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Abstract

Multi-label activity recognition is designed for recogniz-

ing multiple activities that are performed simultaneously or

sequentially in each video. Most recent activity recogni-

tion networks focus on single-activities, that assume only

one activity in each video. These networks extract shared

features for all the activities, which are not designed for

multi-label activities. We introduce an approach to multi-

label activity recognition that extracts independent feature

descriptors for each activity and learns activity correla-

tions. This structure can be trained end-to-end and plugged

into any existing network structures for video classification.

Our method outperformed state-of-the-art approaches on

four multi-label activity recognition datasets. To better un-

derstand the activity-specific features that the system gen-

erated, we visualized these activity-specific features in the

Charades dataset. The code will be released later.

1. Introduction

Activity recognition has been studied in recent years due

to its great potential in real-world applications. Recent ac-

tivity recognition researches [31, 46, 18, 33] focused on

single-activity recognition assuming that each video con-

tains only one activity, without considering a multi-label

problem where a video may contain multiple activities (con-

current or sequential). Multi-label activity recognition is an

understudied field but has more general real-world use cases

(e.g., sports activity recognition [47, 5], or daily life activ-

ity recognition [44]). Most of the recent multi-label activity

recognition methods are derived from structures for single

activities that generate a shared feature vector and apply sig-

moid as the output activation function [35, 55, 7, 57, 12, 59].

Although these approaches enable the network to provide

multi-label outputs, the features are not designed for multi-

label activities.

We introduce our mechanism to recognize multi-label

activities from another angle by generating independent fea-

Figure 1: System overview using an example from Charades. The sys-

tem first generates k independent feature snippets (“observations”) that fo-

cus on different key regions from the video (arms, blankets, and clothes).

The activity-specific features are then generated by independently com-

bining these observations. The weights of the observations that contribute

to activity-specific features are represented as lines with different colors

(black, red, and blue). The thicker lines denote higher weights. For

example, the activity-specific features1 (holding a blanket) are ob-

tained by combining information from observation1 (focuses on arms)

and observation2 (focuses on clothes). The system finally learns corre-

lations between activity-specific features and provide multi-label activity

predictions.

ture descriptors for different activities. We named these fea-

ture descriptors “activity-specific features”. This mecha-

nism generates activity-specific features in two stages. The

first-stage network (Figure 1, middle) summarizes the fea-

ture maps extracted by the backbone network (3D convo-

lution layers) and generates a set of independent feature

snippets by applying independent spatio-temporal attention

for each snippet. We name these feature snippets “obser-

vations”. In the second stage (Figure 1, right), the net-

work learns activity-specific features from different combi-

nations of observations for different activities. In this way,

each activity is represented as an independent set of fea-

ture descriptors (activity-specific features). The multi-label

activity predictions can then be made based on the activity-

specific features. Unlike most of the previous approaches

[35, 55, 7, 57, 12, 59] that generate a shared feature vec-
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tor to represent multiple activities by pooling feature maps

globally, our network produces specific feature descriptors

for each activity.

Label dependencies have proven important for multi-

label image classification [26, 20, 53], and we argue that

it is also important to consider the label-wise correlation for

activities. We generate an activity label-wise correlation

map to model co-existing patterns (e.g., walking and talk-

ing) and exclusive patterns (e.g., sitting and standing). The

correlation map is applied on the activity-specific features to

predict activities based on the highly correlated (or exclu-

sive) activities’ descriptors. In multi-label activity videos,

different activities might have different duration and need to

be recognized using video clips with different lengths. To

address this issue, we further introduced a speed-invariant

tuning method for generating activity-specific features and

recognizing multi-label activities using inputs with different

downsampling rates.

We evaluated our model on both large-scale multi-

label activity datasets (Charades [44] and AVA [19]), and

real-world multi-label sports datasets (Volleyball [47] and

Hockey [5]) to show that our model performs well on multi-

label datasets and is applicable to real-world tasks. Our

introduced model outperformed the recent state-of-the-art

networks on all four datasets without using additional in-

formation (e.g., optical flow [24] or object information [29])

other than RGB frames, which demonstrated the efficiency

of our introduced method. We also provide detailed abla-

tion experiments on the model structure to show that the

introduced activity-specific features and activity correla-

tion work as expected. We further visualized the activity-

specific features by applying the learned attention maps on

the backbone features (feature maps after the last 3D convo-

lution layer) to represent the activity-specific feature maps.

