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Abstract

The precise localization of 3D objects from a single im-

age without depth information is a highly challenging prob-

lem. Most existing methods adopt the same approach for

all objects regardless of their diverse distributions, leading

to limited performance for truncated objects. In this pa-

per, we propose a flexible framework for monocular 3D ob-

ject detection which explicitly decouples the truncated ob-

jects and adaptively combines multiple approaches for ob-

ject depth estimation. Specifically, we decouple the edge

of the feature map for predicting long-tail truncated ob-

jects so that the optimization of normal objects is not influ-

enced. Furthermore, we formulate the object depth estima-

tion as an uncertainty-guided ensemble of directly regressed

object depth and solved depths from different groups of

keypoints. Experiments demonstrate that our method out-

performs the state-of-the-art method by relatively 27% for

the moderate level and 30% for the hard level in the test

set of KITTI benchmark while maintaining real-time effi-

ciency. Code will be available at https://github.

com/zhangyp15/MonoFlex.

1. Introduction

3D object detection is an indispensable premise for

machines to perceive the physical environment and has

been widely used in autonomous driving and robot navi-

gation. In this work, we focus on solving the problem with

only information from monocular images. Most existing

methods for 3D object detection require the LiDAR sen-

sors [22, 33, 35, 40, 41, 49] for precise depth measurements

or stereo cameras [8, 24, 37, 45] for stereo depth estimation,

which greatly increases the implementation costs of practi-

cal systems. Therefore, monocular 3D object detection has

been a promising solution and received much attention in

the community [2, 3, 7, 10, 13, 20, 27, 31, 34].

For the challenging localization of 3D objects, most ex-
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(a) M3D-RPN [3] (b) D4LCN [13]

(c) Baseline (d) Ours

Figure 1: Qualitative comparison among prior arts [3, 13],

our baseline, and the proposed method. The cyan and pink

bounding boxes represent detected cars and pedestrians.

Our approach can effectively detect the heavily truncated

object highlighted by the red arrow.

isting methods handle different objects with a unified ap-

proach. For example, [10, 25, 28, 52] utilize fully convo-

lutional nets to predict objects of diverse distributions with

shared kernels. However, we observe that the equal and

joint processing of all objects can lead to unsatisfied per-

formance: (1) As shown in Figure 1, the heavily truncated

objects can be hardly detected by state-of-the-art meth-

ods [3, 13] but these objects are important to the safety of

autonomous vehicles. (2) We empirically found that these

hard samples can increase the learning burden and affect the

prediction of general objects. Thus, unified approaches can

fail in both finding every object and predicting precise 3D

locations. To this end, we propose a flexible detector that

considers the difference among objects and estimates their

3D locations in an adaptive way. Since the estimation of an

object’s 3D location is usually decomposed into finding the

projected 3D center and the object depth [10, 28, 36, 52],

we also consider the flexibility from these two aspects.

To localize the projected 3D center, we divide objects

according to whether their projected centers are “inside” or

“outside” the image. Then we represent inside objects ex-

actly as the projected centers and outside objects as deli-

cately chosen edge points so that two groups of objects are

handled by the inner and edge regions of the feature map re-

spectively. Considering it is still difficult for convolutional
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filters to manage spatial-variant predictions, the edge fusion

module is further proposed to decouple the feature learning

and prediction of outside objects.

To estimate the object depth, we propose to combine dif-

ferent depth estimators with uncertainty estimation [18, 19].

The estimators include direct regression [10, 25, 36, 52]

and geometric solutions from keypoints [2, 5]. We observe

that computing depth from keypoints is usually an over-

determined problem, where simply averaging results from

different keypoints [5] can be sensitive to the truncation

and occlusion of keypoints. As a result, we further split

keypoints into M groups, each of which is exactly suffi-

cient for solving the depth. To combine M keypoint-based

estimators and the direct regression, we model their uncer-

tainties and formulate the final estimation as an uncertainty-

weighted average. The proposed combination allows the

model to flexibly choose more suitable estimators for robust

and accurate predictions.

