This leads to a significantly

reduced training time. For EMNIST, as EnSC needs more

than 24 hours, we instead compare SENet to ESC [77] in

which 300 exemplars are used. Note that SENet achieves

comparable performance as ESC within an acceptable time,

showing its potential to handle large-scale datasets.

We further compare the performance of SENet to other

methods in the literature, including k-means [42], spec-

tral clustering with normalized cuts (Spectral) [55], elas-

tic net subspace clustering (EnSC) [79], sparse subspace

clustering by orthogonal matching pursuit (SSC-OMP)

[81], neural collaborative subspace clustering (NCSC) [89]

and exemplar-based subspace clustering (ESC) [77]. We

also compare SENet to several state-of-the-art deep im-

age clustering algorithms, including deep embedded clus-

tering (DEC) [72], joint unsupervised learning (JULE) [73],

12399

2000 4000 6000 8000 10000
Running Time (sec.)

60

65

70

75

80

85

90

95

100

Ac
cu
ra
cy
 (%

)

SENet-200

SENet-500

SENet-1000

SENet-2000

SENet-5000 SENet-10000 SENet-20000 EnSC

(a) MNIST

2000 4000 6000 8000 10000
Running Time (sec.)

58

60

62

64

66

68

70

Ac
cu
ra
cy
 (%

)

SENet-200
SENet-500

SENet-1000
SENet-2000

SENet-5000

SENet-10000

SENet-20000

EnSC

(b) Fashion-MNIST

500 1000 1500 2000 2500 3000
Running Time (sec.)

62

64

66

68

70

72

74

76

Ac
cu
ra
cy
 (%

)

SENet-200

SENet-500

SENet-1000

SENet-2000

SENet-5000

SENet-10000 SENet-20000

EnSC

(c) CIFAR-10

3000 4000 5000 6000 7000
Running Time (sec.)

40

45

50

55

60

65

70

75

Ac
cu
ra
cy
 (%

)

SENet-200

SENet-500

SENet-1000

SENet-2000

SENet-5000
SENet-10000

SENet-20000

ESC

(d) EMNIST

Figure 3. Clustering accuracy vs. training time with varying training data sizes. SENet-N denotes SENet trained on N data points.

Methods
MNIST-full Fashion-MNIST-full CIFAR-10 EMNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means [42] 0.541 0.507 0.367 0.505 0.578 0.403 0.525 0.589 0.276 0.459 0.438 0.316

Spectral [55] 0.728 0.856 0.667 0.625 0.700 0.494 0.455 0.574 0.256 0.662 0.769 0.654

JULE [73] 0.964 0.913 0.927 0.563 0.608 - 0.272 0.192 0.138 - - -

DEC [72] 0.863 0.834 - 0.518 0.546 - 0.301 0.257 0.161 - - -

DAC [8] 0.978 0.935 0.949 - - - 0.522 0.396 0.306 - - -

DEPICT [19] 0.965 0.917 - 0.392 0.392 - - - - - - -

ClusterGAN [46] 0.905 0.890 - 0.662 0.645 - - - - - - -

DSCDAN [75] 0.978 0.941 - 0.662 0.645 - - - - - - -

DCCM [70] - - - - - - 0.623 0.496 0.408 - - -

SSC-OMP [81] 0.928 0.842 0.849 0.274 0.421 0.196 0.326 0.498 0.196 0.654 0.661 0.634

NCSC [89] 0.941 0.861 0.875 0.721 0.686 0.592 - - - - - -

EnSC [79] 0.980 0.945 0.957 0.672 0.705 0.565 0.613 0.601 0.430 T T T

ESC [77] 0.971 0.925 0.936 0.668 0.708 0.556 0.653 0.629 0.438 0.732 0.825 0.759

SENet 0.968 0.918 0.931 0.697 0.663 0.556 0.765 0.655 0.573 0.721 0.798 0.766

Table 3. Image clustering results on MNIST-full, Fashion-MNIST-full, CIFAR-10 and EMNIST. The best results are in bold font and the

second best results are underlined. ‘T’ means the computation time exceeds 24 hours.

deep adaptive image clustering (DAC) [8], deep embedded

regularized clustering (DEPICT) [19], ClusterGAN [46],

deep spectral clustering using dual autoencoder network

(DSCDAN) [75] and deep comprehensive correlation min-

ing (DCCM) [70].