Our contributions can be summarized as:

• A network structure that generates activity-specific

features for multi-label activity recognition.

• An activity correlation map that learns correlations be-

tween different activity-specific features.

• A speed-invariant tuning method that produces multi-

label activity predictions using different temporal-

resolution inputs.

2. Related Work

Activity Recognition. Video-based activity recogni-

tion has been developing rapidly in recent years due to

the success of deep learning methods for image recogni-

tion [32, 49, 23]. Compared to image classification, activity

recognition depends on spatio-temporal features extracted

from consecutive frames instead of spatial-only features

from static images. Two-stream networks apply two-branch

convolution layers to extract motion features from consec-

utive frames as well as spatial features from static images

and fuse them for activity recognition [45, 13, 55]. Oth-

ers proposed 3D-convolution-based networks for extracting

spatio-temporal features from the videos instead of using

manually designed optical flow for extracting motions be-

tween frames [7, 50]. The nonlocal neural network [57]

and the long-term feature bank (LFB) [59] extended the 3D

ConvNet by extracting long-range features. The SlowFast

network [12] introduced a two-pathway network for learn-

ing motion and spatial features separately from the videos.

The recent X3D [10] and AssembleNet [42, 41] build a

searching network to find the best multi-branch architec-

ture for the target dataset. The GTA [22] and HDC [64]

proposed decoupled spatio-temporal attention networks for

self-supervised video understanding.

Multi-label Activity Recognition. Multi-label activ-

ity recognition is designed for recognizing multiple ac-

tivities that are performed simultaneously or sequentially

in each video [44, 63, 39]. Most of the video networks

focus on single-activity recognition and use sigmoid as

the output activation function to provide multi-label pre-

dictions [7, 57, 12]. Other systems use weak-supervised

learning and Zero-shot learning methods to help recognize

weakly labeled activities [37, 56]. We introduce our net-

work that improves the performance of multi-label activi-

ties at the feature-level by extracting independent feature

descriptors for each activity instead of shared feature repre-

sentations.

Multi-label Image Classification. Multi-label image

classification has been studied for several decades. Pre-

vious approaches using graphical models to represent the

label-wise dependency, such as Dependency Network [20],

and Correlative Model [61]. These networks are not end-to-

end trainable and require to input the entire dataset into the

model, which is not generalizable to large-scale datasets.

Others proposed end-to-end CNN-RNN architectures to

model label-wise correlations [8, 53, 62]. These networks

are still using shared features repeated for predicting each

label, and RNN-based networks are too slow for training

large-scale datasets, such as video datasets [31, 44].

3. Methodology

Recent state-of-the-art networks recognize activities by

learning a shared feature representation for all the activities.

These features are designed for recognizing single activities

instead of multi-label activities, which requires to extract

features for multiple activities in each video as well as the

activity correlations. Our network focuses on multi-label

activity recognition from a different angle: that of learn-

ing independent representations for each activity (activity-

specific features) as well as their correlations (activity cor-

relation map). Given a video clip V ∈ R
3×32×224×224 with

214626



Figure 2: Method overview, showing the detail dimension transformation when generating activity-specific features and providing predictions. Attention

(red, green, and brown) focus on different spatio-temporal regions of the backbone feature (Ff ) for generating observations (Obs), and generating activity-

specific features (FA) by combining observations using AttnA. The purple lines (corrj,k) are the correlations between pairs of activity-specific features.

32 consecutive frames, our model provides activity predic-

tions in three steps:

1. Generating activity-specific features: we generate

independent feature representations for A different ac-

tivities. This step consists of two sub-steps: we

first generate K spatio-temporally independent feature

snippets (observations), Obs ∈ R
K×C′

, that focus on

different spatio-temporal regions of the video. We then

apply attention AttnA on the observations to gener-

ate feature descriptors FA (activity-specific features)

that are independent for each activity using indepen-

dent weighted combinations of observations (Figure 2,

Generating Activity-specific Features).

2. Generating activity correlation map: we then gener-

ate an activity label-wise correlation map to represent

the correlation between pairs of activities (Figure 2,

Generating Activity Correlation Map).