Experimental results on KITTI [14] dataset demonstrate

that our method significantly outperforms all existing meth-

ods, especially for moderate and hard samples. The main

contributions of this paper can be summarized in two as-

pects: (1) We reveal the importance to consider the dif-

ference among objects for monocular 3D object detection

and propose to decouple the prediction of truncated objects;

(2) We propose a new formulation for object depth estima-

tion, which utilizes uncertainties to flexibly combine inde-

pendent estimators.

2. Related Work

Monocular 3D object Detection. Considering the diffi-

culty in perceiving 3D environments from 2D images, most

existing methods for monocular 3D object detection utilize

extra information to simplify the task, which includes pre-

trained depth estimation modules [30, 45, 46, 47], anno-

tated keypoints [2] and CAD models [32]. Mono3D [7] first

samples candidates based on the ground prior and scores

them with semantic/instance segmentation, contextual in-

formation, object shape, and location prior. MonoPSR [21]

estimates the instance point cloud and enforces the align-

ment between the object appearance and the projected point

cloud for proposal refinement. Pseudo-LiDAR [45] lifts

the monocular image into pseudo-LiDAR with estimated

depth and then utilizes LiDAR-based detectors. AM3D [31]

proposes a multi-modal fusion module to enhance the

pseudo-LiDAR with color information. PatchNet [30] or-

ganizes pseudo-LiDAR into the image representation and

utilizes powerful 2D CNN to boost the detection perfor-

mance. Though these methods with extra information usu-

ally achieve better performance, they require more annota-

tions for training and are usually less generalized.

Other purely monocular methods [3, 10, 27, 28, 34, 36]

only utilize a single image for detection. Deep3DBox [34]

presents the MultiBin method for orientation estimation and

uses geometric constraints of 2D bounding boxes to derive

3D bounding boxes. FQNet [27] measures the fitting de-

gree between projected 3D proposals and objects so that the

best-fitted proposals are picked out. MonoGRNet [36] di-

rectly predicts the depth of objects with sparse supervision

and combines early features to refine the location estima-

tion. M3D-RPN [3] solves the problem with a 3D region

proposal network and proposes the depth-aware convolu-

tional layers to enhance extracted features. MonoPair [10]

considers the pair-wise relationships between neighboring

objects, which are utilized as spatial constraints to optimize

the results of detection. RTM3D [25] predicts the projected

vertexes of the 3D bounding box and solves 3D properties

with nonlinear least squares optimization. Existing methods

mostly neglect the difference among objects or only con-

sider the general scale variance, which can suffer from pre-

dicting out-of-distribution objects and lead to downgraded

performance. By contrast, our work explicitly decouples

the heavily truncated objects with long-tail distribution for

efficient learning and estimates the object depth by adap-

tively combining multiple depth estimators instead of uti-

lizing one single method for all objects.

Uncertainty Estimation. Two major types of uncertainty

are usually studied in Bayesian modeling [18]. The epis-

temic uncertainty describes the uncertainty of the model

parameters, while the aleatoric uncertainty can capture the

noise of observations, whose applications in object de-

tection have been explored in [10, 11, 15]. Gaussian

YOLO [11] models the uncertainty of predicted 2D boxes

to rectify the detection scores. [15] predicts the bounding

box as a Gaussian distribution and formulates the regres-

sion loss as the KL divergence. MonoPair [10] uses uncer-

tainty to provide weights for the post-optimization between

predicted 3D locations and pair-wise constraints. In this pa-

per, we model the uncertainties of estimated depths from

multiple estimators, which are used to quantify their contri-

butions to the final combined prediction.

Ensemble Learning. Ensemble learning [1, 12, 17, 23, 39]

generates multiple models strategically and combines their

predictions for better performance. Traditional ensemble

methods include bagging, boosting, stacking, gating net-

work, and so on. [17] uses a gating network to combine

the mixture of experts for classification. [1] proposes a

tree-structured gate to hierarchically weight different ex-

perts for face alignment. Ensemble learning generally as-

sumes the learners have identical structures but are trained

with different samples or initializations, while our multiple

depth estimators function in respectively different ways and

are also supervised by substantially different loss functions.