Experimental results are reported in Table 3. We can see

that our SENet is among the best performing methods on

the four benchmarks. Specifically, SENet consistently out-

performs previous subspace clustering methods on CIFAR-

10, i.e., +15.2% on CIFAR-10 compared to EnSC in terms

of accuracy. Although trained on sampled small datasets,

our SENet could still achieve a comparable performance on

MNIST-full with significantly reduced training time. Mean-

while, our SENet also achieves comparable performance

when compared to state-of-the-art deep image clustering

methods. In particular, our SENet outperforms all baseline

methods on CIFAR-10 and achieves second highest accu-

racy on Fashion-MNIST and EMNIST.

5. Conclusion

We proposed a novel self-expressive network (SENet)

for discovering low-dimensional subspace structures in

high-dimensional data and presented two stochastic gra-

dient descent (SGD) based training algorithms to effec-

tively train SENet. Different from the conventional self-

expressive model, which is defined on the given dataset only

and cannot handle out-of-sample data, our proposed SENet

is trained on the given dataset and can generalize to unseen

new samples. We conducted extensive experiments on syn-

thetic data and real world data and showed that the self-

expressive coefficients learned by SENet are equally good

or even better than the self-expressive coefficients learned

by a convex self-expressive model. Moreover, we verified

that the out-of-sample ability enables SENet to efficiently

handle large-scale dataset.

Beyond the clustering task, self-expressive models also

have wide applications in classification [69], exemplar se-

lection [15, 78], outlier/novelty detection [85, 82], and ma-

trix completion [14, 31, 28] tasks as well, we believe that

our SENet may also be extended for many of such tasks,

and leave it to future work.

Acknowledgment

S. Zhang and C.-G Li are supported by the National Nat-

ural Science Foundation of China under Grant 61876022.

C.-G. Li is the corresponding author. R. Vidal was partially

supported by the Northrop Grumman Mission Systems Re-

search in Applications for Learning Machines (REALM)

initiative, NSF Grants 1704458, 2031985 and 1934979.

C. You acknowledges support from the Tsinghua-Berkeley

Shenzhen Institute Research Fund.

12400

References

[1] Maryam Abdolali and Nicolas Gillis. Beyond linear sub-

space clustering: A comparative study of nonlinear mani-

fold clustering algorithms. arXiv preprint arXiv:2103.10656,

2021. 2

[2] Maryam Abdolali, Nicolas Gillis, and Mohammad Rahmati.

Scalable and robust sparse subspace clustering using ran-

domized clustering and multilayer graphs. Signal Process-

ing, 163:166–180, 2019. 2

[3] A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace

clustering via bipartite graph modeling. IEEE Transactions

on Neural Networks and Learning Systems, 26(10):2234 –

2246, 2015. 1, 2

[4] Akram Aldroubi, Ali Sekmen, Ahmet Bugra Koku, and Ah-

met Faruk Cakmak. Similarity matrix framework for data

from union of subspaces. Applied and Computational Har-

monic Analysis, 2017. 2

[5] Laurent Bako and René Vidal. Algebraic identification of

MIMO SARX models. In International Workshop on Hybrid

Systems: Computation and Control, pages 43–57. Spinger-

Verlag, 2008. 1

[6] Joan Bruna and Stéphane Mallat. Invariant scattering convo-

lution networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(8):1872–1886, 2013. 7

[7] Julian Busch, Evgeniy Faerman, Matthias Schubert, and

Thomas Seidl. Learning self-expression metrics for scal-

able and inductive subspace clustering. arXiv preprint

arXiv:2009.12875, 2020. 2

[8] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming

Xiang, and Chunhong Pan. Deep adaptive image cluster-

ing. In IEEE International Conference on Computer Vision,

2017. 8

[9] G. Chen and G. Lerman. Spectral curvature cluster-

ing (SCC). International Journal of Computer Vision,

81(3):317–330, 2009. 1

[10] Ying Chen, Chun-Guang Li, and Chong You. Stochastic

sparse subspace clustering. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4155–4164, 2020. 2

[11] Nadav Cohen, Or Sharir, Yoav Levine, Ronen Tamari, David

Yakira, and Amnon Shashua. Analysis and design of con-

volutional networks via hierarchical tensor decompositions.

arXiv preprint arXiv:1705.02302, 2017. 6

[12] Joao Paulo Costeira and Takeo Kanade. A multibody fac-

torization method for independently moving objects. Inter-

national Journal of Computer Vision, 29(3):159–179, 1998.

1

[13] Eva L. Dyer, Aswin C. Sankaranarayanan, and Richard G.