3. Generating activity predictions: we finally provide

multi-label activity predictions using their correspond-

ing activity-specific features and the features of corre-

lated activities (Figure 2, Generating Activity Predic-

tions).

3.1. Generating Activityspecific Features

Given a feature set Ff ∈ R
C×TWH from the backbone

network (e.g., i3D [7]), the activity-specific features can be

generated as:

FA = {AttnA1Obs,AttnA2Obs, ..., AttnAAObs} (1)

where FA ∈ R
A×C′

denotes A independent feature descrip-

tors for their corresponding activities (activity-specific fea-

tures), C ′ is the channel number of FA, Obs ∈ R
K×C′

denotes K independent feature snippets (observations) that

are extracted from the backbone features Ff , and AttnAi

(i ∈ 1, 2, ..., A) are the attentions that independently com-

bine the K observations to generate activity-specific fea-

tures for the ith activity. We create these observations in-

stead of directly generating AttnA from the backbone fea-

tures Ff to reduce redundant information. Each observa-

tion is an independent spatio-temporal feature snippet that

focuses on a specific key region in a video. The Obs are

generated by applying K independent spatio-temporal at-

tentions on Ff as:

Obsk = AttnOk[g
α
k (Ff )]

T (2)

Obs = {Obs1, Obs2, ..., Obsk} (3)

where Obsk ∈ R
C′

is the kth observation that focuses on a

specific key region of the video, AttnOk ∈ R
TWH denotes

the spatio-temporal attention for generating the kth obser-

vation. The method for generating AttnA and AttnO will

be introduced later. The gαk is the linear function to integrate

channels from Ff , which is represented as:

gαk (Ff ) = Wα
k Ff (4)

where Wα
k ∈ R

C′
×C are the weights for the linear function

gαk . The activity-specific set FA can finally be written as:

FA = {AttnA1{AttnO1[g
α
1
(Ff )]

T , ..., AttnOk[g
α
k (Ff )]

T }

AttnA2{AttnO1[g
α
1
(Ff )]

T , ..., AttnOk[g
α
k (Ff )]

T }

...

AttnAA{AttnO1[g
α
1
(Ff )]

T , ..., AttnOk[g
α
k (Ff )]

T }}

(5)

3.1.1 Generating Attentions

The attention mechanism was introduced for capturing

long-term dependencies within sequential inputs and is

commonly used in natural language processing systems

[52, 43]. We implemented the dot-product attention method

[52] for generating AttnO as:

AttnOk = softmax([gβ
k
(Ff )−1]

T g
γ
k
(Ff )) (6)

where AttnOk ∈ R
TWH denotes the attention for the kth

observation, g
β
k , g

γ
k are the linear functions same as the gαk

in equation 4, and g
β
k (Ff )−1 ∈ R

C′
×1 denotes selecting the

last row of the g
β
k (Ff ) ∈ R

C′
×TWH to make the produced

attention AttnOk ∈ R
TWH . The AttnA was generated us-

ing a similar approach by replacing Obs with Ff in equa-

tion 6. Other attention methods (e.g., additive attention [3])
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could be used for generating attentions, but we selected the

dot-product attention method because previous research has

shown that it is more efficient and works well for machine

translation [52, 43].

Applying linear functions in equation (4) requires a large

number of weights. Inspired by the channel-separated net-

work [51], we applied a group linear function to reduce the

number of weights for gαk by splitting Ff into n groups

based on the channel dimension and applying independent

linear functions to each group as:

gαk (Ff ) = Concat(Wα
k1Ff1,W

α
k2Ff2, ...,W

α
knFfn) (7)

where Ffn ∈ R
C

n
×TWH is the nth group of Ff , and

Wkn ∈ R
C

′

n
×

C

n are the weights of the linear function for

Ffn. Using a larger number of groups (n) results in fewer

parameters (n times fewer). We set n = 32 empirically

to minimize the number of weights without affecting the

model performance.

