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Abstract

High-quality high-resolution (HR) magnetic resonance

(MR) images afford more detailed information for reliable

diagnosis and quantitative image analyses. Deep convolu-

tional neural networks (CNNs) have shown promising abil-

ity for MR image super-resolution (SR) given low-resolution

(LR) MR images. The LR MR images usually share some vi-

sual characteristics: repeating patterns, relatively simpler

structures, and less informative background. Most previous

CNN-based SR methods treat the spatial pixels (including

the background) equally. They also fail to sense the entire

space of the input, which is critical for high-quality MR im-

age SR. To address those problems, we propose squeeze and

excitation reasoning attention networks (SERAN) for accu-

rate MR image SR. We propose to squeeze attention from

global spatial information of the input and obtain global

descriptors. Such global descriptors enhance the network’s

ability to focus on more informative regions and structures

in MR images. We further build relationship among those

global descriptors and propose primitive relationship rea-

soning attention. The global descriptors are further refined

with learned attention. To fully make use of the aggregated

information, we adaptively recalibrate feature responses

with learned adaptive attention vectors. These attention

vectors select a subset of global descriptors to complement

each spatial location for accurate details and texture recon-

struction. We propose squeeze and excitation attention with

residual scaling, which not only stabilizes the training but

also makes it flexible to other basic networks. Extensive ex-

periments show the effectiveness of our proposed SERAN,

which clearly surpasses state-of-the-art methods on bench-

marks quantitatively and visually.

1. Introduction

High-resolution (HR) magnetic resonance (MR) images

would provide more detailed structures and textures, which
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Figure 1. The visual comparison between the our method and re-

cent image SR methods on a PD image with scaling factor ×4.

benefit accurate diagnosis and quantitative image analy-

ses [5]. However, in real-world cases, HR MR images

are obtained at the cost of longer scanning time, lower

signal-to-noise ratio, and smaller spatial converge [32]. Im-

age super-resolution (SR) reconstructs HR outputs from the

given low-resolution (LR) ones. It is becoming a promising

technique to upscale the spatial resolution of MR images.

Recently, deep convolutional neural network (CNN) has

shown its powerful ability for high-quality image SR. Dong

et al. firstly introduced CNN for image SR in SRCNN [7,8],

which has only three convolutional layers. Kim et al. in-

creased the network depth by utilizing residual learning in

VDSR [18]. Hui et al. proposed information distillation

network (IDN) [15]. Zhang et al. achieved better SR per-

formance with RDN [48], which fully utilizes hierarchical

features. On the other hand, some MR images oriented SR

methods were also proposed. Chen et al. used 3D dense

network and adversarial learning for MR image SR [5].

However, those deep CNN based methods either neglect

the characteristics of MR images or suffer from intrinsic
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Figure 2. A brief illustration of our squeeze and excitation attention mechanism. Similar to [3], the global features are first collected via

bilinear pooling and then distributed to each spatial position by considering the corresponding local feature. However, we enhance the

global features through primitive relationship reasoning (PRR), as described in the text.

drawbacks. First, MR images often have repeating struc-

tural patterns and are relatively simpler than natural images.

Very wide and deep networks (e.g., EDSR [26]) may suf-

fer from over-fitting problem. Second, MR images often

contain large region of background, which is far less infor-

mative than the target structural regions. However, most

previous CNN based methods treat all the spatial pixels of

the image equally. They cannot distinguish target and back-

ground regions, hindering the representation ability. Third,

most previous CNN based SR methods depend on convolu-

tional operations, which focus on local neighborhoods and

fail to capture the entire aspects of the input. However, it’s

important for MR images to sense the global features, which

contribute to reconstruct more informative regions.

To tackle these issues and limitations, we propose

squeeze and excitation attention networks (SERAN) for ac-

curate MR image SR (see Fig. 1). As illustrated in Fig. 2,

we propose to squeeze global spatial information into global

descriptors with second-order attention pooling operation.