Therefore, we propose to formulate the combination as an

uncertainty-guided average of all predictions.
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Figure 2: Overview of our framework. First, the CNN backbone extracts feature maps from the monocular image as the

input for multiple prediction heads. The image-level localization involves the heatmap and offsets, where the edge fusion

modules are used to decouple the feature learning and prediction of truncated objects. The adaptive depth ensemble adopts

four methods for depth estimation and simultaneously predicts their uncertainties, which are utilized to form an uncertainty-

weighted prediction.

3. Approach

3.1. Problem Statement

The 3D detection of an object involves estimating its

3D location (x, y, z), dimension (h,w, l), and orientation

θ. The dimension and orientation can be directly inferred

from appearance-based clues, while the 3D location is con-

verted to the projected 3D center xc = (uc, vc) and the

object depth z as shown in Figure 3(a) and (1):

x =
(uc − cu)z

f
, y =

(vc − cv)z

f
(1)

where (cu, cv) is the principle point and f is the focal

length. To this end, the whole problem is decomposed into

four independent subtasks.

3.2. Framework Overview

As shown in Figure 2, our framework is extended

from CenterNet [52], where objects are identified by

their representative points and predicted by peaks of the

heatmap. Multiple prediction branches are deployed on the

shared backbone to regress objects’ properties, including

the 2D bounding box, dimension, orientation, keypoints,

and depth. The final depth estimation is an uncertainty-

guided combination of the regressed depth and the com-

puted depths from estimated keypoints and dimensions. We

(a) Decomposing 3D locations
(b) Offset distribution

Figure 3: (a) The 3D location is converted to the projected

center and the object depth. (b) The distribution of the off-

sets δc from 2D centers to projected 3D centers. Inside and

outside objects exhibit entirely different distributions.

present the design of decoupled representative points for

normal and truncated objects in Section 3.3 and then intro-

duce the regression of visual properties in Section 3.4. Fi-

nally, the adaptive depth ensemble is detailed in Section 3.5.

3.3. Decoupled Representations of Objects

Existing methods [10, 25, 52] utilize a unified represen-

tation xr , the center of 2D bounding box xb, for every ob-

ject. In such cases, the offset δc = xc − xb is regressed to

derive the projected 3D center xc. We divide objects into

two groups depending on whether their projected 3D cen-

ters are inside or outside the image and visualize the cor-

responding offsets δc in Figure 3(b). Considering the sub-
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stantially different offsets of two groups, the joint learning

of δc can suffer from long-tail offsets and we therefore pro-

pose to decouple the representations and the offset learning

of inside and outside objects.

Inside Objects. For objects whose projected 3D centers

are inside the image, they are directly identified by xc to

avoid regressing the irregular δc like [10, 25]. Though we

still need to regress the discretization error δin due to the

downsampling ratio S of the backbone CNN as in (2), it is

much smaller than δc and easier to regress.

δin =
xc

S
− ⌊

xc

S
⌋ (2)

We follow [52] to generate the ground-truth heatmap for

inside objects with circular Gaussian kernels centered at xc.

Outside Objects. To decouple the representation of out-

side objects, we propose to identify them by the intersec-

tion xI between the image edge and the line from xb to xc,

as shown in Figure 4(a). It can be seen that the proposed

intersection xI is more physically meaningful than simply

clamping xb or xc to the boundary. The prediction of xI

is achieved by the edge heatmap as shown in Figure 4(b),

which is generated from a one-dimensional Gaussian ker-

nel. We also compare our xI and the commonly used xb

in Figure 4(c). Since 2D bounding boxes only capture the

inside-image part of objects, the visual locations of xb can

be confusing and even on other objects. By contrast, the in-

tersection xI disentangles the edge area of the heatmap to

focus on outside objects and offers a strong boundary prior

to simplify the localization. Also, we regress the offsets

from xI to the target xc as in (3):

δout =
xc

S
− ⌊

xI

S
⌋ (3)

Edge Fusion. Though the representations of inside and

outside objects are decoupled in the interior and marginal

regions of the output feature, it is still difficult for shared

convolutional kernels to handle spatial-variant predictions.