3.2. Generating Activity Correlation Maps

Label-wise correlations have proven important to be

learned for multi-label classes [61]. Representing co-

existing and exclusive patterns between activities is also

necessary for recognizing multi-label activities. We ap-

ply an activity label-wise correlation map onto the activity-

specific feature set FA as:

FAC = CorrFA (8)

where FAC ∈ R
A×C′

is the result of matrix multiplication

between Corr and FA. We applied the matrix multiplica-

tion between Corr and FA to help recognize activities using

their correlated activity-specific features. Corr ∈ R
A×A is

the correlation map generated as:

Corr = AttnC +Mask (9)

Mask(j, k) =
Nj,k

Nj

(10)

The correlation map Corr is composed from Mask ∈

R
A×A and AttnC ∈ R

A×A, Mask(j, k) is the frequency

of activity j co-existing with activity k in the training

ground truth, Ni,j is the number of samples that includes

both activity j and k, and Nj is the number of samples in

which activity j occurs. AttnC is the attention generated

from FA to adjust the correlation map based on given dif-

ferent inputs. Corr is obtained by adding the Mask and

the learned attention AttnC . The model is able to adjust

the correlation map if there is a mistake in Mask. AttnC

is generated using equation 6 by replacing FAC with Ff .

3.3. Generating Activity Predictions

We finally make activity predictions using their corre-

sponding activity-specific features and the features of cor-

related activities. To ensure that the FA represents activity-

specific features, without mixing features of other activities

Figure 3: A video example in Charades shows multiple activities (opening

a book and sitting in a chair) and the inputs of speed-invariant tuning that

have different downsample rates (ds rate).

from the loss propagated by FAC , we build a multi-output

network that predicts activities from both FA and FAC as:

FOA = sigmoid(WϕFA + bϕ) (11)

FOC = sigmoid(W θFAC + bθ) (12)

Fout = [FOA, FOC ] (13)

where Fout is the final output of the network with FOA ∈

R
A×1 and FOC ∈ R

A×1, two outputs for activity predic-

tions. Wϕ, W θ, bϕ, and bθ are the weights and bias for

predicting activities from FA and FAC .

3.4. Comparison with Attentionbased Networks

We compared our network with other attention-based

networks to show two differences [16, 9, 34, 36, 16, 22, 64].

First, previous approaches apply attentions shared for all the

channels in Ff and generate shared feature descriptors for

all the activities. In our approach, observations are gener-

ated using independent attentions and focus on different key

regions of the video. Second, attentions in previous meth-

ods only work through spatio-temporal dimensions, while

our AttnA works through observations to generate activity-

specific features. In addition, our network also learns activ-

ity correlations, which is not included in the other attention-

based methods.

3.5. Speedinvariant Tuning

In multi-label activity videos, different activities may

have different duration in a large range compared with sin-

gle activity videos. Figure 3 shows an example in Charades

having two activities: opening a book (short) and sitting

in a chair (long). The LFB method [59] proved that com-

bining long-term features helps to improve the performance

of recognizing multi-label activities. The LFB method re-

quires extra FLOPs, and is not end-to-end trainable. We

introduced our speed-invariant tuning method that ensures

activities of different durations are properly covered in fixed

frame inputs (32-frame) without requiring extra FLOPs.

Training: We first trained the complete model using the

downsampling rate of 4 and froze the weights for all the 3D

convolution layers. We then started finetuning the module

after the 3D convolutions for I iterations by using 32-frame

inputs obtained by randomly selecting downsampling rate r
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among 2, 4, and 8 (Figure 3, red, blue, and green segments).

Using inputs with different downsampling rates makes the

32-frame-inputs able to cover video segments of different

length. This training method enables the model to learn ac-

tivities of different durations.

Inference: During the evaluation stage, we applied the 30-

view test (followed [12]) by selecting views from different

downsampling rates (12 from r = 4, and 9 from both r = 8
and r = 2) and summed the model predictions using inputs

from the 30 views for the video-level activity prediction.

The model can then recognize activities that have different

duration by aggregating the results from branches that used

different downsampling rates as the input.

We noticed that the previous multi-grid method [60] has

a similar idea to speed up the model training process. Un-

like the multi-grid method, we merged the predictions from

multiple input speeds for the final prediction (without addi-

tional parameters and FLOPs) instead of making the model

converge to a specific shape at later epochs. Our speed-

invariant method had the performance improved based on

the model trained with fixed-speed inputs, while the multi-

gird method achieved similar performance as the baseline.