It allows the model to focus on more informative regions

and structures in MR images. We then build the relationship

among primitives and apply graph convolutional network

(GCN) to perform reasoning and obtain primitive relation-

ship reasoning attention. We refine the global descriptors

with the learned attention. To fully utilize the aggregated in-

formation, we adaptively recalibrate feature responses with

learned adaptive attention vectors. These attention vectors

select a subset of global descriptors to complement each

spatial location for accurate details and texture reconstruc-

tion. Experimental results demonstrate the effectiveness of

our SERAN, when compared with recent methods.

In summary, the main contributions of this work are:

• We propose the squeeze and excitation reasoning at-

tention network (SERAN) for fast and accurate MR

image super-resolution (SR). To our best knowledge,

this is the first work investigating semantic reasoning

attention to MR image SR.

• We propose to collect global visual primitives from

the features. We further propose primitive relationship

reasoning attention for refinement. We then adaptively

allocate the global visual primitives to local feature.

• We demonstrate the effectiveness of our SERAN with

extensive experiments on benchmark datasets. Our

SERAN achieves significant performance gain over

other state-of-the-art image SR methods.

2. Related Work

2.1. MR Image Super-resolution

As a post-processing method, image SR has been stud-

ied in lots of works related to MR image analysis, such as

diffusion MRI [33, 36], structural MRI [27, 34], as well as

spectroscopy MRI [16, 17] etc. In the early days, the task

of image SR to MR images mainly focuses on traditional

multiple frame image SR. However, when we try to recon-

struct a HR image from multiple degraded LR counterparts,

we often have to calibrate and fuse these LR images. Such

a process is a very challenging task in itself [49]. Recently,

deep learning [23] based image SR methods demonstrate

superior performance on natural images [8, 18, 26, 47, 48],

which promotes the application of deep learning technolo-

gies in MR image SR tasks [6, 31, 43, 49]. However, some

CNN based image SR methods obtain superior results as

desired, they have large model sizes and are impractical to

real MRI scenarios with limited resources. In this work,

our squeeze and excitation reasoning attention network is

essentially a lightweight model that is more convenient for

practical deployment and clinic applications.

2.2. Attention Mechanism

Attention mechanism endows neural networks with the

ability to allocate resources adaptively for the informative

input features, which is conducive to the full exploitation

of network representational ability and the improvement

of model performance [13]. Therefore, it is broadly em-

bedded into neural networks for various machine learning
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tasks in recent years, including natural language processing

(NLP) [28, 39], image recognition [1, 9, 40] and image cap-

tioning [44] etc. In low-level computer vision applications

like image SR, there are also some works on introducing

attention mechanism to neural networks [14, 48]. However,

few works have been conducted to study the role of atten-

tion on single MR image SR tasks, by considering the spe-

cial characteristics of MR images: repeating patterns, rela-

tively simpler structures, and less informative background.

If the network can allocate computational resources adap-

tively to informative parts in MR images, it is promising to

improve performance with moderate model parameters.

2.3. Semantic Reasoning

Researchers in artificial intelligence community initially

investigated relational reasoning as symbolic methods [29].

By utilizing the language of mathematics and logic, they

first defined the relations between abstract symbols. Then,

they conducted reasoning by using abduction and deduc-

tion [12]. However, to make such systems be practical

for usage, those symbols should be grounded firstly [10].

Later, extracting useful patterns with statistical learning,

modern methods (e.g., path ranking algorithm [22]) turned

to conduct relational reasoning on structured knowledge

bases. Recently, graph-based approaches have been show-

ing promising performance for relation reasoning. Along

with the great success of convolution neural networks in

computer vision areas [11], graph convolution networks

(GCN) [20] was proposed for semi-supervised classifica-

tion, where convolution network was used to process data

in graph-structure. GCN was utilized to capture relations

between objects in video recognition applications [41]. To

improve semantic navigation in unseen scenes and towards

novel objects, [45] took use of GCNs to encode the prior

knowledge into a deep reinforcement learning framework.