Thus, we propose an edge fusion module to further decou-

ple the feature learning and prediction of outside objects.

As shown in the right part of Figure 2, the module first ex-

tracts four boundaries of the feature map and concatenates

them into an edge feature vector in clockwise order, which

is then processed by two 1D convolutional layers to learn

unique features for truncated objects. Finally, the processed

vector is remapped to the four boundaries and added to the

input feature map. When applied to the heatmap predic-

tion, the edge features can specialize in predicting the edge

heatmap for outside objects so that the localization of inside

objects is not confused. For regressing the offsets, the sig-

nificant scale difference between δin and δout as shown in

Figure 3(b) can be resolved with the edge fusion module.

Loss Functions. The penalty-reduced focal loss [26] is uti-

lized for heatmap prediction as in [10, 25, 28]. We adopt

(a) Intersection (b) Edge heatmap

(c) Comparison between xI and xb

Figure 4: Representations of outside objects. (a) The inter-

section xI between the image edge and the line from xb to

xc is used to represent the truncated object. (b) The edge

heatmap is generated with 1D Gaussian distribution whose

kernel size is proportional to the size of the 2D bounding

box. (c) The always-on-edge intersection xI (cyan) is a bet-

ter representation than the 2D center xb (green) for heavily

truncated objects. Best viewed in color.

L1 loss for regressing δin and log-scale L1 loss for δout

because it is more robust to extreme outliers. The offset

loss is computed as (4):

Loff =

{

|δin − δ
∗
in
| if inside

log (1 + |δout − δ
∗
out

|) otherwise
(4)

where δin and δout refer to predictions and δ∗
in

and δ∗
out

are ground-truth. Note that Loff is averaged separately for

inside and outside objects due to the different formulations.

3.4. Visual Properties Regression

We elaborate on the regression of visual properties in-

cluding the 2D bounding boxes, dimensions, orientations,

and keypoints of objects in this section.

2D Detection. Since we do not represent objects as their 2D

centers, we follow FCOS [44] to regress the distances from

the representative point xr = (ur, vr), which refers to xb

for inside and xI for outside objects, to four sides of the 2D

bounding box. If we denote the left-top corner as (u1, v1)
and the right-bottom corner as (u2, v2), the regression target

is then:
l∗ = ur − u1, r∗ = u2 − ur,

t∗ = vr − v1, b∗ = v2 − vr.
(5)

GIoU loss [38] is adopted for 2D detection since it is

robust to scale changes.

Dimension Estimation. Considering the small variance of

object sizes within each category, we regress the relative

changes with respect to the statistical average instead of ab-

solute values. For each class c, the average dimension of

the training set is denoted as (hc, wc, lc). Assume the re-

gressed log-scale offsets of dimensions are (δh, δw, δl) and
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Figure 5: ry , α, and θ are the global orientation, local ori-

entation, and the viewing angle.

Figure 6: Keypoints include the projections of eight ver-

texes, top center and bottom center of the 3D bounding box.

the ground-truth dimensions are (h∗, w∗, l∗), the L1 loss for

dimension regression is defined as:

Ldim =
∑

k∈{h,w,l}

∣

∣kce
δk − k∗

∣

∣

(6)

Orientation Estimation. The orientation can be repre-

sented as either the global orientation in the camera coor-

dinate system or the local orientation relative to the viewing

direction. For an object located at (x, y, z), its global orien-

tation ry and local orientation α satisfy (7):

ry = α+ arctan(x/z) (7)

As shown in Figure 5, objects with the same global ori-

entations but different viewing angles will have different lo-

cal orientations and visual appearances. Thus, we choose to

estimate the local orientation with MultiBin loss [6], which

divides the orientation range into No overlapping bins so

that the network can determine which bin an object lies in-

side and estimate the residual rotation w.r.t the bin center.