3.6. Implementation Details

We implemented our model with PyTorch [38]. We used

batch normalization [28] and ReLU activation [21] for all

the convolution layers. We used binary cross-entropy loss

and the SGD optimizer with an initial learning rate 3.5e−2
and 1.25e− 5 as the weight decay. Dropout (rate=0.5) was

used after the dense layer to avoid overfitting [48]. We set

the batch size to 12 and trained our model with 3 RTX 2080

Ti GPUs for 50k iterations. We applied the scale-jittering

method in the range of [256, 320] and horizontal flipping to

augment the frames [12]. During the evaluation, we used

the 30-view test [12].

4. Experiments on Charades

Charades dataset [44] contains 9848 videos with aver-

age length of 30 seconds. This dataset includes 157 multi-

label daily indoor activities. We used the officially provided

train-validate split (7985/1863) to evaluate the network. We

used the officially-provided 24-fps RGB frames as input and

the officially-provided evaluation script for evaluating the

validation set.

4.1. Single RGB Branch Results

We first compared our network with other state-of-art

networks on Charades using a single RGB branch (only

RGB videos as input and no ensemble). We compared

our system with three baseline networks, CSN [51], pre-

trained on IG-65M [15]), Slowfast-101, pre-trained on

Kinetics-600, and Nonlocal-101, pre-trained on Kinetics-

400 as well as other state-of-the-art methods that work

Table 1: Comparison with other networks on Charades using a single RGB

branch. The evaluation metric is mAP (mean-average-precision) in per-

centages, calculated using the officially provided script. The Slowfast*

and Nonlocal* are the results of the baseline that we trained on Charades

instead of the one reported in paper [12, 57].

method backbone pre-train mAP

2D CNN [44] Alexnet ImageNet 11.2

MultiScale TRN [65] Inception ImageNet 25.2

I3D [7] Inception Kinetics-400 32.9

STRG [58] Nonlocal-101 Kinetics-400 39.7

LFB [59] Nonlocal-101 Kinetics-400 42.5

Multi-Grid [60] SlowFast-50 Kinetics-400 38.2

Nonlocal [57] Nonlocal-101 Kinetics-400 37.5

Nonlocal* (Baseline) Nonlocal-101 Kinetics-400 40.3

Ours Nonlocal-101 Kinetics-400 43.1

Ours + speed-invariant Nonlocal-101 Kinetics-400 44.2

SlowFast [12] SlowFast-101 Kinetics-600 45.2

X3D-XL [10] X3D-XL Kinetics-600 47.2

Slowfast* (Baseline) SlowFast-101 Kinetics-600 44.7

Ours SlowFast-101 Kinetics-600 46.8

Ours + speed-invariant SlowFast-101 Kinetics-600 48.1

CSN [51] (Baseline) CSN-152 IG-65M 46.4

Ours CSN-152 IG-65M 49.2

Ours + speed-invariant CSN-152 IG-65M 50.3

Table 2: Comparison with state-of-art networks on Charades using ensem-

ble and additional inputs.

method extra inputs mAP #backbones

Hallucinating [54] IDT+Flow 43.1 1

AssembleNet ++ [17] Flow+Object 59.9 4

Action-Genome [29] Object+Person 60.1 1

CSN [51] (Baseline) Object 63.1 1

Ours Object 65.5 1

on Charades. Our method achieved around 4% higher

mAP score on Charades over all the baseline networks

pre-trained with different datasets. This shows that the

generated activity-specific features and the activity label-

wise correlations help the network to work better for multi-

label activity recognition by plugging into any video net-

works. The model with speed-invariant tuning achieved

around 1% mAP improvement on Charades by using all

the backbone networks, which demonstrated that the speed-

invariant tuning helps the model to learn activities with mul-

tiple duration. We also outperformed all the other meth-

ods [59, 25, 58, 12] including the recent state-of-the-art ap-

proach, X3D [10] that pre-trained on Kinetics-600 [6] on

Charades. We note that learning activity correlations re-

quires the ground truth of the dataset make sense in real-

life. If the correlations in the ground truth of the dataset do

not make sense in real-life, we can freeze the feature extrac-

tor as is, and learn the new activity correlations quickly in a

small number of epochs for cross-dataset experiments.