Baraniuk. Greedy feature selection for subspace clustering.

Journal of Machine Learning Research, 14(1):2487–2517,

2013. 2

[14] E. Elhamifar. High-rank matrix completion and clustering

under self-expressive models. In Neural Information Pro-

cessing Systems, 2016. 8

[15] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at

a few: Sparse modeling for finding representative objects. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2012. 8

[16] E. Elhamifar and R. Vidal. Sparse subspace clustering. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2790–2797, 2009. 1, 2, 3

[17] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-

gorithm, theory, and applications. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 35(11):2765–2781,

2013. 1, 2, 3

[18] Paolo Favaro, René Vidal, and Avinash Ravichandran. A

closed form solution to robust subspace estimation and clus-

tering. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1801 –1807, 2011. 2

[19] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng,

Weidong Cai, and Heng Huang. Deep clustering via joint

convolutional autoencoder embedding and relative entropy

minimization. In IEEE International Conference on Com-

puter Vision, pages 5736–5745, 2017. 8

[20] K. Gregor and Y. LeCun. Learning fast approximations

of sparse coding. In International Conference on Machine

Learning, pages 399–406. Omnipress, 2010. 2, 4

[21] Benjamin David Haeffele, Chong You, and Rene Vidal. A

critique of self-expressive deep subspace clustering. In In-

ternational Conference on Learning Representations, 2021.

2

[22] R. He, L. Wang, Z. Sun, Y. Zhang, and B. Li. Information

theoretic subspace clustering. IEEE Transactions on Neural

Networks and Learning Systems, 27(12):2643–2655, 2016.

2

[23] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D.-J. Kriegman.

Clustering appearances of objects under varying illumina-

tion conditions. In Proceedings of IEEE International Con-

ference on Computer Vision and Pattern Recognition, pages

11–18, 2003. 1

[24] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid. Deep sub-

space clustering networks. In Neural Information Processing

Systems (NIPS), 2017. 2

[25] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. International Conference on Learn-

ing Representations, 2014. 5

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

[27] Ashish KVaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and

Illia Polosukhin. Attention is all you need. In Neural In-

formation Processing Systems, pages 5998–6008, 2017. 3,

4

[28] Connor Lane, Ron Boger, Chong You, Manolis Tsakiris,

Benjamin Haeffele, and Rene Vidal. Classifying and com-

paring approaches to subspace clustering with missing data.

In IEEE International Conference on Computer Vision Work-

shops, 2019. 8

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

6

12401

[30] Baohua Li, Ying Zhang, Zhouchen Lin, and Huchuan Lu.

Subspace clustering by mixture of gaussian regression. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2094–2102, 2015. 2

[31] Chun-Guang Li and René Vidal. A structured sparse

plus structured low-rank framework for subspace clustering

and completion. IEEE Transactions on Signal Processing,

64(24):6557–6570, 2016. 8

[32] Chun-Guang Li, Chong You, and René Vidal. Structured

sparse subspace clustering: A joint affinity learning and sub-

space clustering framework. IEEE Transactions on Image

Processing, 26(6):2988–3001, 2017. 1

[33] Chun-Guang Li, Chong You, and René Vidal. On geometric

analysis of affine sparse subspace clustering. IEEE Journal

on Selected Topics in Signal Processing, 12(6):1520–1533,

2018. 2, 3

[34] Jun Li, Yu Kong, and Yun Fu. Sparse subspace clustering by

learning approximation ℓ0 codes. In Proc. of the AAAI Conf.

on Artif. Intell, pages 2189–2195, 2017. 2

[35] Jun Li, Hongfu Liu, Zhiqiang Tao, Handong Zhao, and

Yun Fu. Learnable subspace clustering. arXiv preprint

arXiv:2004.04520, 2020. 2

[36] Yuanman Li, Jiantao Zhou, Xianwei Zheng, Jinyu Tian, and

Yuan Yan Tang. Robust subspace clustering with indepen-

dent and piecewise identically distributed noise modeling.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8720–8729, 2019. 2

[37] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust sub-

space segmentation by low-rank representation. In Proceed-

ings of the 27th International Conference on Machine Learn-

ing (ICML-10), June 21-24, 2010, Haifa, Israel, pages 663–

670, 2010. 1, 2

[38] G. Liu and S. Yan. Latent low-rank representation for sub-

space segmentation and feature extraction. In 2011 Inter-

national Conference on Computer Vision, pages 1615–1622,

Nov 2011. 2

[39] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In International Conference on

Learning Representations, 2017. 5

[40] Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, and

Shuicheng Yan. Subspace clustering by block diagonal rep-

resentation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2018. 1

[41] C-Y. Lu, H. Min, Z-Q. Zhao, L. Zhu, D-S. Huang, and S.