[4, 24] incorporate GCN into design of visual encoding and

learn relationship enhanced features end-to-end towards the

task of interest, such as image classification and image-text

matching. Under an image captioning framework, [46] used

Visual Genome dataset [21] to train a visual relationship de-

tection model, where the detected relationship information

is encoded with a GCN-based image encoder. In this work,

we also introduce the reasoning advantage of graph convo-

lutions to enhance the visual representation by considering

semantic relationship among visual primitives. We incor-

porate the reasoning power into attention learning phase to

enhance the ability of image SR models.

3. SERAN

3.1. Motivation

As we analyzed above, different from natural images, the

MR images have their specific characteristics: repeating vi-
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Figure 3. Global descriptors collection with global attention.

sual patterns, relatively simple structures, and less informa-

tive background. A more distinguishable mechanism is de-

sired to handle these cases. On the other hand, attention

mechanism has been demonstrated to be effective for high-

level visual tasks by focusing on more informative chan-

nels [13] or spatial positions [3]. Here, we further investi-

gate how to focus on more informative visual regions and

patterns in MR images with attention.

3.2. Squeeze Attention: Information Collection

We illustrate the global information collection in Fig. 3.

Given an input feature E ∈ R
C×HW , we aim to obtain

its attention guided counterpart Z ∈ R
C×HW . Here, C is

channel number. H and W denote the height and width of

the feature, respectively. For simplicity, we have reshaped

the feature to 2-dimension space.

Let’s rewrite the input feature as E = [e1, · · · , eHW ].
We know that the main visual primitives come from the

more informative visual regions and patterns in MR fea-

tures. To achieve those main visual primitives, we tend to

take all input feature points into account. Mathematically,

such a process can be written as

vi =

HW
∑

j=1

mijej , (1)

where vi ∈ R
C×1 is a visual primitive and mi ∈ R

1×HW

is a global attention vector. We can see each primitive vi is

calculated by considering all the local features weighted by

a global descriptor mi. Supposing we target to seek P vi-

sual primitives, we have to use P global descriptors, which

can be denoted as M = [m1; · · · ;mP ] ∈ R
P×HW . Then,

the global information collection can be expressed by

V = EMT . (2)

We can see that Eq. (2) not only learns a set of vi-

sual primitives V = [v1, · · · , vP ], but also obtains second-

order statistics. Such a second-order attention pooling op-

eration can capture more complex long-range feature in-

terdependencies [3]. In implementation, we have to force
∑HW

j=1
mij = 1, which can be achieved with softmax func-

tion. Namely, M = softmax (θ (E;Wθ)) with proper ma-

trix reshaping, where Wθ denotes the trainable parameters

for this convolutional layer.
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Figure 4. Illustration of our primitive relationship reasoning. GCN

denotes graph convolutional network.

3.3. Primitive Relationship Reasoning Attention

After obtaining the visual primitive set V , we hope to

further enhance it by considering the relationship among

each visual primitive vi. In recent developments of deep

learning, visual reasoning [2, 25, 35, 50] have been investi-

gated to model and mine the relationship among visual com-

ponents. Here, we’re inspired to construct the relationship

reasoning model among the visual primitives. Specifically,

we firstly embed the visual primitives into two embedding

spaces with weight parameters Wϕ and Wφ. We then build

the relationship by calculating the pairwise affinity via

R (vi, vj) = ϕ (vi;Wϕ)
T
φ (vj ;Wφ) , (3)

where ϕ (vi;Wϕ) and φ (vj ;Wφ) are two embeddings. We

use Eq. (3) to obtains the relationship between every two

learned visual primitives vi and vj , resulting in a fully-

connected relationship graph.

Let’s denote the graph as G(V,R), where V is the set

of graph nodes (i.e., visual primitives) and R is the set of

graph edges (i.e., primitive relationships). Based on Eq. (3),

we obtain the affinity matrix R by measuring the affinity

edge of each visual primitive pair. A graph edge with large

affinity score means that the corresponding visual primitive

pair are highly correlated with strong semantic relationship.

Then, based on the above fully-connected graph, we con-

duct reasoning by utilizing graph convolutional network

(GCN) [20]. For each node, its neighbors are defined by the

graph relationships and can be used to compute the response

of each node. Unlike some previous works [4], which incor-

porate the reasoning results as an enhancement of the input.