4.2. Data Reinforced Model Results

Previous research showed that using additional inputs

(e.g., flows and object information) improves the perfor-

mance on Charades. The recent AssembleNet++ [42, 41]

built a searching algorithm to fuse a 4-branch network that

included optical flow and object information beside RGB
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Table 3: Ablation experiments on the Charades dataset. We show the mAP scores, parameter numbers, and GFLOPs by using different hyper-parameters,

backbone networks, and removing different modalities from our network.

group size mAP Params GFLOPs

1 47.9 50.4M 9.87 × 30

8 48.3 6.3M 1.24 × 30

32 48.4 1.6M 0.32 × 30

64 48.1 0.8M 0.16 × 30

(a) Group size: performance on Charades using different group

sizes by setting observation number to 64 and sample rate to 4.

obs num mAP Params GFLOPs

16 46.1 0.4M 0.08 × 30

32 47.5 0.8M 0.16 × 30

64 48.4 1.6M 0.32 × 30

128 48.4 3.2M 0.62 × 30

(b) Observation number: performance on Charades using

different number of observations by setting group size to

32 and sample rate to 4.

model structures mAP

baseline 46.4

no activity-specific 46.6

no activity correlation 48.4

complete 49.2

(c) Model structure ablation: performance

on Charades after removing each module.

sample rate mAP GFLOPs

4 only 49.2 (backbone + 0.32) × 30

2 + 4 49.9 (backbone + 0.32) × (15 + 15)

2 + 4 + 8 50.3 (backbone + 0.32) × (9 + 12 + 9)

(d) Sample rate for speed-invariant tuning: performance and FLOPs of the model when

using different sample rates by setting observation number to 64 and group size to 32.

method mAP

Baseline 46.4

Temporal self-attention 46.3

Nonlocal block 46.7

Decoupled spatio-temporal attention 46.4

Ours 48.4

(e) Other attention-based models: compare the performance on Cha-

rades between our network and other attention-based models.

Table 4: Complexity analysis of our model. We compare the additional

FLOPs and parameters that our model require to the other backbones.

method Params GFLOPs

Nonlocal-101 [44] 54.3 M 359.0 × 30

Slowfast-101 [17] 59.9 M 234.0 × 30

CSN-152 [51] 32.8 M 109.0 × 30

X3D-XL [10] 11.0 M 48.4 × 30

Our’s-157 activities 1.6 M 0.32 × 30

Our’s-1024 activities 1.7 M 0.33 × 30

frames as additional inputs. The Action-Genome builds a

graph network to learn the relationship between objects and

persons for activity prediction [29]. For a fair comparison,

we evaluated our network on Charades by including the ob-

ject information provided by [29] as inputs. Table 2 show

that our network also outperformed the baseline and other

state-of-the-art networks using additional inputs. These re-

sults demonstrate that the activity-specific features and ac-

tivity correlations also help for multi-label activity recogni-

tion with additional inputs included.

4.3. Ablation Experiments

We next ablated our system with various hyper-

parameters (group size, observation number, and sampling

rate for speed-invariant inputs). We used the CSN-152 [51]

pre-trained on IG-65M as backbone for all the experiments.

Group sizes. Table 3a shows the system performance

for using different group sizes (n) in equation 7 when

generating observations (64 observations and the down-

sampling rate is 4). The performance on Charades stayed

at 48% mAP when the group size increased from 1 to 32

but dropped for n = 64. A larger group size results in

using a smaller subset of channels from Ff for generating

observations, which requires fewer parameters but may

cause a performance drop because of information loss.

Observations number. Table 3b compares the system

performance for different numbers of observations (group

size is 32 and the downsampling rate is 4). The best-

performing number of observations is 64, which also

requires the fewest weights. Using a larger number of

observations helps cover more key parts from the videos but

the performance saturates for more than 64 observations.

Model structure ablation. We next evaluated the sys-

tem on Charades by removing each component from

our network. Table 3c shows that the model without

activity-specific features achieved similar performance

as the baseline model although with the correlation map.

Without learning activity-specific features, the system

only learns correlations between different feature channels

that have already have been learned in convolutions. The

network with activity correlation achieved 1% mAP score

improvement on Charades that helped to predict co-existed

activities and eliminate exclusive activities. These results

show that our network achieved a performance boost by the

combination of key components of our network.

Sampling rates for speed-invariant tuning. We evaluated

our speed-invariant tuning method by merging predictions

using different downsampling rates at inputs. Table 3d

shows that speed-invariant models achieved better perfor-

mance compared to the model using a single downsampling

rate of 4 because the speed-invariant tuning method makes

the features better represent activities of different duration.