Yan. Robust and efficient subspace segmentation via least

squares regression. In European Conference on Computer

Vision, pages 347–360, 2012. 1, 2

[42] J. MacQueen. Some methods for classification and analy-

sis of multivariate observations. In Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Proba-

bility, pages 281–297, 1967. 7, 8

[43] Shin Matsushima and Maria Brbic. Selective sampling-based

scalable sparse subspace clustering. In Advances in Neural

Information Processing Systems, 2019. 2

[44] Brian McWilliams and Giovanni Montana. Subspace clus-

tering of high dimensional data: a predictive approach. Data

Mining and Knowledge Discovery, 28(3):736–772, 2014. 1

[45] Bojan Mohar. The Laplacian spectrum of graphs. Graph

Theory, Combinatorics, and Applications, 2:871–898, 1991.

5

[46] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and

Sreeram Kannan. ClusterGAN: Latent space clustering

in generative adversarial networks. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages

4610–4617, 2019. 8

[47] V.-M. Patel, H. Van Nguyen, and R. Vidal. Latent space

sparse subspace clustering. In Proceedings of IEEE Interna-

tional Conference on Computer Vision, pages 225–232, Dev

2013. 2

[48] Chong Peng, Zhao Kang, and Qiang Cheng. Subspace clus-

tering via variance regularized ridge regression. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2931–2940, 2017. 2

[49] Xi Peng, Jiashi Feng, Shijie Xiao, Jiwen Lu, Zhang Yi, and

Shuicheng Yan. Deep sparse subspace clustering. arXiv

preprint arXiv:1709.08374, 2017. 2

[50] X. Peng, S. Xiao, J. Feng, Wei Yun Yau, and Z. Yi. Deep

subspace clustering with sparsity prior. In International

Joint Conference on Artificial Intelligence, pages 1925–

1931, 2016. 2

[51] X. Peng, L. Zhang, and Z. Yi. Scalable sparse subspace clus-

tering. In 2013 IEEE Conference on Computer Vision and

Pattern Recognition, pages 430–437, June 2013. 1, 2

[52] Daniel P Robinson, Rene Vidal, and Chong You. Ba-

sis pursuit and orthogonal matching pursuit for subspace-

preserving recovery: Theoretical analysis. arXiv preprint

arXiv:1912.13091, 2019. 2

[53] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen

Basri, and Yuval Kluger. SpectralNet: Spectral clustering

using deep neural networks. In International Conference on

Learning Representations, 2018. 2

[54] Jie Shen, Ping Li, and Huan Xu. Online low-rank subspace

clustering by basis dictionary pursuit. In Proceedings of the

33rd International Conference on Machine Learning, pages

622–631, 2016. 1, 2

[55] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):888–905, 2000. 7, 8

[56] M. Soltanolkotabi and E. J. Candès. A geometric analysis

of subspace clustering with outliers. Annals of Statistics,

40(4):2195–2238, 2012. 1, 2, 3

[57] M. Soltanolkotabi, E. Elhamifar, and E. J. Candès. Robust

subspace clustering. Annals of Statistics, 42(2):669–699,

2014. 1

[58] P. A. Traganitis and G. B. Giannakis. Sketched sub-

space clustering. IEEE Transactions on Signal Processing,

66(7):1663–1675, April 2018. 1, 2

[59] Manolis Tsakiris and Rene Vidal. Theoretical analysis of

sparse subspace clustering with missing entries. In Proceed-

ings of the 35th International Conference on Machine Learn-

ing, pages 4975–4984, 2018. 1, 3

[60] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-

tention networks. In International Conference on Learning

Representations, 2018. 3, 4

12402

[61] René Vidal. Identification of PWARX hybrid models with

unknown and possibly different orders. In American Control

Conference, pages 547–552, 2004. 1

[62] R. Vidal. Subspace clustering. IEEE Signal Processing Mag-

azine, 28(3):52–68, March 2011. 1

[63] René Vidal, Yi Ma, and Shankar Sastry. Generalized Princi-

pal Component Analysis. Springer Verlag, 2016. 1

[64] Ulrike von Luxburg. A tutorial on spectral clustering. Statis-

tics and Computing, 17(4):395–416, 2007. 3

[65] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 3, 4

[66] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clus-

tering. In International Conference on Machine Learning,

pages 89–97, 2013. 1, 2

[67] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clus-

tering. Journal of Machine Learning Research, 17(12):1–41,

2016. 1, 2, 3

[68] Yu-Xiang Wang, Huan Xu, and Chenlei Leng. Provable sub-

space clustering: When LRR meets SSC. In Neural Infor-

mation Processing Systems, 2013. 1, 2

[69] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma.