Here, we achieve a reasoning attention by applying sigmoid

activation function. A residual learning is then introduced

to connect the original input as follows

V = σ
(

((

RV TWg

)

Wr

)T
)

⊙ V + V, (4)

where σ is sigmoid activation function. R is the P×P affin-

ity matrix. Wg is a weight matrix of the GCN layer with size

C×C. For the residual structure, its weight matrix is Wr.

⊙ denotes element-wise multiplication. We illustrate such

a reasoning process in Fig. 4. With the usage of primitive

relationship reasoning attention, we obtain the enhanced vi-

sual primitives, being viewed as global feature descriptors.

3.4. Excitation Attention: Feature Allocation

After collecting the global feature descriptors, we would

like to distribute them to each location of the raw feature.
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Figure 5. Adaptive feature allocation.

This would help us make better use of complex relations

with the computed second-order statistics and compensate

the lost information for better MR image reconstruction.

In Fig. 5, we can see that each position of raw feature has

its specific need of the global descriptors. We adaptively

distribute the global descriptors V based on the learned at-

tention vector di at each location. It means that each loca-

tion can adaptively select complementary visual primitives.

Such a procedure can be achieved by

zi =

P
∑

j=1

dijvj , (5)

where zi ∈ R
C×1 is the i-th column of Z and di ∈ R

P×1

is a soft attention vector. For each position in Z, we have

a specific soft attention vector to adaptively select com-

plementary features from V . It will result in a soft at-

tention matrix D = [d1, · · · , dHW ], where
∑P

j=1
dij =

1. We apply softmax function to achieve it via D =
softmax (ρ (E; ρ)) with parameter Wρ. The adaptive dis-

tribution can finally be represented as

Z = EMTD, (6)

which acts as complementary component. We can see that

the attention guidance affects the target feature Z. Specif-

ically, Z is obtained by using adaptive complementary fea-

ture from a pool of main visual primitives.

3.5. SERAB

After obtaining the attention guided complementary fea-

ture Z, we want to encode it back to the input. A widely

used practice is residual learning [11]. Here, we further

adopt the residual scaling [38] with factor α to obtain the

final feature output. This procedure can be written as

O = αZ + E = αEMTD + E, (7)

which results in a squeeze and excitation reasoning atten-

tion block (SERAB) shown in Fig. 6.

It is formulated based on two reasons. First, direct us-

age of residual learning (e.g., α = 1) here would make the

training procedure numerically unstable. Second, the resid-

ual connection allows us to insert our SEAB to any pre-

trained network, without affecting its initial behavior too

much (e.g., α → 0). With the usage of SEAB, subsequent

convolutional layers could sense the entire space, even with

limited receptive field size. SEAB allows the network to fo-

cus on more informative visual features and achieve better

MR image SR reconstruction quality.
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Figure 6. Squeeze and excitation attention block.

4. Experimental Results

We first briefly introduce the datasets and the details of

model implementation. Then we investigate and analyze

the structure of our method SERAN. Next, several recent

SR methods are compared with the proposed model. For

quantitative evaluation metrics, we adopt PSNR and struc-

tural similarity index metric (SSIM) [42] for SR quality. We

also provide model size and running time comparisons.

4.1. Datasets

The datasets used in this paper are the same as [49] and

originally derived from the IXI dataset1. Three types of MR

images are included in the datasets (i.e., PD, T1, and T2).

Each of them has 500, 70, and 6 MR volumes for model

training, testing, and quick validation respectively. The size

of each 3D volume is cut to 240×240×96 (height×width×

depth), where 96 indicates the number of slices in the MR

volume (along the imaging plane direction). Note that the

datasets contain two kinds of image degradation but only

the typical bicubic degradation is studied in this paper due

to limited space. Due to the 2D nature of the proposed

method, we get 500×96 = 48,000 2D training samples.