The system achieved the best performance by merging

predictions based on 2, 4, and 8 downsampling rates and

this method did not require extra FLOPs by using the same

view numbers (30 views) for evaluation (Table 3d row 3).

Other attention-based models. We then compared our

network with other attention-based models including the

models applying temporal attention, nonlocal block, and

decoupled spatio-temporal attention (two layers) after

the backbone to show the difference. The attentions are

generated using equation 6 and the Ff . We then applied

a 3D global average pooling after the attention layers that

average the features over the spatio-temporal dimensions

and a fully-connected layer to make predictions. Table

3e shows that all the two-stage transformer-based models

did not increase the performance compared to the baseline
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Table 5: Comparison with other networks on AVA. The evaluation metric is

mean Average Precision using 0.5 IoU as threshold. The result of Slowfast

is evaluated using official released parameters.

method backbone pre-train mAP

ATR [30] Nonlocal-50 Kinetics-400 21.7

LFB [59] Nonlocal-101 Kinetics-400 27.7

Slowfast-101 [12] Slowfast-101 Kinetics-600 29.1

X3D-XL [10] X3D-XL Kinetics-600 27.4

Ours Slowfast-101 Kinetics-600 30.2

CSN-152 (Baseline) CSN-152 IG-65M 27.9

Ours CSN-152 IG-65M 29.2

network, while our network significantly outperformed

the baseline network. The other attention-based models

make all the channels share the same attention that also

attempts to learn features shared by all the activities instead

of activity-specific features.

Complexity Analysis. We finally calculated the addi-

tional complexity that our network required for learning

activity-specific features. Table 4 shows that the additional

parameters and FLOPs for our network are negligible com-

pared to the complexity of the backbone networks. We also

calculated the complexity of our network when the number

of activities is 1024 (Table 4 last row). The complexity of

our network is not linearly related to the activity number

because of the design of observation generation to reduce

redundant parameters. Our network only requires small

amounts of additional computing resources based on the

backbone networks even with a large number of activities.

5. Experiments on AVA

We next evaluated our network on another large-scale

dataset, AVA [19], for multi-label activity detection. The

AVA dataset includes 211k video clips for training and 57k

clips for validating. Each clip has one keyframe with multi-

ple persons localized using a bounding box and labeled with

80 multi-label activities. Following the official protocol

[19], we evaluated the network on 60 activities using mean

Average Precision (mAP) score and 0.5 IoU as the thresh-

old. To make a fair comparison, we used the person bound-

ing boxes generated by previous work and threshold the de-

tected persons having confidence score > 0.8 [12, 11]. We

applied the ROI-Align algorithm [40] to extract the features

of the persons using their corresponding bounding boxes.

We set the spatial stride of the last stage of the backbone

from 2 to 1 to increase the spatial resolution (14× 14).

We compared our method with the baseline and other

state-of-the-art networks on AVA in Table 5. We again out-

performed the current state-of-the-art network (Slowfast-

101, officially released parameters [11]) on AVA using

center-crop views for evaluation. This demonstrated that

our proposed activity-specific feature and activity correla-

tion map generalizes well to different datasets and consis-

tently improves multi-label classification problems by a sig-

Table 6: Experimental results on Volleyball. The “s” and “bb” in the last

two columns denote using the whole scene and bounding boxes of persons

as supplemental for recognizing group activities.

Volleyball Personal (multi-label) Volleyball Group

method Acc. Acc. (s) Acc. (bb)

Hier LSTM [27] 72.7 63.1 81.9

SRNN [4] 76.6 - 83.4

So-Sce [2] 82.4 75.5 89.9

CRM [1] - 75.9 93.0

Act-trans [14] 85.9 - 94.4

CSN-152 baseline 85.0 87.1 -

Ours 86.6 87.6 95.5

nificant margin.

6. Experiments on Hockey and Volleyball

We also run experiments on two small datasets, Hockey

and Volleyball [27, 47]. The Volleyball Dataset contains

55 videos with 4830 annotated video clips. This dataset

includes two sets of labels for group activity recognition

task (8-class multi-class classification) and multi-label ac-

tivity recognition task (9-label multi-label classification).

We evaluated our method on both of these tasks. The ex-

perimental results on Hockey is in the supplemental ma-

terial because of the page limit.