Keypoint Estimation. As shown in Figure 6, we define

Nk = 10 keypoints for each object which include the pro-

jections of eight vertexes {ki, i = 1...8}, bottom center k9

and top center k10 of the 3D bounding box. We regress the

local offsets {δki = ki − xr, i = 1...Nk} from xr to Nk

keypoints with L1 loss:

Lkey =

∑Nk

i=1
Iin(ki) |δki − δ∗ki|
∑Nk

i=1
Iin(ki)

(8)

where δ∗ki is the ground-truth and Iin(ki) indicates whether

the keypoint ki is inside the image.

Figure 7: The depth of a supporting line of the 3D bounding

box can be computed with the object height and the line’s

pixel height. We split ten keypoints into three groups, each

of which can produce the center depth independently.

3.5. Adaptive Depth Ensemble.

We formulate the estimation of object depth as an adap-

tive ensemble of M + 1 independent estimators, includ-

ing direct regression and M geometric solutions from key-

points. We first introduce these depth estimators and then

present how we combine them with uncertainties.

Direct Regression. To directly regress the object depth, we

follow [10, 52] to transform the unlimited network output

zo into the absolute depth zr with the inverse sigmoid trans-

formation:

zr =
1

σ(zo)
− 1, σ(x) =

1

1 + e−x
(9)

To jointly model the uncertainty of the regressed depth,

we follow [11, 18, 19] to utilize a modified L1 loss for depth

regression:

Ldep =
|zr − z∗|

σdep

+ log(σdep) (10)

where σdep is the uncertainty of the regressed depth. When

the model lacks confidence in its prediction, it will output a

larger σdep so that Ldep can be reduced. The term log(σdep)
can avoid trivial solutions and encourage the model to be

optimistic about accurate predictions.

Depth From Keypoints. With known camera matrices, we

can utilize the relative proportion between pixel height and

estimated object height to compute the object depth, which

is similar to [5]. From our baseline model, the relative er-

rors of predicted dimensions are 5.2%, 6.1%, and 11.8% for

height, width, and length. Therefore, solving depth from

height is not only independent of orientation estimation but

suffers less from the error of dimension estimation. As

shown in Figure 7, the estimated ten keypoints constitute

five vertical supporting lines of the 3D bounding box. The

depth zl of each vertical line can be computed from its pixel

height hl and the object height H as (11):

zl =
f ×H

hl

(11)
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where f is the camera’s focal length. The depth of the center

vertical line zc is exactly the object depth while averaging

the depths of two diagonal vertical edges, namely z1 and

z3 or z2 and z4, can also get the object depth. Therefore,

the estimated ten keypoints are divided into three groups

and generate respectively independent depths denoted as the

center depth zc, the diag1 depth zd1
and the diag2 depth zd2

.

To further supervise the computed depths from keypoints

and also model their uncertainties, we adopt the L1 loss

with uncertainty as follows:

Lkd =
∑

k∈{c,d1,d2}

[

|zk − z∗|

σk

+ Iin(zk) log(σk)

]

(12)

where z∗ is ground-truth and Iin(zk) indicates whether all

keypoints used for computing zk are inside the image. Re-

moving the log uncertainty for “invalid” depths computed

from invisible keypoints allows the model to be fully pes-

simistic so that these depths are down-weighted in the en-

semble. Note that we also restrict the gradients from these

invalid depths to only update the uncertainty.

Uncertainty Guided Ensemble. Now that we have M + 1
predicted depths {zi, i = 1...M +1} and their uncertainties

{σi, i = 1...M + 1} from M + 1 independent estimators,

we propose to compute the uncertainty-weighted average,

namely soft ensemble, as expressed in (13):

zsoft =

(

M+1
∑

i=1

zi
σi

)

/

(

M+1
∑

i=1

1

σi

)

(13)

The soft ensemble can assign more weights to those

more confident estimators while being robust to potential

inaccurate uncertainties. We also consider the hard ensem-

ble where the estimator with minimal uncertainty is chosen

as the final depth estimation. The performances of two en-

semble ways are compared in Section 4.5.