4.2. Implementation Details

When implementing our proposed SERAN, we use the

residual network [26] (40 residual blocks) as the back-

bone. Specifically, we insert SEAB before the element-wise

adding of the long skip connection. We set α as 0.01, al-

lowing the network to stably and gradually learn attention

guidance. We set the size of all convolutional layers as 3×3

except for that in the SEAB, where the kernel size is 1×1.

Each convolutional layer has 64 filters except for the input

and output layers, which have 1 channel. For convolutional

layers with kernel size 3×3, we use zero-padding strategy

to keep the size fixed. In the training phase, the batch size

is 96. The input size of LR patches is 32×32. Our net-

work is trained with ADAM optimizer [19] with β1 = 0.9,

β2 = 0.999, and ε = 10−8. The learning rate is initialized

as 10−4 and decreases to half every 200 epochs. We use

PyTorch [30] to implement models with a Titan Xp GPU.

4.3. Ablation Study

Here, we investigate the effects of each key components

of our proposed squeeze and excitation reasoning attention

network (SERAN). In the SERAN, squeeze and excitation

1http://brain-development.org/ixi-dataset/

Table 1. Ablation investigation of SEAB, residual scaling (RS),

and primitive relationship reasoning. We observe the PSNR (dB)

values on the PD, T1, and T2 dataset with scaling factor SR×2.

Method PD T1 T2

Baseline 40.68 37.82 38.88

Baseline + SEAB (w/o RS) 41.31 38.41 39.80

Baseline + SEAB (with RS) 41.43 38.56 40.07

Baseline + SERAB 41.53 38.66 40.18

reasoning attention block (SERAB) plays an important role.

So we first investigate the effectiveness of SERAB. Then,

we further explore how the insert position and number of

SERAB would affect the performance. We report the per-

formance on PD, T1, and T2 with scaling factor 2×.

4.3.1 Effect of SERAB

In the SERAB, we want to demonstrate the effectiveness of

our squeeze and excitation attention module. We denote this

case as SEAB, namely without using primitive relationship

reasoning (PRR). Then we explore how the residual scaling

(RS) affect the network. Finally, we show how primitive

relationship reasoning further improves network ability.

Effect of SEAB. By removing PPR, our proposed

SERAB could be simplified as SEAB. We investigate the

effects of SEAB with and without residual scaling (RS) by

using the residual network [26] (40 residual blocks) as the

baseline. As shown in Tab. 1, the introduction of SEAB

(w/o RS) into the baseline would improve the network per-

formance very obviously. Such an observation indicates

that there are some redundant information in the deep fea-

tures from the MR images. After collecting the global in-

formation (i.e., squeeze attention), we extract more com-

pact global descriptors for the MR deep features. Then,

the global descriptors are adaptively allocated to each local

feature, resulting in much stronger network representation

ability. Furthermore, such a strong ability is not heavily in-

fluenced by using RS or not.

Effect of residual scaling (RS). After introducing

SEAB into the baseline, we also find that RS can further

helps to pursue better performance. We can see the strategy

of residual scaling further boosts the performance without

extra model parameters. More important, as we have de-

scribed in Section 3.5, our SERAB can easily be integrated

into other baselines with the residual scaling.

Effect of PRR. When we further introduce our proposed

primitive relationship reasoning (PRR) into the SEAB, we

achieve its enhanced version, named SERAB. As shown in

Tab. 1, PRR would further achieve another performance im-

provement (about 0.1 dB) among each dataset. Such an

improvement indicates that there still exists some redun-

dant information in the visual primitives. Based on the

fully-connected graph, we apply GCN to conduct reason-

ing, which would further investigate the latent relationship

among visual primitives. As a result, we achieve stronger

visual primitives and better network performance.
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Table 2. Ablation investigation of SERAB position and number.