Table 6 shows that our system substantially outper-

formed all the existing approaches on Volleyball for multi-

label activities [14]. We also compared our method with

the baseline model using the latest backbone network (CSN

baseline in Table 6) that works on activity recognition.

Our system achieved roughly 2% higher accuracy score

compared with the baseline model, which shows that the

activity-specific features also improve multi-label activity

recognition on small sports datasets.

We further evaluated our method on Volleyball for group

activity recognition. The group activity is essentially a

single-activity recognition problem: only one activity oc-

curs during one video clip. Our method outperformed other

state-of-the-art methods when using the whole scene (s, Ta-

ble 6) as input [14] (RGB frames without using bounding

boxes around people). This shows that our method general-

izes to the single-activity recognition problem as well. Pre-

vious methods [1, 14] used bounding boxes around people

(bb, Table 6) and their individual activities as supplemental

information for group activity recognition. We tested our

model by including this supplemental information, and our

approach outperformed the recent state-of-the-art method

[1] (95.5 for our system vs. 94.4 for the Act-trans in the

last column of Table 6). Compared to the baseline net-

work, our method slightly outperformed the baseline net-

work (87.2 vs. 87.1 in the second-to-the-last column of

Table 6). The activity-specific features do not help signif-

icantly in the single-activity problems, unlike the case of

multi-label activities, because the feature maps will only fo-

cus on one region where the single-activity occurred.
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(a) Visualization of the activity-specific features in video

“2NXFV” from Charades.
(b) Visualization of the activity-specific features in video

“6C08K” from Charades.
(c) Visualization of the observation-56 in two videos from

Charades.

Figure 4: Visualizing the activity-specific features and observations from Charades. The bounding boxes in the original frames of (a) and (b) correspond to

the activated regions in the activity-specific feature maps.

7. Feature Visualization

To better understand what activity-specific features are

learned, we visualized these features for the activities

present in the video clips. Figure 4 shows two examples in

the Charades, including the activity-specific feature maps

(last two rows of each example in Figure 4) and their cor-

responding input frames. The activity-specific feature maps

were generated by applying the learned AttnO and AttnA

on the backbone features Ff . We normalized the feature

maps between 0 and 1 and plotted these maps for the activ-

ities present in the video (last two rows of each example in

Figure 4). To make the visualized maps more understand-

able, we applied the 0.5 threshold to the activity-specific

feature maps and drew the bounding boxes using differ-

ent colors (blue, red) for different activities in the original

frames around the regions activated in the feature maps.

Based on the visualizations in Figure 4, we can make

four points. First, unlike the backbone features (last row

in Figure 4a and 4b) the activity-specific features will only

focus on the spatial regions for the corresponding activ-

ity when multiple activities are performed simultaneously.

The visualization of video “2NXFV” (Figure 4a) shows

the activity-specific features #1 (holding a pillow) focus-

ing the region of the left person, and activity-specific fea-

tures #2 (eating something) focusing the right person who

is performing the corresponding activity. Second, only the

activity-specific features corresponding to the activity being

performed will have high values when the video has one ac-

tivity or activities performed in sequence. The visualization

of video “6C0BK” (Figure 4b) shows the activity-specific

features #1 (holding a blanket) having activated regions at

the first two frames, while the activity-specific features #2

(playing with a phone) focused on the last frames. Third,

all the activity-specific features will have low values for the

frames in which no activities were performed (Figure 4, the

third column of the right diagram). Finally, the same obser-

vation will focus on the same semantic region if it is present

in both videos. Figure 4c shows the visualized observation

56 in two videos, the observation in both videos focused

on the hands. These visualizations demonstrate that the

observations focus on their specific semantic regions and

activity-specific features will focus on the key regions from

the video that are related to their corresponding activities.

8. Conclusion and Future Work

We introduced a network that focuses on multi-label ac-

tivity recognition. The network generates spatio-temporally

independent activity-specific features for each activity and

learns activity correlations. We outperformed previous

state-of-the-art methods on four multi-label activity recog-

nition datasets. The visualizations showed that the activity-

specific features are representative of their corresponding

activities. One issue remains in the speed-invariant tuning

method, where we simply summed the predictions by using

different downsampling rates for the inputs. Extending the

speed-invariant method to enable the model to learn to se-

lect features from appropriate speeds for different activities

will be our future work.
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