Robust face recognition via sparse representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

31(2):210–227, Feb. 2009. 2, 8

[70] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li,

Zhouchen Lin, and Hongbin Zha. Deep comprehensive cor-

relation mining for image clustering. In IEEE International

Conference on Computer Vision, pages 8150–8159, 2019. 8

[71] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv: 1708.07747, 2019. 6

[72] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised

deep embedding for clustering analysis. In International

Conference on Machine Learning, pages 478–487, 2016. 7,

8

[73] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-

vised learning of deep representations and image clusters. In

Proceedings of IEEE International Conference on Computer

Vision and Pattern Recognition, pages 5147–5156, 2016. 7,

8

[74] Shuai Yang, Wenqi Zhu, and Yuesheng Zhu. Resid-

ual encoder-decoder network for deep subspace clustering.

arXiv preprint arXiv:1910.05569, 2019. 2

[75] Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, and Wei

Liu. Deep spectral clustering using dual autoencoder net-

work. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 4066–4075, 2019. 8

[76] Yingzhen Yang, Jiashi Feng, Nebojsa Jojic, Jianchao Yang,

and Thomas S Huang. ℓ0-sparse subspace clustering. In

European Conference on Computer Vision, pages 731–747,

2016. 1

[77] C. You, C. Li, D. Robinson, and R. Vidal. A scal-

able exemplar-based subspace clustering algorithm for class-

imbalanced data. In European Conference on Computer Vi-

sion, 2018. 1, 2, 7, 8

[78] C. You, C. Li, D. Robinson, and R. Vidal. Self-representation

based unsupervised exemplar selection in a union of sub-

spaces. IEEE Transactions on Pattern Analysis & Machine

Intelligence, (01):1–1, nov 5555. 8

[79] Chong You, Chun-Guang Li, Daniel Robinson, and René Vi-

dal. Oracle based active set algorithm for scalable elastic net

subspace clustering. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 3928–3937, 2016. 1, 2,

3, 6, 7, 8

[80] Chong You, Chun-Guang Li, Daniel Robinson, and René Vi-

dal. Is an affine constraint needed for affine subspace clus-

tering? In Proceedings of IEEE International Conference on

Computer Vision, 2019. 2, 3

[81] Chong You, Daniel Robinson, and René Vidal. Scalable

sparse subspace clustering by orthogonal matching pursuit.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3918–3927, 2016. 2, 6, 7, 8

[82] Chong You, Daniel P. Robinson, and René Vidal. Provable

self-representation based outlier detection in a union of sub-

spaces. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 4323–4332, 2017. 1, 8

[83] Chong You and René Vidal. Geometric conditions for

subspace-sparse recovery. In International Conference on

Machine Learning, pages 1585–1593, 2015. 1, 2, 3

[84] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing

Song, and Yi Ma. Learning diverse and discriminative repre-

sentations via the principle of maximal coding rate reduction.

In Neural Information Processing Systems (NIPS), 2020. 2,

6, 7

[85] He Zhang and Vishal M Patel. Sparse representation-based

open set recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(8):1690–1696, 2016. 8

[86] Hongyan Zhang, Han Zhai, Liangpei Zhang, and Pingxiang

Li. Spectral–spatial sparse subspace clustering for hyper-

spectral remote sensing images. IEEE Transactions on Geo-

science and Remote Sensing, 54(6):3672–3684, 2016. 1

[87] Jian Zhang and Bernard Ghanem. ISTA-Net: Interpretable

optimization-inspired deep network for image compressive

sensing. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2018. 2, 4

[88] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi,

Honggang Zhang, Jun Guo, and Zhouchen Lin. Self-

supervised convolutional subspace clustering network. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5473–5482, 2019. 2

[89] Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, and

Hongdong Li. Neural collaborative subspace clustering. In

International Conference on Machine learning, pages 7384–

7393, 2019. 2, 7, 8

[90] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial

subspace clustering. In Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition,

pages 1596–1604, June 2018. 2

12403