Integral Corner Loss. As discussed in [36, 42], the sep-

arate optimization of multiple subtasks cannot ensure the

optimal cooperation among different components. There-

fore, we also supervise the coordinates of eight corners

{vi = (xi, yi, zi), i = 1, ..., 8} from the predicted 3D

bounding box, which is formed by the estimated dimension,

orientation, offset, and soft depth zsoft, with L1 loss:

Lcorner =

8
∑

i=1

|vi − v
∗
i | (14)

4. Experiments

The proposed method is evaluated on KITTI 3D Object

Detection benchmark [14], which includes 7481 images for

training and 7518 images for testing. We follow [9] to split

the training images into train (3712) and val (3769) sets.

Detection results are evaluated on three levels of difficulty:

easy, moderate, and hard, which are defined by the bound-

ing box height, occlusion, and truncation. All our reported

results are produced by models that jointly detect multi-

classes, including Car, Pedestrian, and Cyclist. Note that

results for KITTI Bird’s Eye View benchmark will be pro-

vided in the supplementary material for reference.

4.1. Implementation Details

We adopt the same modified DLA-34 [51] as our back-

bone network following [10, 28, 52]. All input images are

padded to the same size of 384 × 1280. Every prediction

head attached to the backbone consists of one 3 × 3 × 256
conv layer, BatchNorm [16], ReLU, and another 1× 1× co
conv layer, where co is the output size. The edge fusion

module has similar settings except using 1D conv layer and

empirically removing the ReLU activation. For MultiBin

loss [34], we use four bins centered at [0, π
2
, π,−π

2
]. The

model is trained using AdamW [29] optimizer with the ini-

tial learning rate as 3e-4 and weight decay as 1e-5. We train

the model for 34k iterations with a batchsize of 7 on a sin-

gle RTX 2080Ti GPU and the learning rate is divided by

10 at 22k and 30k iterations. The random horizontal flip is

adopted as the only data augmentation.

4.2. Evaluation Metrics

The detection is evaluated by the average precision of

3D bounding boxes AP3D. For the val set, we report both

AP3D|R11
and AP3D|R40

for a comprehensive comparison

with previous studies. For the test set, the AP3D|R40
results

from the test server are reported. The IoU thresholds for

AP3D are 0.7 for Car and 0.5 for Pedestrian and Cyclist.

4.3. Quantitative Results

In Table 1, we conduct a comprehensive comparison be-

tween our proposed method and existing arts on the val

and test sets of KITTI benchmark for Car. Without bells

and whistles, our method outperforms all prior methods that

only take monocular images as input. For AP3D|R40
on the

val set, our method is 45%, 42% and 42% higher than the

second-best method MonoPair [10] on three levels of diffi-

culty. For the test set, our proposed method surpasses all

existing methods, including those with extra information.

The significant improvement on hard samples demonstrates

that our method can effectively detect those heavily trun-

cated objects, which are crucial for practical applications.

We further show the results of Pedestrian and Cyclist on the

test set in Table 2. Our method outperforms M3D-RPN [3]

and Movi3D [43] while achieving comparable performance

with MonoPair [10]. Finally, our method is also much faster

than most existing methods, allowing for real-time infer-

ence. To sum up, our proposed framework achieves a state-

of-the-art trade-off between performance and latency.
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Methods Extra
Time Val, AP3D|R11