We observe the PSNR (dB) values on the PD, T1, and T2 dataset

with scaling factor SR×2.
Case Low Mid. High PD T1 T2

1
√

41.38 38.32 39.88

2
√

41.41 38.43 39.96

3
√

41.53 38.66 40.18

4
√ √

41.55 38.67 40.20

5
√ √

41.56 38.69 40.22

6
√ √

41.59 38.72 40.25

7
√ √ √

41.62 38.76 40.29

4.3.2 Effect of SERAB position and number

After demonstrating the effectiveness of SERAB as above,

we further investigate how the position and number of

SERAB affect the network performance. We still use PD,

T1, T2 as testsets with scaling factor 2×. We first name the

1-st, 20-th, and 40-th residual block (RB) in the baseline

as low-, middle (mid.), and high-level RBs respectively. We

insert SERAB into those three positions and record the per-

formance in Tab. 2 for different combination cases.

Effect of SERAB position. For the cases 1, 2, and 3

in Tab. 2, we can learn that SERAB in higher-level would

perform better. The main reasons might be that features

in higher-level have larger receptive field size, resulting in

larger sensing scope to the whole features. Also, deeper

feature could be more compact and have less redundant in-

formation, which further help SERAB learn more effective

visual primitives and achieve stronger representation ability.

Effect of SERAB number. We further show how the

number of SERAB affects network performance. Let’s visit

Tab. 2, where more SERABs would obtain better perfor-

mance. More higher-level SERABs performs better than

those in lower-level. Compared with single high-level

SERAB, the performance gains with more SERABs are not

very large. But, using more SERABs would also consume

more GPU memory and running time. As a result, we ex-

perimentally use one SERAB in the high-level RB, namely

the last one, to report our results.

4.4. Comparison with Other Methods

We compare the proposed SERAN model with several

state-of-the-art SR techniques, ranging from lightweight

SRCNN [8], VDSR [18], IDN [15] to large-scale RDN

[48] and CSN [49], through both quantitative and qualita-

tive evaluations. Some quantitative results are directly cite

from [49], where the compared methods use same evalua-

tion metrics, training, and testing datasets.

4.4.1 Quantitative Comparison

Table 3 exhibits the quantitative results of the compared

methods. SEARN represents the results directly obtained

by our model and SERAN+ indicates that geometric self-

ensemble [26] technique is applied. We can se that our

proposed SERAN obtains obviously higher performance

than other state-of-the-art methods by a wide margin, giv-

ing the best SR performance on all types of MR images

and all SR scaling factors, even without geometric self-

ensemble. More importantly, our method utilizes moderate-

scale model parameters and presents more accurate SR re-

sults, implying that our SERAN achieves a better trade-off

between performance and model size by fully considering

the particularity of MR images. Therefore, our SERAN

model supports fast model inference and convenient prac-

tical deployment, indicating that it is a high-precision SR

method for MR images. Moreover, our method could be a

highly practical one in real-world cases.

4.4.2 Visual Comparison

Figure 7 exhibits the visual effects of the compared meth-

ods in Tab. 3, on three datasets: PD (top), T1 (middle), and

T2 (bottom) images with scaling factor ×4 respectively. As

can be seen, the proposed SERAN model displays signifi-

cantly visible superiority over other methods on all image

types. For example, in the PD image, there is a black area

indicated by the red arrow. This structure is almost com-

pletely lost in the results of Bicubic, SRCNN [8], and even

VDSR [18]. Although it can be observed in the results of

IDN [15] and RDN [48], our model presents a clearer indi-

cation and better approximation to the ground truth. Similar

comparisons can also be observed from the results on the T1

and T2 images, which illustrates the superiority of our pro-

posed model in MR image super-resolution tasks.

4.4.3 Performance on In-vivo Images

We also conduct SR experiments on in-vivo MR images in

different human body positions to verify the practicability

of the proposed model. Figure 8 shows the visual compari-

son between several SR methods, including NLM [27], SR-

CNN [8], VDSR [18], and RDN [48], on a real-world T2

image with SR×4. It can be seen that our model presents

a clearer result with some details that are not found in the

results of other methods, e.g. the the dark seam indicated

by the red arrow. This comparison demonstrates the effec-

tiveness of the proposed SERAN model in processing MR

images with specific characteristics.