Val, AP3D|R40
Test, AP3D|R40

(ms) Easy Mod Hard Easy Mod Hard Easy Mod Hard

MonoPSR[20] depth, LiDAR 120 12.75 11.48 8.59 - - - 10.76 7.25 5.85

UR3D[48] depth 120 28.05 18.76 16.55 23.24 13.35 10.15 15.58 8.61 6.00

AM3D[31] depth - 32.23 21.09 17.26 28.31 15.76 12.24 16.50 10.74 9.52

PatchNet[30] depth - 35.10 22.00 19.60 31.60 16.80 13.80 15.68 11.12 10.17

DA-3Ddet[50] depth, LiDAR - 33.40 24.00 19.90 - - - 16.80 11.50 8.90

D4LCN[13] depth - 26.97 21.71 18.22 22.32 16.20 12.30 16.65 11.72 9.51

Kinem3D[4] multi-frames 120 - - - 19.76 14.10 10.47 19.07 12.72 9.17

FQNet[27] - - 5.98 5.50 4.75 - - - 2.77 1.51 1.01

MonoGRNet[36] - 60 13.88 10.19 7.62 - - - 9.61 5.74 4.25

MonoDIS[42] - 100 18.05 14.98 13.42 - - - 10.37 7.94 6.40

M3D-RPN[3] - 160 20.27 17.06 15.21 14.53 11.07 8.65 14.76 9.71 7.42

SMOKE[28] - 30 14.76 12.85 11.50 - - - 14.03 9.76 7.84

MonoPair[10] - 57 - - - 16.28 12.30 10.42 13.04 9.99 8.65

RTM3D[25] - 55 20.77 16.86 16.63 - - - 14.41 10.34 8.77

Movi3D[43] - 45 - - - 14.28 11.13 9.68 15.19 10.90 9.26

Ours - 35 28.17 21.92 19.07 23.64 17.51 14.83 19.94 13.89 12.07

Table 1: Quantitative results for Car on KITTI val/test sets, evaluated by AP3D. “Extra” lists the required extra information

for each method. We divide existing methods into two groups considering whether they utilize extra information and sort

them according to their performance on the moderate level of the test set within each group.

Methods

Test, AP3D|R40

Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard

M3D-RPN[31] 4.92 3.48 2.94 0.94 0.65 0.47

Movi3D[43] 8.99 5.44 4.57 1.08 0.63 0.70

MonoPair[10] 10.02 6.68 5.53 3.79 2.12 1.83

Ours 9.43 6.31 5.26 4.17 2.35 2.04

Table 2: Quantitative results for Pedestrian and Cyclist on

KITTI test set.

4.4. Ablation Study

4.4.1 Decoupled Representations

In Table 3, we compare various representations for in-

side and outside objects and validate the improvement from

separate offset losses, namely the decoupled loss, and the

edge fusion module. The second row which represents all

objects with xb is considered as the baseline. All models

directly regress the object depth without ensemble.

We observe that: (1) Simply discarding outside objects

can improve the performance compared to the baseline,

demonstrating the necessity of decoupling outside objects.

(2) Identifying inside objects as their projected 3D centers

xc is better than the 2D centers xb, possibly because the

offsets from xb to xc are irregular and hard to learn. (3) The

decoupled optimization of inside and outside offsets and the

edge fusion module are crucial for the remarkable improve-

ment on moderate and hard samples, where the heavily trun-

cated objects belong. (4) Compared with xcc and xcb de-

rived by clamping xc and xb to the image edge as shown in

Figure 4(a), the proposed intersection xI is a more effective

representation for outside objects.

Representation Decoupled Edge Val, AP3D|R40

Inside Outside Loss Fusion E M H

xb - 13.5 10.5 8.9

xb xb 13.0 9.4 7.6

xc - 15.3 11.0 9.6

xc xI 13.9 10.2 8.9

xc xI

√
14.2 11.7 9.8

xc xI

√
14.6 11.7 9.7

xc xI

√ √
15.9 12.6 11.4

xc xcc

√ √
12.1 9.8 8.6

xc xcb

√ √
16.2 12.0 10.2

Table 3: Ablation study on decoupled representations.