4.4.4 Model Size Analyses

In Tab. 3, we give the model sizes for each CNN based SR

methods. Let’s analyze the comparison about model size

and performance. We can see that some large models (e.g.,

RDN) might not be suitable for MR images, even though

they perform pretty well for natural image SR. Although

our SERAN is not the smallest network, it has much less

parameters than that of RDN [48]. More importantly, our

SERAN and SERAN+ obtain the highest performance for
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Table 3. PSNR (dB)/SSIM and model size comparisons between different image SR methods. We mark the highest and second higheast

PSNR (dB)/SSIM values of each comparison cell in red and blue.

Method \ Image scale param PD T1 T2

Bicubic [2D] ×2 - 35.04 / 0.9664 33.80 / 0.9525 33.44 / 0.9589

NLM [27] ×2 - 37.26 / 0.9773 35.80 / 0.9685 35.58 / 0.9722

SRCNN [8] ×2 24.51K 38.96 / 0.9836 37.12 / 0.9761 37.32 / 0.9796

VDSR [18] ×2 0.67M 39.97 / 0.9861 37.67 / 0.9783 38.65 / 0.9836

IDN [15] ×2 0.73M 40.27 / 0.9869 37.79 / 0.9787 39.09 / 0.9846

FSCWRN [37] ×2 3.50M 40.72 / 0.9880 37.98 / 0.9797 39.44 / 0.9855

RDN [48] ×2 22.06M 40.31 / 0.9870 37.95 / 0.9795 38.75 / 0.9838

CSN [49] ×2 13.64M 41.28 / 0.9895 38.27 / 0.9810 39.71 / 0.9863

SERAN [Ours] ×2 3.16M 41.53 / 0.9900 38.66 / 0.9822 40.18 / 0.9872

SERAN+ [Ours] ×2 3.16M 41.66 / 0.9902 38.74 / 0.9824 40.30 / 0.9874

Bicubic [2D] ×3 - 31.20 / 0.9230 30.15 / 0.8900 29.80 / 0.9093

NLM [27] ×3 - 32.81 / 0.9436 31.74 / 0.9216 31.28 / 0.9330

SRCNN [8] ×3 24.51K 33.60 / 0.9516 32.17 / 0.9276 32.20 / 0.9440

VDSR [18] ×3 0.67M 34.66 / 0.9599 32.91 / 0.9378 33.47 / 0.9559

IDN [15] ×3 0.83M 34.96 / 0.9619 33.06 / 0.9394 33.92 / 0.9591

FSCWRN [37] ×3 3.50M 35.37 / 0.9653 33.24 / 0.9423 34.27 / 0.9618

RDN [48] ×3 22.24M 35.08 / 0.9628 33.31 / 0.9430 33.91 / 0.9591

CSN [49] ×3 16.60M 35.87 / 0.9693 33.53 / 0.9464 34.64 / 0.9647

SERAN [Ours] ×3 3.34M 36.17 / 0.9713 34.08 / 0.9514 35.02 / 0.9672

SERAN+ [Ours] ×3 3.34M 36.34 / 0.9721 34.18 / 0.9522 35.19 / 0.9680

Bicubic [2D] ×4 - 29.13 / 0.8799 28.28 / 0.8312 27.86 / 0.8611

NLM [27] ×4 - 30.27 / 0.9044 29.31 / 0.8655 28.85 / 0.8875

SRCNN [8] ×4 24.51K 31.10 / 0.9181 29.90 / 0.8796 29.69 / 0.9052

VDSR [18] ×4 0.67M 32.09 / 0.9311 30.57 / 0.8932 30.79 / 0.9240

IDN [15] ×4 0.95M 32.47 / 0.9354 30.74 / 0.8966 31.37 / 0.9312

FSCWRN [37] ×4 3.50M 32.91 / 0.9415 30.96 / 0.9022 31.71 / 0.9359

RDN [48] ×4 22.21M 32.73 / 0.9387 31.05 / 0.9042 31.45 / 0.9324

CSN [49] ×4 16.01M 33.40 / 0.9486 31.23 / 0.9093 32.05 / 0.9413

SERAN [Ours] ×4 3.31M 33.77 / 0.9526 31.89 / 0.9201 32.40 / 0.9455

SERAN+ [Ours] ×4 3.31M 33.97 / 0.9542 32.03 / 0.9219 32.62 / 0.9472

Bicubic NLM SRCNN

VDSR RDNIn-vivo T2 image

In-vivo T2 image

Bicubic NLM SRCNN

VDSR RDN Ours

Figure 8. Real-world visual comparison (×4) between our pro-

posed SERAN model with other typical SR methods. We show

results on a in-vivo T2 data in different body positions.

each dataset and scaling factor, showing better trade-off be-

tween the SR performance and model size. These compar-

isons also indicate that global descriptors with squeezed at-

tention help to offset the limited receptive field size of rel-

ative small network. Consequently, our method achieves

better results with much smaller model parameters.

Table 4. Running time (seconds/3D volume) comparison of sev-

eral SR models on PD images. The sizes of input volumes for

scaling factors ×2, ×3, and ×4 are 120×120×96, 80×80×96,

and 60×60×96, respectively.
Method ×2 ×3 ×4

Bicubic [2D] 0.1543 0.1578 0.1610

SRCNN [8] 0.3021 0.3211 0.3284

VDSR [18] 1.7644 2.6488 2.4131

IDN [15] 0.8123 0.4415 0.2773

RDN [48] 22.6771 11.1601 5.1250

SERAN [Ours] 1.1713 0.7475 0.7081

SERAN+ [Ours] 9.9257 5.4320 4.8149

4.4.5 Running Time Comparisons

Tab. 4 exhibits the comparison of execution efficiency be-

tween several typical methods, in terms of different scal-

ing factors. We can see that our SERAN obtains compara-

ble running time as other leading lightweight CNN-based

models. Even we use self-ensemble [26] to further improve

SERAN and obtain SERAN+, the running time is less than

that of RDN [48]. Furthermore, when we consider the per-

formance shown in Tab. 3 and running time together, we

can see that our proposed SERAN obtains a good trade-off

between performance and running time.

5. Conclusion

Attention mechanism can boost the performance of deep

CNNs in low-level computer vision tasks and MR images
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PSNR / SSIM35.13 / 0.960233.99 / 0.947933.70 / 0.944633.28 / 0.939832.29 / 0.926630.45 / 0.8913

Ground TruthOursRDNIDNVDSRSRCNNBicubic

PSNR / SSIM34.54 / 0.933733.64 / 0.919933.30 / 0.912733.13 / 0.909732.40 / 0.896030.80 / 0.8519

PSNR / SSIM32.53 / 0.950131.45 / 0.936631.41 / 0.935730.75 / 0.927329.71 / 0.908827.98 / 0.8658

Figure 7. The visual comparison (×4) between several advanced CNN-based SISR methods on three datasets: PD (top), T1 (middle), and

T2 (bottom). The highest PSNR (dB) and SSIM values for each row are marked in red.

share their specific visual characteristics, based on which

we propose a SERAN model in this paper and apply it to

MR image SR task. Unlike separate channel or spatial atten-

tion, we provide adaptive attention distribution for each spa-

tial location and combine it with the learned global descrip-

tors. Considering the repeating structure and simple distri-

bution of MR images, our model can deal with MR image

SR task more effectively and accurately. We build the ba-

sic squeeze and excitation attention block (SEAB) by using

residual scaling, which helps stabilize the training. To bet-

ter make use of the relationship between the learned global

descriptors, namely visual primitives, we further build re-

lationship graph among the visual primitives. Based on

the relationship graph, we utilize GCN to conduct the rea-

soning process, resulting in primitive relationship reason-

ing attention. Such a learned attention can be used to fur-

ther improve the representation ability of visual primitives.

We demonstrate the effectiveness of each proposed modules

in our SERAN. Extensive experiments quantitatively (e.g.,

PSNR/SSIM, model size, and running time) and qualita-

tively demonstrate the advantages of our proposed SERAN

method over other leading CNN-based image SR methods.
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