4.4.2 Object Depth Estimation

We compare different methods for object depth estima-

tion in Table 4. “Direct Regression” refers to the best

model in Table 3 with our decoupled representations but

without estimating keypoints. “Keypoints” replaces the

depth branch with keypoint prediction and solves the ob-

ject depth from geometry as in Section 3.5. The regressed

depth performs slightly better than the keypoints-based so-

lutions. The import of uncertainties significantly improves

both methods because it allows the model to neglect diffi-

cult outliers and focus on most moderate objects. By con-

trast, our adaptive depth ensemble method simultaneously

performs both predictions and further combines them with

the uncertainty-guided weights, outperforming all individ-

ual methods by an obvious margin.

4.5. Depth Combination

To further understand the effectiveness of the proposed

depth ensemble, we compare the performance of each es-
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Figure 8: Qualitative Results. We visualize the results of 3D object detection on KITTI val set, where predicted cars,

pedestrians, and cyclists are represented in cyan, light pink, and red boxes. We use red ovals to emphasize those heavily

truncated objects.

Depth Method
Val, AP3D|R40

Easy Mod Hard

Direct Regression 15.86 12.60 11.38

Direct Regression + σ 19.63 14.83 13.25

Keypoints 15.45 12.18 10.73

Keypoints + σ 18.42 14.76 12.49

Adaptive Ensemble 23.64 17.51 14.83

Table 4: Ablation study on object depth estimation.

timator and the combined depth from the ensemble model

in Table 5. It can be observed that the joint learning con-

sistently improves the performance of each depth estima-

tor compared with results in Table 4, which can owe to en-

hanced feature learning. The combined depth from soft en-

semble outperforms every individual estimator, especially

for the moderate level of Car and all levels of Pedestrian.

The hard ensemble is inferior, possibly due to its sensitivity

to the mismatch between the actual depth error and the es-

timated uncertainty. We also provide the performance from

the oracle depth which means the most accurate estimator

is always chosen for each object by an oracle. It can be

considered as the ideal upper bound of our depth ensemble.

To match a predicted object with a ground-truth object, we

require their 2D IoU to be larger than 0.5. We notice that

our soft ensemble is very close to the oracle performance on

Pedestrian, demonstrating the effectiveness of our proposed

combination method. On the other hand, the oracle perfor-

mance for Car reveals the enormous potential of combining

different depth estimators, which can be left for future work.

4.6. Qualitative Results

From the qualitative results shown in Figure 8, our pro-

posed framework can produce superior performance for or-

dinary objects in various street scenes. As highlighted by

the red ovals, we can also successfully detect some ex-

tremely truncated objects which are crucial for the safety

Estimator

Val, AP|R40

Car, IoU>0.7 Pedestrian, IoU>0.5

Easy Mod Hard Easy Mod Hard

Regression 23.41 16.83 14.59 7.39 5.81 4.54

Key: Center 23.29 16.84 14.72 7.40 5.74 4.54

Key: Diag
1

23.13 16.70 14.50 7.30 5.64 4.52

Key: Diag
2

23.35 16.81 14.63 7.38 5.76 4.56

Hard Ensemble 22.58 16.80 14.58 7.51 6.38 4.64

Soft Ensemble 23.64 17.51 14.83 8.16 6.45 5.16

Oracle 26.28 19.98 17.07 8.54 6.72 5.55

Table 5: Quantitative analysis for the adaptive ensemble of

depth estimators.

of autonomous driving, demonstrating the effectiveness of

decoupling truncated objects.

5. Conclusion

In this paper, we have proposed a novel framework for

monocular 3D object detection which flexibly handles dif-

ferent objects. We observe the long-tail distribution of trun-

cated objects and explicitly decouple them with the pro-

posed edge heatmap and edge fusion module. We also for-

mulate the object depth estimation as an uncertainty-guided

ensemble of multiple approaches, leading to more robust

and accurate predictions. Experiments on KITTI bench-

mark show that our method significantly outperforms all

existing competitors. Our work sheds light on the impor-

tance of flexibly processing different objects, especially for

the challenging monocular 3D object detection.
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